1
|
Klatt OC, de Brouwer L, Hendriks F, Dehne EM, Ataç Wagegg B, Jennings P, Wilmes A. Human and rat renal proximal tubule in vitro models for ADME applications. Arch Toxicol 2025:10.1007/s00204-025-03987-4. [PMID: 40032686 DOI: 10.1007/s00204-025-03987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
The kidney is a major organ dictating excretion rates of chemicals and their metabolites from the body and thus renal clearance is frequently a major component of pharmaco-(toxico)-kinetic profiles. Within the nephron, the proximal tubule is the major site for xenobiotic reabsorption from glomerular filtrate and xenobiotic secretion from the blood into the lumen via the expression of multiple inward (lumen to interstitium) and outward transport systems (interstitium to lumen). While there exist several human proximal tubular cell culture options that could be utilized for modelling the proximal tubule component of renal clearance, they do not necessarily represent the full complement of xenobiotic transport processes of their in vivo counterparts. Here, we review available human and rat renal proximal tubule in vitro models, including subcellular fractions, immortalized cell lines, primary cell cultures, induced pluripotent stem cell (iPSC)-derived models and also consider more organotypic cell culture environments such as microporous growth supports, organoids and microfluidic systems. This review focuses on expression levels and function of human and rat renal transporters and phase I and II metabolizing enzymes in these models in order to critically assess their usefulness and to identify potential solutions to overcome identified limitations.
Collapse
Affiliation(s)
- Olivia C Klatt
- Department of Chemistry and Pharmaceutical Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lenya de Brouwer
- Department of Chemistry and Pharmaceutical Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Femke Hendriks
- Department of Chemistry and Pharmaceutical Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | - Paul Jennings
- Department of Chemistry and Pharmaceutical Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| | - Anja Wilmes
- Department of Chemistry and Pharmaceutical Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
2
|
Chethikkattuveli Salih AR, Asif A, Samantasinghar A, Umer Farooqi HM, Kim S, Choi KH. Renal Hypoxic Reperfusion Injury-on-Chip Model for Studying Combinational Vitamin Therapy. ACS Biomater Sci Eng 2022; 8:3733-3740. [PMID: 35878885 DOI: 10.1021/acsbiomaterials.2c00180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Renal ischemic-reperfusion injury decreases the chances of long-term kidney graft survival and may lead to the loss of a transplanted kidney. During organ excision, the cycle of warm ischemia from the donor and cold ischemia is due to storage in a cold medium after revascularization following organ transplantation. The reperfusion of the kidney graft activates several pathways that generate reactive oxygen species, forming a hypoxic-reperfusion injury. Animal models are generally used to model and investigate renal hypoxic-reperfusion injury. However, these models face ethical concerns and present a lack of robustness and intraspecies genetic variations, among other limitations. We introduce a microfluidics-based renal hypoxic-reperfusion (RHR) injury-on-chip model to overcome current limitations. Primary human renal proximal tubular epithelial cells and primary human endothelial cells were cultured on the apical and basal sides of a porous membrane. Hypoxic and normoxic cell culture media were used to create the RHR injury-on-chip model. The disease model was validated by estimating various specific hypoxic biomarkers of RHR. Furthermore, retinol, ascorbic acid, and combinational doses were tested to devise a therapeutic solution for RHR. We found that combinational vitamin therapy can decrease the chances of RHR injury. The proposed RHR injury-on-chip model can serve as an alternative to animal testing for injury investigation and the identification of new therapies.
Collapse
Affiliation(s)
| | - Arun Asif
- Department of Mechatronics Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea.,BioSpero Inc., Jeju Science Park, Jeju-si, Jeju-do 63243 Korea.,Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Anupama Samantasinghar
- Department of Mechatronics Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| | - Hafiz Muhammad Umer Farooqi
- Department of Mechatronics Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| |
Collapse
|
3
|
Saib S, Hodin S, Mercier C, Paul M, Bin V, Ollier E, Delavenne X. TNF-α and IL-1β Exposure Modulates the Expression and Functionality of P-Glycoprotein in Intestinal and Renal Barriers. Mol Pharm 2022; 19:2327-2334. [PMID: 35674492 DOI: 10.1021/acs.molpharmaceut.2c00140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inflammation is characterized by an increased secretion of proinflammatory cytokines known to alter the expression and functionality of drug transporters. Since P-glycoprotein (P-gp) plays a key role in the pharmacokinetics of several drugs, these modulations could further affect drug exposure. In this context, this study aims to investigate the impact of in vitro cytokine exposure on the expression and activity of P-gp using the intestinal model Caco-2 and the human renal cells RPTEC/TERT1. Cells were exposed to various concentrations of tumor necrosis factor (TNF)-α and interleukin (IL)-1β for 24 or 72 h. Gene expression was then assessed by RT-qPCR followed by absolute quantification of P-gp using liquid chromatography coupled with mass spectrometry. Then, the activity of P-gp was assessed by the intracellular accumulation of rhodamine 123. TNF-α increased both the gene expression and P-gp activity by 15-40% in each model. Minor modulations were observed at the protein level with increases of up to 8% for RPTEC/TERT1 cells and 24% for Caco-2 cells. Conversely, IL-1β led to a downregulation of gene, protein, and functionality by 48 and 25% in intestinal and renal cells, respectively. Taken together, these data highlighted that gene expression levels and functional activity of P-gp are altered by the pro-inflammatory cytokines in intestinal and renal cells. Such pronounced changes in human P-gp could result in altered exposure to drug substrates. Further in vivo studies are needed to confirm the impact of inflammation on drug pharmacokinetics.
Collapse
Affiliation(s)
- Sonia Saib
- INSERM U1059, Dysfonction Vasculaire et Hémostase (DVH), Université Jean Monnet, Saint-Etienne F-42023, France
| | - Sophie Hodin
- INSERM U1059, Dysfonction Vasculaire et Hémostase (DVH), Université Jean Monnet, Saint-Etienne F-42023, France
| | - Clément Mercier
- INSERM U1059, Dysfonction Vasculaire et Hémostase (DVH), Université Jean Monnet, Saint-Etienne F-42023, France
| | - Mireille Paul
- INSERM U1059, Laboratoire de Biologie Intégrative du Tissu Osseux (LBTO), Université Jean Monnet, Saint-Etienne F-42023, France
| | - Valérie Bin
- INSERM U1059, Dysfonction Vasculaire et Hémostase (DVH), Université Jean Monnet, Saint-Etienne F-42023, France
| | - Edouard Ollier
- INSERM U1059, Dysfonction Vasculaire et Hémostase (DVH), Université Jean Monnet, Saint-Etienne F-42023, France
| | - Xavier Delavenne
- INSERM U1059, Dysfonction Vasculaire et Hémostase (DVH), Université Jean Monnet, Saint-Etienne F-42023, France.,Laboratoire de Pharmacologie Toxicologie Gaz du sang, CHU de Saint-Etienne, Saint-Etienne CS 82301, France
| |
Collapse
|
4
|
Saib S, Hodin S, Bin V, Ollier E, Delavenne X. In Vitro Evaluation of P-gp-Mediated Drug-Drug Interactions Using the RPTEC/TERT1 Human Renal Cell Model. Eur J Drug Metab Pharmacokinet 2021; 47:223-233. [PMID: 34935100 DOI: 10.1007/s13318-021-00744-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND OBJECTIVES In vitro evaluation of the P-glycoprotein (P-gp) inhibitory potential is an important issue when predicting clinically relevant drug-drug interactions (DDIs). Located within all physiological barriers, including intestine, liver, and kidneys, P-gp plays a major role in the pharmacokinetics of various therapeutic classes. However, few data are available about DDIs involving renal transporters during the active tubular secretion of drugs. In this context, the present study was designed to investigate the application of the human renal cell line RPTEC/TERT1 to study drug interactions mediated by P-gp. METHODS The P-gp inhibitory potentials of a panel of drugs were first determined by measuring the intracellular accumulation of rhodamine 123 in RPTEC/TERT1 cells. Then four drugs were selected to assess the half-maximal inhibitor concentration (IC50) values by measuring the intracellular accumulation of two P-gp-substrate drugs, apixaban and rivaroxaban. Finally, according to the FDA guidelines, the [I1]/IC50 ratio was calculated for each combination of drugs to assess the clinical relevance of the DDIs. RESULTS The data showed that drugs which are known P-gp inhibitors, including cyclosporin A, ketoconazole, and verapamil, caused great increases in rhodamine 123 retention, whereas noninhibitors did not affect the intracellular accumulation of the P-gp substrate. The determined IC50 values were in accordance with the inhibition profiles observed in the rhodamine 123 accumulation assays, confirming the reliability of the RPTEC/TERT1 model. CONCLUSIONS Taken together, the data demonstrate the feasibility of the application of the RPTEC/TERT1 model for evaluating the P-gp inhibitory potentials of drugs and consequently predicting renal drug interactions.
Collapse
Affiliation(s)
- Sonia Saib
- INSERM U1059, Dysfonction Vasculaire et Hémostase, Université Jean Monnet, 10 rue de la Marandière, Campus Santé Innovations, Saint-Priest-en-Jarez, Saint-Etienne, France.
| | - Sophie Hodin
- INSERM U1059, Dysfonction Vasculaire et Hémostase, Université Jean Monnet, 10 rue de la Marandière, Campus Santé Innovations, Saint-Priest-en-Jarez, Saint-Etienne, France
| | - Valérie Bin
- INSERM U1059, Dysfonction Vasculaire et Hémostase, Université Jean Monnet, 10 rue de la Marandière, Campus Santé Innovations, Saint-Priest-en-Jarez, Saint-Etienne, France
| | - Edouard Ollier
- INSERM U1059, Dysfonction Vasculaire et Hémostase, Université Jean Monnet, 10 rue de la Marandière, Campus Santé Innovations, Saint-Priest-en-Jarez, Saint-Etienne, France
| | - Xavier Delavenne
- INSERM U1059, Dysfonction Vasculaire et Hémostase, Université Jean Monnet, 10 rue de la Marandière, Campus Santé Innovations, Saint-Priest-en-Jarez, Saint-Etienne, France.,Laboratoire de Pharmacologie Toxicologie Gaz du sang, CHU de Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
5
|
Three dimensional modeling of biologically relevant fluid shear stress in human renal tubule cells mimics in vivo transcriptional profiles. Sci Rep 2021; 11:14053. [PMID: 34234242 PMCID: PMC8263711 DOI: 10.1038/s41598-021-93570-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
The kidney proximal tubule is the primary site for solute reabsorption, secretion and where kidney diseases can originate, including drug-induced toxicity. Two-dimensional cell culture systems of the human proximal tubule cells (hPTCs) are often used to study these processes. However, these systems fail to model the interplay between filtrate flow, fluid shear stress (FSS), and functionality essential for understanding renal diseases and drug toxicity. The impact of FSS exposure on gene expression and effects of FSS at differing rates on gene expression in hPTCs has not been thoroughly investigated. Here, we performed RNA-sequencing of human RPTEC/TERT1 cells in a microfluidic chip-based 3D model to determine transcriptomic changes. We measured transcriptional changes following treatment of cells in this device at three different fluidic shear stress. We observed that FSS changes the expression of PTC-specific genes and impacted genes previously associated with renal diseases in genome-wide association studies (GWAS). At a physiological FSS level, we observed cell morphology, enhanced polarization, presence of cilia, and transport functions using albumin reabsorption via endocytosis and efflux transport. Here, we present a dynamic view of hPTCs response to FSS with increasing fluidic shear stress conditions and provide insight into hPTCs cellular function under biologically relevant conditions.
Collapse
|