1
|
Volkmer B, Marchetti T, Aichele P, Schmid JP. Murine Models of Familial Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:481-496. [PMID: 39117835 DOI: 10.1007/978-3-031-59815-9_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disease caused by mutations in effectors and regulators of cytotoxicity in cytotoxic T cells (CTL) and natural killer (NK) cells. The complexity of the immune system means that in vivo models are needed to efficiently study diseases like HLH. Mice with defects in the genes known to cause primary HLH (pHLH) are available. However, these mice only develop the characteristic features of HLH after the induction of an immune response (typically through infection with lymphocytic choriomeningitis virus). Nevertheless, murine models have been invaluable for understanding the mechanisms that lead to HLH. For example, the cytotoxic machinery (e.g., the transport of cytotoxic vesicles and the release of granzymes and perforin after membrane fusion) was first characterized in the mouse. Experiments in murine models of pHLH have emphasized the importance of cytotoxic cells, antigen-presenting cells (APC), and cytokines in hyperinflammatory positive feedback loops (e.g., cytokine storms). This knowledge has facilitated the development of treatments for human HLH, some of which are now being tested in the clinic.
Collapse
Affiliation(s)
- Benjamin Volkmer
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Tommaso Marchetti
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Peter Aichele
- Department of Immunology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Maxfield FR, Steinfeld N, Ma CIJ. The formation and consequences of cholesterol-rich deposits in atherosclerotic lesions. Front Cardiovasc Med 2023; 10:1148304. [PMID: 36926046 PMCID: PMC10011067 DOI: 10.3389/fcvm.2023.1148304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Cardiovascular diseases remain the leading cause of death throughout the world. Accumulation of lipoprotein-associated lipids and their interaction with macrophages are early steps in the development of atherosclerotic lesions. For decades, it has been known that aggregates of lipoproteins in the subendothelial space are found in early plaques, and these aggregates are tightly associated with extracellular matrix fibers. Additionally, most of the cholesterol in these subendothelial aggregates is unesterified, in contrast to the core of low-density lipoproteins (LDL), in which cholesteryl esters predominate. This suggests that the hydrolysis of cholesteryl esters occurs extracellularly. At the cellular level, macrophages in early plaques engage with the LDL and ingest large amounts of cholesterol, which is esterified and stored in lipid droplets. When excessive lipid droplets have accumulated, endoplasmic reticulum stress responses are activated, leading to cell death. The cholesterol-laden dead cells must be cleared by other macrophages. For many years, it was unclear how unesterified (free) cholesterol could be formed extracellularly in early lesions. Papers in the past decade have shown that macrophages form tightly sealed extracellular attachments to aggregates of LDL. These sealed regions become acidified, and lysosomal contents are secreted into these compartments. Lysosomal acid lipase hydrolyzes the cholesteryl esters, and the free cholesterol is transported into the macrophages. High concentrations of cholesterol can also lead to formation of crystals of cholesterol hydrate, and these crystals have been observed in atherosclerotic blood vessels. Characterization of this process may lead to novel therapies for the prevention and treatment of atherosclerosis.
Collapse
|
3
|
Overlapping Machinery in Lysosome-Related Organelle Trafficking: A Lesson from Rare Multisystem Disorders. Cells 2022; 11:cells11223702. [PMID: 36429129 PMCID: PMC9688865 DOI: 10.3390/cells11223702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Lysosome-related organelles (LROs) are a group of functionally diverse, cell type-specific compartments. LROs include melanosomes, alpha and dense granules, lytic granules, lamellar bodies and other compartments with distinct morphologies and functions allowing specialised and unique functions of their host cells. The formation, maturation and secretion of specific LROs are compromised in a number of hereditary rare multisystem disorders, including Hermansky-Pudlak syndromes, Griscelli syndrome and the Arthrogryposis, Renal dysfunction and Cholestasis syndrome. Each of these disorders impacts the function of several LROs, resulting in a variety of clinical features affecting systems such as immunity, neurophysiology and pigmentation. This has demonstrated the close relationship between LROs and led to the identification of conserved components required for LRO biogenesis and function. Here, we discuss aspects of this conserved machinery among LROs in relation to the heritable multisystem disorders they associate with, and present our current understanding of how dysfunctions in the proteins affected in the disease impact the formation, motility and ultimate secretion of LROs. Moreover, we have analysed the expression of the members of the CHEVI complex affected in Arthrogryposis, Renal dysfunction and Cholestasis syndrome, in different cell types, by collecting single cell RNA expression data from the human protein atlas. We propose a hypothesis describing how transcriptional regulation could constitute a mechanism that regulates the pleiotropic functions of proteins and their interacting partners in different LROs.
Collapse
|
4
|
Babina M, Franke K, Bal G. How "Neuronal" Are Human Skin Mast Cells? Int J Mol Sci 2022; 23:ijms231810871. [PMID: 36142795 PMCID: PMC9505265 DOI: 10.3390/ijms231810871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Mast cells are evolutionarily old cells and the principal effectors in allergic responses and inflammation. They are seeded from the yolk sac during embryogenesis or are derived from hematopoietic progenitors and are therefore related to other leukocyte subsets, even though they form a separate clade in the hematopoietic system. Herein, we systematically bundle information from several recent high-throughput endeavors, especially those comparing MCs with other cell types, and combine such information with knowledge on the genes’ functions to reveal groups of neuronal markers specifically expressed by MCs. We focus on recent advances made regarding human tissue MCs, but also refer to studies in mice. In broad terms, genes hyper-expressed in MCs, but largely inactive in other myelocytes, can be classified into subcategories such as traffic/lysosomes (MLPH and RAB27B), the dopamine system (MAOB, DRD2, SLC6A3, and SLC18A2), Ca2+-related entities (CALB2), adhesion molecules (L1CAM and NTM) and, as an overall principle, the transcription factors and modulators of transcriptional activity (LMO4, PBX1, MEIS2, and EHMT2). Their function in MCs is generally unknown but may tentatively be deduced by comparison with other systems. MCs share functions with the nervous system, as they express typical neurotransmitters (histamine and serotonin) and a degranulation machinery that shares features with the neuronal apparatus at the synapse. Therefore, selective overlaps are plausible, and they further highlight the uniqueness of MCs within the myeloid system, as well as when compared with basophils. Apart from investigating their functional implications in MCs, a key question is whether their expression in the lineage is due to the specific reactivation of genes normally silenced in leukocytes or whether the genes are not switched off during mastocytic development from early progenitors.
Collapse
Affiliation(s)
- Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
- Correspondence:
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
5
|
Kuo IY, Hsieh CH, Kuo WT, Chang CP, Wang YC. Recent advances in conventional and unconventional vesicular secretion pathways in the tumor microenvironment. J Biomed Sci 2022; 29:56. [PMID: 35927755 PMCID: PMC9354273 DOI: 10.1186/s12929-022-00837-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
All cells in the changing tumor microenvironment (TME) need a class of checkpoints to regulate the balance among exocytosis, endocytosis, recycling and degradation. The vesicular trafficking and secretion pathways regulated by the small Rab GTPases and their effectors convey cell growth and migration signals and function as meditators of intercellular communication and molecular transfer. Recent advances suggest that Rab proteins govern conventional and unconventional vesicular secretion pathways by trafficking widely diverse cargoes and substrates in remodeling TME. The mechanisms underlying the regulation of conventional and unconventional vesicular secretion pathways, their action modes and impacts on the cancer and stromal cells have been the focus of much attention for the past two decades. In this review, we discuss the current understanding of vesicular secretion pathways in TME. We begin with an overview of the structure, regulation, substrate recognition and subcellular localization of vesicular secretion pathways. We then systematically discuss how the three fundamental vesicular secretion processes respond to extracellular cues in TME. These processes are the conventional protein secretion via the endoplasmic reticulum-Golgi apparatus route and two types of unconventional protein secretion via extracellular vesicles and secretory autophagy. The latest advances and future directions in vesicular secretion-involved interplays between tumor cells, stromal cell and host immunity are also described.
Collapse
Affiliation(s)
- I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsiung Hsieh
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Wan-Ting Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Deletion in chromosome 6 spanning alpha-synuclein and multimerin1 loci in the Rab27a/b double knockout mouse. Sci Rep 2022; 12:9837. [PMID: 35701443 PMCID: PMC9197848 DOI: 10.1038/s41598-022-13557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/25/2022] [Indexed: 11/08/2022] Open
Abstract
We report an incidental 358.5 kb deletion spanning the region encoding for alpha-synuclein (αsyn) and multimerin1 (Mmrn1) in the Rab27a/Rab27b double knockout (DKO) mouse line previously developed by Tolmachova and colleagues in 2007. Western blot and RT-PCR studies revealed lack of αsyn expression at either the mRNA or protein level in Rab27a/b DKO mice. PCR of genomic DNA from Rab27a/b DKO mice demonstrated at least partial deletion of the Snca locus using primers targeted to exon 4 and exon 6. Most genes located in proximity to the Snca locus, including Atoh1, Atoh2, Gm5570, Gm4410, Gm43894, and Grid2, were shown not to be deleted by PCR except for Mmrn1. Using whole genomic sequencing, the complete deletion was mapped to chromosome 6 (60,678,870–61,037,354), a slightly smaller deletion region than that previously reported in the C57BL/6J substrain maintained by Envigo. Electron microscopy of cortex from these mice demonstrates abnormally enlarged synaptic terminals with reduced synaptic vesicle density, suggesting potential interplay between Rab27 isoforms and αsyn, which are all highly expressed at the synaptic terminal. Given this deletion involving several genes, the Rab27a/b DKO mouse line should be used with caution or with appropriate back-crossing to other C57BL/6J mouse substrain lines without this deletion.
Collapse
|
7
|
Saliba J, Coutaud B, Makhani K, Epstein Roth N, Jackson J, Park JY, Gagnon N, Costa P, Jeyakumar T, Bury M, Beauchemin N, Mann KK, Blank V. Loss of NFE2L3 protects against inflammation-induced colorectal cancer through modulation of the tumor microenvironment. Oncogene 2022; 41:1563-1575. [PMID: 35091681 PMCID: PMC8913363 DOI: 10.1038/s41388-022-02192-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
Abstract
We investigated the role of the NFE2L3 transcription factor in inflammation-induced colorectal cancer. Our studies revealed that Nfe2l3−/− mice exhibit significantly less inflammation in the colon, reduced tumor size and numbers, and skewed localization of tumors with a more pronounced decrease of tumors in the distal colon. CIBERSORT analysis of RNA-seq data from normal and tumor tissue predicted a reduction in mast cells in Nfe2l3−/− animals, which was confirmed by toluidine blue staining. Concomitantly, the transcript levels of Il33 and Rab27a, both important regulators of mast cells, were reduced and increased, respectively, in the colorectal tumors of Nfe2l3−/− mice. Furthermore, we validated NFE2L3 binding to the regulatory sequences of the IL33 and RAB27A loci in human colorectal carcinoma cells. Using digital spatial profiling, we found that Nfe2l3−/− mice presented elevated FOXP3 and immune checkpoint markers CTLA4, TIM3, and LAG3, suggesting an increase in Treg counts. Staining for CD3 and FOXP3 confirmed a significant increase in immunosuppressive Tregs in the colon of Nfe2l3−/− animals. Also, Human Microbiome Project (HMP2) data showed that NFE2L3 transcript levels are higher in the rectum of ulcerative colitis patients. The observed changes in the tumor microenvironment provide new insights into the molecular differences regarding colon cancer sidedness. This may be exploited for the treatment of early-onset colorectal cancer as this emerging subtype primarily displays distal/left-sided tumors.
Collapse
Affiliation(s)
- James Saliba
- Lady Davis Institute for Medical Research, Montreal, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Kiran Makhani
- Lady Davis Institute for Medical Research, Montreal, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Noam Epstein Roth
- Lady Davis Institute for Medical Research, Montreal, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jennie Jackson
- Lady Davis Institute for Medical Research, Montreal, Canada.,Life Sciences Institute and Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joo Yeoun Park
- Lady Davis Institute for Medical Research, Montreal, Canada
| | | | - Paolo Costa
- Lady Davis Institute for Medical Research, Montreal, Canada
| | - Thiviya Jeyakumar
- Goodman Cancer Institute and Departments of Oncology, Biochemistry and Medicine, McGill University, Montreal, Quebec, Canada
| | - Marina Bury
- Lady Davis Institute for Medical Research, Montreal, Canada.,De Duve Institute, UCLouvain, Brussels, Belgium
| | - Nicole Beauchemin
- Goodman Cancer Institute and Departments of Oncology, Biochemistry and Medicine, McGill University, Montreal, Quebec, Canada
| | - Koren K Mann
- Lady Davis Institute for Medical Research, Montreal, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Volker Blank
- Lady Davis Institute for Medical Research, Montreal, Canada. .,Department of Medicine, McGill University, Montreal, Quebec, Canada. .,Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
BHMPS Inhibits Breast Cancer Migration and Invasion by Disrupting Rab27a-Mediated EGFR and Fibronectin Secretion. Cancers (Basel) 2022; 14:cancers14020373. [PMID: 35053535 PMCID: PMC8773646 DOI: 10.3390/cancers14020373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Numerous studies targeting Rab GTPases and its multiple effectors have been attempted since exocytosis has been shown to alter tumor malignancy by modulating cancer cell behavior and tumor microenvironment. Here, we demonstrated that BHMPS inhibits migration and invasion of breast cancer cells by blocking the interaction between Rab27a and Slp4. BHMPS interfered with vesicle trafficking and secretion by decreasing FAK and JNK activation. In addition, BHMPS suppressed tumor growth in Rab27a-overexpressing MDA-MB-231 xenograft mice. This study highlighted the importance of understanding the mechanisms of Rab27a-mediated metastasis in improving the therapeutic options for metastatic cancers. Abstract Our previous work demonstrated that (E)-N-benzyl-6-(2-(3, 4-dihydroxybenzylidene) hydrazinyl)-N-methylpyridine-3-sulfonamide (BHMPS), a novel synthetic inhibitor of Rab27aSlp(s) interaction, suppresses tumor cell invasion and metastasis. Here, we aimed to further investigate the mechanisms of action and biological significance of BHMPS. BHMPS decreased the expression of epithelial-mesenchymal transition transcription factors through inhibition of focal adhesion kinase and c-Jun N-terminal kinase activation, thereby reducing the migration and invasion of breast cancer. Additionally, knockdown of Rab27a inhibited tumor migration, with changes in related signaling molecules, whereas overexpression of Rab27a reversed this phenomenon. BHMPS effectively prevented the interaction of Rab27a and its effector Slp4, which was verified by co-localization, immunoprecipitation, and in situ proximity ligation assays. BHMPS decreased the secretion of epidermal growth factor receptor and fibronectin by interfering with vesicle trafficking, as indicated by increased perinuclear accumulation of CD63-positive vesicles. Moreover, administration of BHMPS suppressed tumor growth in Rab27a-overexpressing MDA-MB-231 xenograft mice. These findings suggest that BHMPS may be a promising candidate for attenuating tumor migration and invasion by blocking Rab27a-mediated exocytosis.
Collapse
|
9
|
Izumi T. In vivo Roles of Rab27 and Its Effectors in Exocytosis. Cell Struct Funct 2021; 46:79-94. [PMID: 34483204 PMCID: PMC10511049 DOI: 10.1247/csf.21043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
The monomeric GTPase Rab27 regulates exocytosis of a broad range of vesicles in multicellular organisms. Several effectors bind GTP-bound Rab27a and/or Rab27b on secretory vesicles to execute a series of exocytic steps, such as vesicle maturation, movement along microtubules, anchoring within the peripheral F-actin network, and tethering to the plasma membrane, via interactions with specific proteins and membrane lipids in a local milieu. Although Rab27 effectors generally promote exocytosis, they can also temporarily restrict it when they are involved in the rate-limiting step. Genetic alterations in Rab27-related molecules cause discrete diseases manifesting pigment dilution and immunodeficiency, and can also affect common diseases such as diabetes and cancer in complex ways. Although the function and mechanism of action of these effectors have been explored, it is unclear how multiple effectors act in coordination within a cell to regulate the secretory process as a whole. It seems that Rab27 and various effectors constitutively reside on individual vesicles to perform consecutive exocytic steps. The present review describes the unique properties and in vivo roles of the Rab27 system, and the functional relationship among different effectors coexpressed in single cells, with pancreatic beta cells used as an example.Key words: membrane trafficking, regulated exocytosis, insulin granules, pancreatic beta cells.
Collapse
Affiliation(s)
- Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
10
|
Large Rab GTPases: Novel Membrane Trafficking Regulators with a Calcium Sensor and Functional Domains. Int J Mol Sci 2021; 22:ijms22147691. [PMID: 34299309 PMCID: PMC8303950 DOI: 10.3390/ijms22147691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022] Open
Abstract
Rab GTPases are major coordinators of intracellular membrane trafficking, including vesicle transport, membrane fission, tethering, docking, and fusion events. Rab GTPases are roughly divided into two groups: conventional “small” Rab GTPases and atypical “large” Rab GTPases that have been recently reported. Some members of large Rab GTPases in mammals include Rab44, Rab45/RASEF, and Rab46. The genes of these large Rab GTPases commonly encode an amino-terminal EF-hand domain, coiled-coil domain, and the carboxyl-terminal Rab GTPase domain. A common feature of large Rab GTPases is that they express several isoforms in cells. For instance, Rab44’s two isoforms have similar functions, but exhibit differential localization. The long form of Rab45 (Rab45-L) is abundantly distributed in epithelial cells. The short form of Rab45 (Rab45-S) is predominantly present in the testes. Both Rab46 (CRACR2A-L) and the short isoform lacking the Rab domain (CRACR2A-S) are expressed in T cells, whereas Rab46 is only distributed in endothelial cells. Although evidence regarding the function of large Rab GTPases has been accumulating recently, there are only a limited number of studies. Here, we report the recent findings on the large Rab GTPase family concerning their function in membrane trafficking, cell differentiation, related diseases, and knockout mouse phenotypes.
Collapse
|
11
|
Filho EGF, da Silva EZM, Ong HL, Swaim WD, Ambudkar IS, Oliver C, Jamur MC. RACK1 plays a critical role in mast cell secretion and Ca2+ mobilization by modulating F-actin dynamics. J Cell Sci 2021; 134:263932. [PMID: 34550354 DOI: 10.1242/jcs.252585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
Although RACK1 is known to act as a signaling hub in immune cells, its presence and role in mast cells (MCs) is undetermined. MC activation via antigen stimulation results in mediator release and is preceded by cytoskeleton reorganization and Ca2+ mobilization. In this study, we found that RACK1 was distributed throughout the MC cytoplasm both in vivo and in vitro. After RACK1 knockdown (KD), MCs were rounded, and the cortical F-actin was fragmented. Following antigen stimulation, in RACK1 KD MCs, there was a reduction in cortical F-actin, an increase in monomeric G-actin and a failure to organize F-actin. RACK1 KD also increased and accelerated degranulation. CD63+ secretory granules were localized in F-actin-free cortical regions in non-stimulated RACK1 KD MCs. Additionally, RACK1 KD increased antigen-stimulated Ca2+ mobilization, but attenuated antigen-stimulated depletion of ER Ca2+ stores and thapsigargin-induced Ca2+ entry. Following MC activation there was also an increase in interaction of RACK1 with Orai1 Ca2+-channels, β-actin and the actin-binding proteins vinculin and MyoVa. These results show that RACK1 is a critical regulator of actin dynamics, affecting mediator secretion and Ca2+ signaling in MCs. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Edismauro G Freitas Filho
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Elaine Z M da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Hwei Ling Ong
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - William D Swaim
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Indu S Ambudkar
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| |
Collapse
|
12
|
Kadowaki T, Yamaguchi Y, Ogawa K, Tokuhisa M, Okamoto K, Tsukuba T. Rab44 isoforms similarly promote lysosomal exocytosis, but exhibit differential localization in mast cells. FEBS Open Bio 2021; 11:1165-1185. [PMID: 33641252 PMCID: PMC8016136 DOI: 10.1002/2211-5463.13133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/03/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Rab44 is a large Rab GTPase containing a Rab GTPase domain and some additional N-terminal domains. We recently used Rab44-deficient mice to demonstrate that Rab44 regulates granule exocytosis in mast cells and IgE-mediated anaphylaxis. In mouse mast cells, Rab44 is expressed as two isoforms, namely, the long and short forms; however, the characteristics of these two isoforms remain unknown. Here, we investigated secretion and localization of the human long Rab44 isoform and the two mouse isoforms and their mutants expressed in rat basophilic leukemia (RBL)-2H3 cells. Expression of the human long isoform and both mouse isoforms caused an increase in β-hexosaminidase secretion. Confocal and quantitative analyses showed that both human and mouse long isoforms localized mainly to lysosomes while the mouse short isoform localized mainly to the ER. Live imaging with LysoTracker indicated that the size and number of LysoTracker-positive vesicles were altered by the various mutants. Ionomycin treatment partially altered localization of both long isoforms to the plasma membrane and cytosol, whereas it had little effect on colocalization of the short isoform with lysosomes. Mechanistically, both human and mouse Rab44 proteins interacted with vesicle-associated membrane protein 8 (VAMP8), a v-SNARE protein. Therefore, Rab44 isoforms similarly promote lysosomal exocytosis, but exhibit differential localization in mast cells.
Collapse
Affiliation(s)
- Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Kohei Ogawa
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Japan.,Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Mitsuko Tokuhisa
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Japan.,Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Japan
| |
Collapse
|
13
|
Ménasché G, Longé C, Bratti M, Blank U. Cytoskeletal Transport, Reorganization, and Fusion Regulation in Mast Cell-Stimulus Secretion Coupling. Front Cell Dev Biol 2021; 9:652077. [PMID: 33796537 PMCID: PMC8007931 DOI: 10.3389/fcell.2021.652077] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Mast cells are well known for their role in allergies and many chronic inflammatory diseases. They release upon stimulation, e.g., via the IgE receptor, numerous bioactive compounds from cytoplasmic secretory granules. The regulation of granule secretion and its interaction with the cytoskeleton and transport mechanisms has only recently begun to be understood. These studies have provided new insight into the interaction between the secretory machinery and cytoskeletal elements in the regulation of the degranulation process. They suggest a tight coupling of these two systems, implying a series of specific signaling effectors and adaptor molecules. Here we review recent knowledge describing the signaling events regulating cytoskeletal reorganization and secretory granule transport machinery in conjunction with the membrane fusion machinery that occur during mast cell degranulation. The new insight into MC biology offers novel strategies to treat human allergic and inflammatory diseases targeting the late steps that affect harmful release from granular stores leaving regulatory cytokine secretion intact.
Collapse
Affiliation(s)
- Gaël Ménasché
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Cyril Longé
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Manuela Bratti
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Ulrich Blank
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
14
|
Okunishi K, Wang H, Suzukawa M, Ishizaki R, Kobayashi E, Kihara M, Abe T, Miyazaki JI, Horie M, Saito A, Saito H, Nakae S, Izumi T. Exophilin-5 regulates allergic airway inflammation by controlling IL-33-mediated Th2 responses. J Clin Invest 2021; 130:3919-3935. [PMID: 32240120 DOI: 10.1172/jci127839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
A common variant in the RAB27A gene in adults was recently found to be associated with the fractional exhaled nitric oxide level, a marker of eosinophilic airway inflammation. The small GTPase Rab27 is known to regulate intracellular vesicle traffic, although its role in allergic responses is unclear. We demonstrated that exophilin-5, a Rab27-binding protein, was predominantly expressed in both of the major IL-33 producers, lung epithelial cells, and the specialized IL-5 and IL-13 producers in the CD44hiCD62LloCXCR3lo pathogenic Th2 cell population in mice. Exophilin-5 deficiency increased stimulant-dependent damage and IL-33 secretion by lung epithelial cells. Moreover, it enhanced IL-5 and IL-13 production in response to TCR and IL-33 stimulation from a specific subset of pathogenic Th2 cells that expresses a high level of IL-33 receptor, which exacerbated allergic airway inflammation in a mouse model of asthma. Mechanistically, exophilin-5 regulates extracellular superoxide release, intracellular ROS production, and phosphoinositide 3-kinase activity by controlling intracellular trafficking of Nox2-containing vesicles, which seems to prevent the overactivation of pathogenic Th2 cells mediated by IL-33. This is the first report to our knowledge to establish the significance of the Rab27-related protein exophilin-5 in the development of allergic airway inflammation, and provides insights into the pathophysiology of asthma.
Collapse
Affiliation(s)
- Katsuhide Okunishi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hao Wang
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Maho Suzukawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Ray Ishizaki
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Eri Kobayashi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Miho Kihara
- Laboratory for Animal Resource Development and
| | - Takaya Abe
- Laboratory for Animal Resource Development and.,Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Jun-Ichi Miyazaki
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
15
|
Novel and Converging Ways of NOX2 and SOD3 in Trafficking and Redox Signaling in Macrophages. Antioxidants (Basel) 2021; 10:antiox10020172. [PMID: 33503855 PMCID: PMC7911390 DOI: 10.3390/antiox10020172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Macrophages and related tissue macrophage populations use the classical NADPH oxidase (NOX2) for the regulated production of superoxide and derived oxidants for pathogen combat and redox signaling. With an emphasis on macrophages, we discuss how sorting into secretory storage vesicles, agonist-responsive membrane trafficking, and segregation into sphingolipid and cholesterol-enriched microdomains (lipid rafts) determine the subcellular distribution and spatial organization of NOX2 and superoxide dismutase-3 (SOD3). We discuss how inflammatory activation of macrophages, in part through small GTPase Rab27A/B regulation of the secretory compartments, mediates the coalescence of these two proteins on the cell surface to deliver a focalized hydrogen peroxide output. In interplay with membrane-embedded oxidant transporters and redox sensitive target proteins, this arrangement allows for the autocrine and paracrine signaling, which govern macrophage activation states and transcriptional programs. By discussing examples of autocrine and paracrine redox signaling, we highlight why formation of spatiotemporal microenvironments where produced superoxide is rapidly converted to hydrogen peroxide and conveyed immediately to reach redox targets in proximal vicinity is required for efficient redox signaling. Finally, we discuss the recent discovery of macrophage-derived exosomes as vehicles of NOX2 holoenzyme export to other cells.
Collapse
|
16
|
Yang T, Zhiheng H, Zhanhuai W, Qian X, Yue L, Xiaoxu G, Jingsun W, Shu Z, Kefeng D. Increased RAB31 Expression in Cancer-Associated Fibroblasts Promotes Colon Cancer Progression Through HGF-MET Signaling. Front Oncol 2020; 10:1747. [PMID: 33072555 PMCID: PMC7538782 DOI: 10.3389/fonc.2020.01747] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
RAB family proteins participate in the dynamic regulation of cellular membrane compartments and are dysregulated in a variety of tumor types, which may alter the biological properties of cancer cells such as proliferation, migration, and invasion. In our previous study, we found that Ras-related protein Rab-31 (RAB31) expression was increased in late-stage colorectal cancer (CRC). The role of RAB31 has never been investigated in CRC. In this study, we found that expression of RAB31 in the tumor stroma but not cancer cells of colon cancer predicted poor survival. RAB31 can be detected in primary cancer-associated fibroblasts (CAFs) and paired normal fibroblasts. Conditioned medium (CM) from RAB31 overexpressing CAFs significantly promoted migration of colon cancer cell lines in vitro and in vivo. This process may be mediated by paracrine action of hepatocyte growth factor (HGF), which was increased in the CM of RAB31-overexpressing CAFs. Blockade of HGF/MET signaling by drug inhibition, knockdown of mesenchymal to epithelial transition factor (MET) in RKO, or antibody neutralization of HGF abolished migration of RKO cells mediated by RAB31 expression in CAFs. We propose that in colon cancer, increased RAB31 expression in CAFs may contribute to tumor progression by regulating the secretion of HGF in the tumor stroma.
Collapse
Affiliation(s)
- Tang Yang
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huang Zhiheng
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Otorhinolaryngology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wang Zhanhuai
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Qian
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liu Yue
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ge Xiaoxu
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Jingsun
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zheng Shu
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ding Kefeng
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Ku KE, Choi N, Sung JH. Inhibition of Rab27a and Rab27b Has Opposite Effects on the Regulation of Hair Cycle and Hair Growth. Int J Mol Sci 2020; 21:ijms21165672. [PMID: 32784729 PMCID: PMC7460818 DOI: 10.3390/ijms21165672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Rab27a/b are known to play an important role in the transport of melanosomes, with their knockout causing silvery gray hair. However, the relationship between Rab27a/b and hair growth is not well known. To evaluate the role of Rab27a/b in hair cycle, we investigated the expression of Rab27a/b during hair cycling and human outer root sheath (hORS) cells. The expression of Rab27a in ORS cells was mainly detected at the anagen, whereas expression of Rab27b in ORS, and epidermal cells was strongly expressed at the telogen. Additionally, Rab27a/b were expressed in the Golgi of hORS cells. To evaluate the role of Rab27a/b in hair growth, telogen-to-anagen transition animal and vibrissae hair follicles (HFs) organ culture models were assayed using Rab27a/b siRNAs. The knockdown of Rab27a or Rab27b suppressed or promoted hair growth, respectively. These results were also confirmed in human dermal papilla cells (hDPCs) and hORS cells, showing the opposite mitogenic effects. Moreover, Rab27b knockdown increased the expression levels of various growth factors in the hDPCs and hORS cells. Overall, the opposite temporal expression patterns during hair cycling and roles for hair growth of Rab27a/b suggested that Rab27a/b might regulate the hair cycle. Therefore, our study may provide a novel solution for the development of hair loss treatment by regulating Rab27a/b levels.
Collapse
Affiliation(s)
- Kyung-Eun Ku
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
| | | | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
- STEMORE Co. Ltd., Incheon 21983, Korea;
- Correspondence: ; Tel.: +82-32-749-4506
| |
Collapse
|
18
|
Galgano D, Soheili T, Voss M, Torralba-Raga L, Tesi B, Cichocki F, Andre I, Rettig J, Cavazzana M, Bryceson Y. Alternative UNC13D Promoter Encodes a Functional Munc13-4 Isoform Predominantly Expressed in Lymphocytes and Platelets. Front Immunol 2020; 11:1154. [PMID: 32582217 PMCID: PMC7296141 DOI: 10.3389/fimmu.2020.01154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Autosomal recessive mutations in genes required for cytotoxicity are causative of a life-threatening, early-onset hyperinflammatory syndrome termed familial hemophagocytic lymphohistiocytosis (FHL). Mutations in UNC13D cause FHL type 3. UNC13D encodes Munc13-4, a member of the Unc13 protein family which control SNARE complex formation and vesicle fusion. We have previously identified FHL3-associated mutations in the first intron of UNC13D which control transcription from an alternative transcriptional start site. Using isoform specific antibodies, we demonstrate that this alternative Munc13-4 isoform with a unique N-terminus is preferentially expressed in human lymphocytes and platelets, as compared to the conventional isoform that was mostly expressed in monocytes and neutrophils. The distinct N-terminal of the two isoforms did not impact on Munc13-4 localization or trafficking to the immunological synapse of cytotoxic T cells. Moreover, ectopic expression of both isoforms efficiently restored exocytosis by FHL3 patient-derived Munc13-4 deficient T cells. Thus, we demonstrate that the conventional and alternative Munc13-4 isoforms have different expression pattern in hematopoietic cell subsets, but display similar localization and contribution to T cell exocytosis. The use of an alternative transcriptional starting site (TSS) in lymphocytes and platelets could be selected for increasing the overall levels of Munc13-4 expression for efficient secretory granule release.
Collapse
Affiliation(s)
- Donatella Galgano
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tayebeh Soheili
- Human Lymphohematopoiesis Laboratory, INSERM UMR 1163, IMAGINE Institute, Paris, France
| | - Matthias Voss
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lamberto Torralba-Raga
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bianca Tesi
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Frank Cichocki
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Isabelle Andre
- Human Lymphohematopoiesis Laboratory, INSERM UMR 1163, IMAGINE Institute, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Jens Rettig
- Cellular Neurophysiology Laboratory, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Marina Cavazzana
- Human Lymphohematopoiesis Laboratory, INSERM UMR 1163, IMAGINE Institute, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Biotherapy Department, Hôpital Necker-Enfants malades, Assistance Publique-Hôpitaux de Paris, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Yenan Bryceson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
19
|
Bowman SL, Bi-Karchin J, Le L, Marks MS. The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic 2020; 20:404-435. [PMID: 30945407 DOI: 10.1111/tra.12646] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
Lysosome-related organelles (LROs) comprise a diverse group of cell type-specific, membrane-bound subcellular organelles that derive at least in part from the endolysosomal system but that have unique contents, morphologies and functions to support specific physiological roles. They include: melanosomes that provide pigment to our eyes and skin; alpha and dense granules in platelets, and lytic granules in cytotoxic T cells and natural killer cells, which release effectors to regulate hemostasis and immunity; and distinct classes of lamellar bodies in lung epithelial cells and keratinocytes that support lung plasticity and skin lubrication. The formation, maturation and/or secretion of subsets of LROs are dysfunctional or entirely absent in a number of hereditary syndromic disorders, including in particular the Hermansky-Pudlak syndromes. This review provides a comprehensive overview of LROs in humans and model organisms and presents our current understanding of how the products of genes that are defective in heritable diseases impact their formation, motility and ultimate secretion.
Collapse
Affiliation(s)
- Shanna L Bowman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jing Bi-Karchin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Linh Le
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Rab27a Contributes to the Processing of Inflammatory Pain in Mice. Cells 2020; 9:cells9061488. [PMID: 32570938 PMCID: PMC7349490 DOI: 10.3390/cells9061488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
Tissue injury and inflammation may result in chronic pain, a severe debilitating disease that is associated with great impairment of quality of life. An increasing body of evidence indicates that members of the Rab family of small GTPases contribute to pain processing; however, their specific functions remain poorly understood. Here, we found using immunofluorescence staining and in situ hybridization that the small GTPase Rab27a is highly expressed in sensory neurons and in the superficial dorsal horn of the spinal cord of mice. Rab27a mutant mice, which carry a single-nucleotide missense mutation of Rab27a leading to the expression of a nonfunctional protein, show reduced mechanical hyperalgesia and spontaneous pain behavior in inflammatory pain models, while their responses to acute noxious mechanical and thermal stimuli is not affected. Our study uncovers a previously unrecognized function of Rab27a in the processing of persistent inflammatory pain in mice.
Collapse
|
21
|
Miklavc P, Frick M. Actin and Myosin in Non-Neuronal Exocytosis. Cells 2020; 9:cells9061455. [PMID: 32545391 PMCID: PMC7348895 DOI: 10.3390/cells9061455] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular secretion depends on exocytosis of secretory vesicles and discharge of vesicle contents. Actin and myosin are essential for pre-fusion and post-fusion stages of exocytosis. Secretory vesicles depend on actin for transport to and attachment at the cell cortex during the pre-fusion phase. Actin coats on fused vesicles contribute to stabilization of large vesicles, active vesicle contraction and/or retrieval of excess membrane during the post-fusion phase. Myosin molecular motors complement the role of actin. Myosin V is required for vesicle trafficking and attachment to cortical actin. Myosin I and II members engage in local remodeling of cortical actin to allow vesicles to get access to the plasma membrane for membrane fusion. Myosins stabilize open fusion pores and contribute to anchoring and contraction of actin coats to facilitate vesicle content release. Actin and myosin function in secretion is regulated by a plethora of interacting regulatory lipids and proteins. Some of these processes have been first described in non-neuronal cells and reflect adaptations to exocytosis of large secretory vesicles and/or secretion of bulky vesicle cargoes. Here we collate the current knowledge and highlight the role of actomyosin during distinct phases of exocytosis in an attempt to identify unifying molecular mechanisms in non-neuronal secretory cells.
Collapse
Affiliation(s)
- Pika Miklavc
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| |
Collapse
|
22
|
Stephens DC, Osunsanmi N, Sochacki KA, Powell TW, Taraska JW, Harris DA. Spatiotemporal organization and protein dynamics involved in regulated exocytosis of MMP-9 in breast cancer cells. J Gen Physiol 2019; 151:1386-1403. [PMID: 31676484 PMCID: PMC6888755 DOI: 10.1085/jgp.201812299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
This paper describes the dynamics of proteins and lipids during exocytosis of MMP-9 from cancer cells in real time using fluorescence microscopy. Stephens et al. find that core exocytic proteins, accessory proteins, and lipids are involved at sites of secretory vesicle fusion. Altered regulation of exocytosis is an important mechanism controlling many diseases, including cancer. Defects in exocytosis have been implicated in many cancer cell types and are generally attributed to mutations in cellular transport, trafficking, and assembly of machinery necessary for exocytosis of secretory vesicle cargo. In these cancers, up-regulation of trafficking and secretion of matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme, is responsible for degrading the extracellular matrix, a necessary step in tumor progression. Using TIRF microscopy, we identified proteins associated with secretory vesicles containing MMP-9 and imaged the local dynamics of these proteins at fusion sites during regulated exocytosis of MMP-9 from MCF-7 breast cancer cells. We found that many regulators of exocytosis, including several Rab GTPases, Rab effector proteins, and SNARE/SNARE modulator proteins, are stably assembled on docked secretory vesicles before exocytosis. At the moment of fusion, many of these components are quickly lost from the vesicle, while several endocytic proteins and lipids are simultaneously recruited to exocytic sites at precisely that moment. Our findings provide insight into the dynamic behavior of key core exocytic proteins, accessory proteins, lipids, and some endocytic proteins at single sites of secretory vesicle fusion in breast cancer cells.
Collapse
Affiliation(s)
| | | | - Kem A Sochacki
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Tyrel W Powell
- Department of Chemistry, Howard University, Washington, DC
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
23
|
Proteomic Analysis of Lipid Rafts from RBL-2H3 Mast Cells. Int J Mol Sci 2019; 20:ijms20163904. [PMID: 31405203 PMCID: PMC6720779 DOI: 10.3390/ijms20163904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Lipid rafts are highly ordered membrane microdomains enriched in cholesterol, glycosphingolipids, and certain proteins. They are involved in the regulation of cellular processes in diverse cell types, including mast cells (MCs). The MC lipid raft protein composition was assessed using qualitative mass spectrometric characterization of the proteome from detergent-resistant membrane fractions from RBL-2H3 MCs. Using two different post-isolation treatment methods, a total of 949 lipid raft associated proteins were identified. The majority of these MC lipid raft proteins had already been described in the RaftProtV2 database and are among highest cited/experimentally validated lipid raft proteins. Additionally, more than half of the identified proteins had lipid modifications and/or transmembrane domains. Classification of identified proteins into functional categories showed that the proteins were associated with cellular membrane compartments, and with some biological and molecular functions, such as regulation, localization, binding, catalytic activity, and response to stimulus. Furthermore, functional enrichment analysis demonstrated an intimate involvement of identified proteins with various aspects of MC biological processes, especially those related to regulated secretion, organization/stabilization of macromolecules complexes, and signal transduction. This study represents the first comprehensive proteomic profile of MC lipid rafts and provides additional information to elucidate immunoregulatory functions coordinated by raft proteins in MCs.
Collapse
|
24
|
Klein O, Sagi-Eisenberg R. Anaphylactic Degranulation of Mast Cells: Focus on Compound Exocytosis. J Immunol Res 2019; 2019:9542656. [PMID: 31011586 PMCID: PMC6442490 DOI: 10.1155/2019/9542656] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/26/2018] [Indexed: 01/15/2023] Open
Abstract
Anaphylaxis is a notorious type 2 immune response which may result in a systemic response and lead to death. A precondition for the unfolding of the anaphylactic shock is the secretion of inflammatory mediators from mast cells in response to an allergen, mostly through activation of the cells via the IgE-dependent pathway. While mast cells are specialized secretory cells that can secrete through a variety of exocytic modes, the most predominant mode exerted by the mast cell during anaphylaxis is compound exocytosis-a specialized form of regulated exocytosis where secretory granules fuse to one another. Here, we review the modes of regulated exocytosis in the mast cell and focus on compound exocytosis. We review historical landmarks in the research of compound exocytosis in mast cells and the methods available for investigating compound exocytosis. We also review the molecular mechanisms reported to underlie compound exocytosis in mast cells and expand further with reviewing key findings from other cell types. Finally, we discuss the possible reasons for the mast cell to utilize compound exocytosis during anaphylaxis, the conflicting evidence in different mast cell models, and the open questions in the field which remain to be answered.
Collapse
Affiliation(s)
- Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
25
|
Rodarte EM, Ramos MA, Davalos AJ, Moreira DC, Moreno DS, Cardenas EI, Rodarte AI, Petrova Y, Molina S, Rendon LE, Sanchez E, Breaux K, Tortoriello A, Manllo J, Gonzalez EA, Tuvim MJ, Dickey BF, Burns AR, Heidelberger R, Adachi R. Munc13 proteins control regulated exocytosis in mast cells. J Biol Chem 2017; 293:345-358. [PMID: 29141910 DOI: 10.1074/jbc.m117.816884] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/02/2017] [Indexed: 01/01/2023] Open
Abstract
Mast cells (MCs) are involved in host defenses against pathogens and inflammation. Stimulated MCs release substances stored in their granules via regulated exocytosis. In other cell types, Munc13 (mammalian homolog of Caenorhabditis elegans uncoordinated gene 13) proteins play essential roles in regulated exocytosis. Here, we found that MCs express Munc13-2 and -4, and we studied their roles using global and conditional knock-out (KO) mice. In a model of systemic anaphylaxis, we found no difference between WT and Munc13-2 KO mice, but global and MC-specific Munc13-4 KO mice developed less hypothermia. This protection correlated with lower plasma histamine levels and with histological evidence of defective MC degranulation but not with changes in MC development, distribution, numbers, or morphology. In vitro assays revealed that the defective response in Munc13-4-deficient MCs was limited to regulated exocytosis, leaving other MC secretory effector responses intact. Single cell capacitance measurements in MCs from mouse mutants differing in Munc13-4 expression levels in their MCs revealed that as levels of Munc13-4 decrease, the rate of exocytosis declines first, and then the total amount of exocytosis decreases. A requirement for Munc13-2 in MC exocytosis was revealed only in the absence of Munc13-4. Electrophysiology and EM studies uncovered that the number of multigranular compound events (i.e. granule-to-granule homotypic fusion) was severely reduced in the absence of Munc13-4. We conclude that although Munc13-2 plays a minor role, Munc13-4 is essential for regulated exocytosis in MCs, and that this MC effector response is required for a full anaphylactic response.
Collapse
Affiliation(s)
- Elsa M Rodarte
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Marco A Ramos
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Alfredo J Davalos
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Daniel C Moreira
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - David S Moreno
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Eduardo I Cardenas
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Alejandro I Rodarte
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Youlia Petrova
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Sofia Molina
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Luis E Rendon
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Elizabeth Sanchez
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Keegan Breaux
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Alejandro Tortoriello
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - John Manllo
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Erika A Gonzalez
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Michael J Tuvim
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Burton F Dickey
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, Texas 77204
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Roberto Adachi
- Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030.
| |
Collapse
|
26
|
Prashar A, Schnettger L, Bernard EM, Gutierrez MG. Rab GTPases in Immunity and Inflammation. Front Cell Infect Microbiol 2017; 7:435. [PMID: 29034219 PMCID: PMC5627064 DOI: 10.3389/fcimb.2017.00435] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022] Open
Abstract
Strict spatiotemporal control of trafficking events between organelles is critical for maintaining homeostasis and directing cellular responses. This regulation is particularly important in immune cells for mounting specialized immune defenses. By controlling the formation, transport and fusion of intracellular organelles, Rab GTPases serve as master regulators of membrane trafficking. In this review, we discuss the cellular and molecular mechanisms by which Rab GTPases regulate immunity and inflammation.
Collapse
Affiliation(s)
| | | | | | - Maximiliano G. Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
27
|
Woo SS, James DJ, Martin TFJ. Munc13-4 functions as a Ca 2+ sensor for homotypic secretory granule fusion to generate endosomal exocytic vacuoles. Mol Biol Cell 2017; 28:792-808. [PMID: 28100639 PMCID: PMC5349786 DOI: 10.1091/mbc.e16-08-0617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
Munc13-4 is a Ca2+-dependent SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)- and phospholipid-binding protein that localizes to and primes secretory granules (SGs) for Ca2+-evoked secretion in various secretory cells. Studies in mast cell-like RBL-2H3 cells provide direct evidence that Munc13-4 with its two Ca2+-binding C2 domains functions as a Ca2+ sensor for SG exocytosis. Unexpectedly, Ca2+ stimulation also generated large (>2.4 μm in diameter) Munc13-4+/Rab7+/Rab11+ endosomal vacuoles. Vacuole generation involved the homotypic fusion of Munc13-4+/Rab7+ SGs, followed by a merge with Rab11+ endosomes, and depended on Ca2+ binding to Munc13-4. Munc13-4 promoted the Ca2+-stimulated fusion of VAMP8-containing liposomes with liposomes containing exocytic or endosomal Q-SNAREs and directly interacted with late endosomal SNARE complexes. Thus Munc13-4 is a tethering/priming factor and Ca2+ sensor for both heterotypic SG-plasma membrane and homotypic SG-SG fusion. Total internal reflection fluorescence microscopy imaging revealed that vacuoles were exocytic and mediated secretion of β-hexosaminidase and cytokines accompanied by Munc13-4 diffusion onto the plasma membrane. The results provide new molecular insights into the mechanism of multigranular compound exocytosis commonly observed in various secretory cells.
Collapse
Affiliation(s)
- Sang Su Woo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Declan J James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Thomas F J Martin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
28
|
Cheeseman LP, Boulanger J, Bond LM, Schuh M. Two pathways regulate cortical granule translocation to prevent polyspermy in mouse oocytes. Nat Commun 2016; 7:13726. [PMID: 27991490 PMCID: PMC5187413 DOI: 10.1038/ncomms13726] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022] Open
Abstract
An egg must be fertilized by a single sperm only. To prevent polyspermy, the zona pellucida, a structure that surrounds mammalian eggs, becomes impermeable upon fertilization, preventing the entry of further sperm. The structural changes in the zona upon fertilization are driven by the exocytosis of cortical granules. These translocate from the oocyte's centre to the plasma membrane during meiosis. However, very little is known about the mechanism of cortical granule translocation. Here we investigate cortical granule transport and dynamics in live mammalian oocytes by using Rab27a as a marker. We show that two separate mechanisms drive their transport: myosin Va-dependent movement along actin filaments, and an unexpected vesicle hitchhiking mechanism by which cortical granules bind to Rab11a vesicles powered by myosin Vb. Inhibiting cortical granule translocation severely impaired the block to sperm entry, suggesting that translocation defects could contribute to miscarriages that are caused by polyspermy.
Mammalian eggs release cortical granules to avoid being fertilized by more than a single sperm as polyspermy results in nonviable embryos. Here, the authors describe the mechanism driving translocation of the granules to the cortex in the mouse egg and show this process is essential to prevent polyspermy.
Collapse
Affiliation(s)
- Liam P Cheeseman
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jérôme Boulanger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Lisa M Bond
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Melina Schuh
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.,Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
29
|
Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, Tyska MJ, Weaver AM. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol 2016; 214:197-213. [PMID: 27402952 PMCID: PMC4949450 DOI: 10.1083/jcb.201601025] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites.
Collapse
Affiliation(s)
- Seema Sinha
- Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | | | - Nan Hyung Hong
- Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Kellye C Kirkbride
- Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Nathan E Grega-Larson
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Motoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Alissa M Weaver
- Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN 37232 Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN 37232 Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
30
|
Rab27b is Involved in Lysosomal Exocytosis and Proteolipid Protein Trafficking in Oligodendrocytes. Neurosci Bull 2016; 32:331-40. [PMID: 27325508 DOI: 10.1007/s12264-016-0045-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/31/2016] [Indexed: 12/14/2022] Open
Abstract
Myelination by oligodendrocytes in the central nervous system requires coordinated exocytosis and endocytosis of the major myelin protein, proteolipid protein (PLP). Here, we demonstrated that a small GTPase, Rab27b, is involved in PLP trafficking in oligodendrocytes. We showed that PLP co-localized with Rab27b in late endosomes/lysosomes in oligodendrocytes. Short hairpin-mediated knockdown of Rab27b not only reduced lysosomal exocytosis but also greatly diminished the surface expression of PLP in oligodendrocytes. In addition, knockdown of Rab27b reduced the myelin-like membranes induced by co-culture of oligodendrocytes and neurons. Our data suggest that Rab27b is involved in myelin biogenesis by regulating PLP transport from late endosomes/lysosomes to the cell membrane in oligodendrocytes.
Collapse
|
31
|
Higashio H, Satoh YI, Saino T. Mast cell degranulation is negatively regulated by the Munc13-4-binding small-guanosine triphosphatase Rab37. Sci Rep 2016; 6:22539. [PMID: 26931073 PMCID: PMC4773767 DOI: 10.1038/srep22539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/17/2016] [Indexed: 02/07/2023] Open
Abstract
Mast cell degranulation is regulated by the small guanosine triphosphatases (GTPases) Rab27a and Rab27b, which have distinct and opposing roles: Rab27b acts as a positive regulator through its effector protein Munc13-4, a non-neuronal isoform of the vesicle-priming Munc13 family of proteins, whereas Rab27a acts as a negative regulator through its effector protein melanophilin, by maintaining integrity of cortical filamentous actin (F-actin), a barrier to degranulation. Here we investigated the role of Rab37, one of the Rab GTPases assumed to be implicated in regulated secretion during mast cell degranulation. Using the RBL-2H3 mast cell line, we detected Rab37 on the secretory granules and found that antigen-induced degranulation was extensively increased by either knockdown of Rab37 or overexpression of a dominant-active Rab37 mutant. This hypersecretion phenotype in the Rab37-knockdown cells was suppressed by simultaneous knockdown of Rab27a and Rab27b or of Munc13-4, but not by disruption of cortical F-actin. We further found that Rab37 interacted with Munc13-4 in a GTP-independent manner and formed a Rab27-Munc13-4-Rab37 complex. These results suggest that Rab37 is a Munc13-4-binding protein that inhibits mast cell degranulation through its effector protein, by counteracting the vesicle-priming activity of the Rab27-Munc13-4 system.
Collapse
Affiliation(s)
- Hironori Higashio
- Department of Chemistry, Center for Liberal Arts and Sciences, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Yoh-ichi Satoh
- Division of Cell Biology, Department of Anatomy, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan.,Department of Medical Education, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Tomoyuki Saino
- Division of Cell Biology, Department of Anatomy, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
32
|
Johnson JL, He J, Ramadass M, Pestonjamasp K, Kiosses WB, Zhang J, Catz SD. Munc13-4 Is a Rab11-binding Protein That Regulates Rab11-positive Vesicle Trafficking and Docking at the Plasma Membrane. J Biol Chem 2015; 291:3423-38. [PMID: 26637356 DOI: 10.1074/jbc.m115.705871] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Rab11 and its effectors control trafficking of recycling endosomes, receptor replenishment and the up-regulation of adhesion and adaptor molecules at the plasma membrane. Despite recent advances in the understanding of Rab11-regulated mechanisms, the final steps mediating docking and fusion of Rab11-positive vesicles at the plasma membrane are not fully understood. Munc13-4 is a docking factor proposed to regulate fusion through interactions with SNAREs. In hematopoietic cells, including neutrophils, Munc13-4 regulates exocytosis in a Rab27a-dependent manner, but its possible regulation of other GTPases has not been explored in detail. Here, we show that Munc13-4 binds to Rab11 and regulates the trafficking of Rab11-containing vesicles. Using a novel Time-resolved Fluorescence Resonance Energy Transfer (TR-FRET) assay, we demonstrate that Munc13-4 binds to Rab11a but not to dominant negative Rab11a. Immunoprecipitation analysis confirmed the specificity of the interaction between Munc13-4 and Rab11, and super-resolution microscopy studies support the interaction of endogenous Munc13-4 with Rab11 at the single molecule level in neutrophils. Vesicular dynamic analysis shows the common spatio-temporal distribution of Munc13-4 and Rab11, while expression of a calcium binding-deficient mutant of Munc13-4 significantly affected Rab11 trafficking. Munc13-4-deficient neutrophils showed normal endocytosis, but the trafficking, up-regulation, and retention of Rab11-positive vesicles at the plasma membrane was significantly impaired. This correlated with deficient NADPH oxidase activation at the plasma membrane in response to Rab11 interference. Our data demonstrate that Munc13-4 is a Rab11-binding partner that regulates the final steps of Rab11-positive vesicle docking at the plasma membrane.
Collapse
Affiliation(s)
| | - Jing He
- From the Department of Molecular and Experimental Medicine and
| | | | - Kersi Pestonjamasp
- Cancer Center Microscopy Shared Resource, University of California San Diego, La Jolla, California 92093
| | - William B Kiosses
- Light Microscopy Core Facility, The Scripps Research Institute, La Jolla, California 92037 and
| | - Jinzhong Zhang
- From the Department of Molecular and Experimental Medicine and
| | - Sergio D Catz
- From the Department of Molecular and Experimental Medicine and
| |
Collapse
|
33
|
Davila J, Laws MJ, Kannan A, Li Q, Taylor RN, Bagchi MK, Bagchi IC. Rac1 Regulates Endometrial Secretory Function to Control Placental Development. PLoS Genet 2015; 11:e1005458. [PMID: 26305333 PMCID: PMC4549291 DOI: 10.1371/journal.pgen.1005458] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/21/2015] [Indexed: 01/14/2023] Open
Abstract
During placenta development, a succession of complex molecular and cellular interactions between the maternal endometrium and the developing embryo ensures reproductive success. The precise mechanisms regulating this maternal-fetal crosstalk remain unknown. Our study revealed that the expression of Rac1, a member of the Rho family of GTPases, is markedly elevated in mouse decidua on days 7 and 8 of gestation. To investigate its function in the uterus, we created mice bearing a conditional deletion of the Rac1 gene in uterine stromal cells. Ablation of Rac1 did not affect the formation of the decidua but led to fetal loss in mid gestation accompanied by extensive hemorrhage. To gain insights into the molecular pathways affected by the loss of Rac1, we performed gene expression profiling which revealed that Rac1 signaling regulates the expression of Rab27b, another GTPase that plays a key role in targeting vesicular trafficking. Consequently, the Rac1-null decidual cells failed to secrete vascular endothelial growth factor A, which is a critical regulator of decidual angiogenesis, and insulin-like growth factor binding protein 4, which regulates the bioavailability of insulin-like growth factors that promote proliferation and differentiation of trophoblast cell lineages in the ectoplacental cone. The lack of secretion of these key factors by Rac1-null decidua gave rise to impaired angiogenesis and dysregulated proliferation of trophoblast cells, which in turn results in overexpansion of the trophoblast giant cell lineage and disorganized placenta development. Further experiments revealed that RAC1, the human ortholog of Rac1, regulates the secretory activity of human endometrial stromal cells during decidualization, supporting the concept that this signaling G protein plays a central and conserved role in controlling endometrial secretory function. This study provides unique insights into the molecular mechanisms regulating endometrial secretions that mediate stromal-endothelial and stromal-trophoblast crosstalk critical for placenta development and establishment of pregnancy. During early pregnancy, a succession of molecular interactions between the uterus and the developing embryo ensures reproductive success. Although it is conceivable that signaling cues originating in the uterus impact on the developing embryo at the time of placenta establishment, the precise mechanisms regulating the maternal-fetal crosstalk remain unknown. Impaired uterine functions during early pregnancy are likely to contribute to abnormal embryo development and various diseases of pregnancy, such as recurrent miscarriage, preeclampsia, and intrauterine growth restriction. This study provides insights into the molecular mechanisms by which Rac1, a signaling molecule expressed in the decidua, controls uterine secretions that mediate maternal-fetal communication critical for placental development and establishment of pregnancy.
Collapse
Affiliation(s)
- Juanmahel Davila
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mary J. Laws
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Athilakshmi Kannan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Quanxi Li
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Robert N. Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Milan K. Bagchi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (MKB); (ICB)
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (MKB); (ICB)
| |
Collapse
|
34
|
Aizawa M, Fukuda M. Small GTPase Rab2B and Its Specific Binding Protein Golgi-associated Rab2B Interactor-like 4 (GARI-L4) Regulate Golgi Morphology. J Biol Chem 2015. [PMID: 26209634 DOI: 10.1074/jbc.m115.669242] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab small GTPases are crucial regulators of the membrane traffic that maintains organelle identity and morphology. Several Rab isoforms are present in the Golgi, and it has been suggested that they regulate the compacted morphology of the Golgi in mammalian cells. However, the functional relationships among the Golgi-resident Rabs, e.g. whether they are functionally redundant or different, are poorly understood. In this study, we used specific siRNAs to perform genome-wide screening for human Rabs that are involved in Golgi morphology in HeLa-S3 cells. The results showed that knockdown of any one of the six Rab isoforms (Rab1A/1B/2A/2B/6B/8A) induced fragmentation of the Golgi in HeLa-S3 cells and that its phenotype was rescued by re-expression of their respective siRNA-resistant construct. We then performed systematic knockdown-rescue experiments in relation to each of the six Rabs. Interestingly, with the exception of the Rab8A knockdown, the Golgi fragmentation phenotype induced by knockdown of a single Rab isoform, e.g. Rab2B, was efficiently rescued by re-expression of its siRNA-resistant Rab alone, not by any of the other five Rabs, e.g. Rab2A, which is highly homologous to Rab2B, indicating that these Rab isoforms non-redundantly regulate Golgi morphology possibly through interaction with isoform-specific effector molecules. In addition, we identified Golgi-associated Rab2B interactor-like 4 (GARI-L4) as a novel Golgi-resident Rab2B-specific binding protein whose knockdown also induced fragmentation of the Golgi. Our findings suggest that the compacted Golgi morphology of mammalian cells is finely tuned by multiple sets of Rab (or Rab-effector complexes) that for the most part function independently.
Collapse
Affiliation(s)
- Megumi Aizawa
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
35
|
Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol 2014; 5:569. [PMID: 25452755 PMCID: PMC4231949 DOI: 10.3389/fimmu.2014.00569] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022] Open
Abstract
Mast cells (MC) are widely distributed throughout the body and are common at mucosal surfaces, a major host-environment interface. MC are functionally and phenotypically heterogeneous depending on the microenvironment in which they mature. Although MC have been classically viewed as effector cells of IgE-mediated allergic diseases, they are also recognized as important in host defense, innate and acquired immunity, homeostatic responses, and immunoregulation. MC activation can induce release of pre-formed mediators such as histamine from their granules, as well as release of de novo synthesized lipid mediators, cytokines, and chemokines that play diverse roles, not only in allergic reactions but also in numerous physiological and pathophysiological responses. Indeed, MC release their mediators in a discriminating and chronological manner, depending upon the stimuli involved and their signaling cascades (e.g., IgE-mediated or Toll-like receptor-mediated). However, the precise mechanisms underlying differential mediator release in response to these stimuli are poorly known. This review summarizes our knowledge of MC mediators and will focus on what is known about the discriminatory release of these mediators dependent upon diverse stimuli, MC phenotypes, and species of origin, as well as on the intracellular synthesis, storage, and secretory processes involved.
Collapse
Affiliation(s)
- Tae Chul Moon
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - A. Dean Befus
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Marianna Kulka
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, Canada
| |
Collapse
|
36
|
A role for Rab27 in neutrophil chemotaxis and lung recruitment. BMC Cell Biol 2014; 15:39. [PMID: 25359237 PMCID: PMC4221698 DOI: 10.1186/s12860-014-0039-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/16/2014] [Indexed: 01/08/2023] Open
Abstract
Background Neutrophils are a critical part of the innate immune system. Their ability to migrate into infected or injured tissues precedes their role in microbial killing and clearance. We have previously shown that Rab27a can promote neutrophil migration by facilitating uropod release through protease secretion from primary granule exocytosis at the cell rear. Rab27b has been implicated in primary granule exocytosis but its role in neutrophil migration has not been investigated. Results Here we found Rab27b to be expressed in bone marrow derived neutrophils and Rab27b knockout (Rab27b KO) along with Rab27a/b double knockout (Rab27DKO) neutrophils exhibited impaired transwell migration in vitro in response to chemokines MIP-2 and LTB4. Interestingly, no additional defect in migration was observed in Rab27DKO neutrophils compared with Rab27b KO neutrophils. In vivo, Rab27DKO mice displayed severe impairment in neutrophil recruitment to the lungs in a MIP-2 dependent model but not in an LPS dependent model. Conclusions These data taken together implicate Rab27b in the regulation of neutrophil chemotaxis, likely through the regulation of primary granule exocytosis.
Collapse
|
37
|
Ung TH, Madsen HJ, Hellwinkel JE, Lencioni AM, Graner MW. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways. Cancer Sci 2014; 105:1384-92. [PMID: 25220623 PMCID: PMC4454399 DOI: 10.1111/cas.12534] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/03/2014] [Accepted: 09/07/2014] [Indexed: 12/21/2022] Open
Abstract
Exosomes are virus-sized, membrane-enclosed vesicles with origins in the cellular endosomal system, but are released extracellularly. As a population, these tiny vesicles carry relatively enormous amounts of information in their protein, lipid and nucleic acid content, and the vesicles can have profound impacts on recipient cells. This review employs publically-available data combined with gene ontology applications to propose a novel concept, that exosomes transport transcriptional and translational machinery that may have direct impacts on gene expression in recipient cells. Here, we examine the previously published proteomic contents of medulloblastoma-derived exosomes, focusing on transcriptional regulators; we found that there are numerous proteins that may have potential roles in transcriptional and translational regulation with putative influence on downstream, cancer-related pathways. We expanded this search to all of the proteins in the Vesiclepedia database; using gene ontology approaches, we see that these regulatory factors are implicated in many of the processes involved in cancer initiation and progression. This information suggests that some of the effects of exosomes on recipient cells may be due to the delivery of protein factors that can directly and fundamentally change the transcriptional landscape of the cells. Within a tumor environment, this has potential to tilt the advantage towards the cancer.
Collapse
Affiliation(s)
- Timothy H Ung
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | | | |
Collapse
|
38
|
Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T, Seabra MC, Wilson MS. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 2014; 41:89-103. [PMID: 25035954 PMCID: PMC4104030 DOI: 10.1016/j.immuni.2014.05.019] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/15/2014] [Indexed: 01/21/2023]
Abstract
Foxp3(+) T regulatory (Treg) cells prevent inflammatory disease but the mechanistic basis of suppression is not understood completely. Gene silencing by RNA interference can act in a cell-autonomous and non-cell-autonomous manner, providing mechanisms of intercellular regulation. Here, we demonstrate that non-cell-autonomous gene silencing, mediated by miRNA-containing exosomes, is a mechanism employed by Treg cells to suppress T-cell-mediated disease. Treg cells transferred microRNAs (miRNA) to various immune cells, including T helper 1 (Th1) cells, suppressing Th1 cell proliferation and cytokine secretion. Use of Dicer-deficient or Rab27a and Rab27b double-deficient Treg cells to disrupt miRNA biogenesis or the exosomal pathway, respectively, established a requirement for miRNAs and exosomes for Treg-cell-mediated suppression. Transcriptional analysis and miRNA inhibitor studies showed that exosome-mediated transfer of Let-7d from Treg cell to Th1 cells contributed to suppression and prevention of systemic disease. These studies reveal a mechanism of Treg-cell-mediated suppression mediated by miRNA-containing exosomes.
Collapse
Affiliation(s)
- Isobel S Okoye
- Division of Molecular Immunology, MRC, National Institute for Medical Research, London NW7 1AA, UK
| | - Stephanie M Coomes
- Division of Molecular Immunology, MRC, National Institute for Medical Research, London NW7 1AA, UK
| | - Victoria S Pelly
- Division of Molecular Immunology, MRC, National Institute for Medical Research, London NW7 1AA, UK
| | - Stephanie Czieso
- Division of Molecular Immunology, MRC, National Institute for Medical Research, London NW7 1AA, UK
| | | | - Tanya Tolmachova
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Miguel C Seabra
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Mark S Wilson
- Division of Molecular Immunology, MRC, National Institute for Medical Research, London NW7 1AA, UK.
| |
Collapse
|
39
|
Blank U, Madera-Salcedo IK, Danelli L, Claver J, Tiwari N, Sánchez-Miranda E, Vázquez-Victorio G, Ramírez-Valadez KA, Macias-Silva M, González-Espinosa C. Vesicular trafficking and signaling for cytokine and chemokine secretion in mast cells. Front Immunol 2014; 5:453. [PMID: 25295038 PMCID: PMC4170139 DOI: 10.3389/fimmu.2014.00453] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/05/2014] [Indexed: 12/31/2022] Open
Abstract
Upon activation mast cells (MCs) secrete numerous inflammatory compounds stored in their cytoplasmic secretory granules by a process called anaphylactic degranulation, which is responsible for type I hypersensitivity responses. Prestored mediators include histamine and MC proteases but also some cytokines and growth factors making them available within minutes for a maximal biological effect. Degranulation is followed by the de novo synthesis of lipid mediators such as prostaglandins and leukotrienes as well as a vast array of cytokines, chemokines, and growth factors, which are responsible for late phase inflammatory responses. While lipid mediators diffuse freely out of the cell through lipid bilayers, both anaphylactic degranulation and secretion of cytokines, chemokines, and growth factors depends on highly regulated vesicular trafficking steps that occur along the secretory pathway starting with the translocation of proteins to the endoplasmic reticulum. Vesicular trafficking in MCs also intersects with endocytic routes, notably to form specialized cytoplasmic granules called secretory lysosomes. Some of the mediators like histamine reach granules via specific vesicular monoamine transporters directly from the cytoplasm. In this review, we try to summarize the available data on granule biogenesis and signaling events that coordinate the complex steps that lead to the release of the inflammatory mediators from the various vesicular carriers in MCs.
Collapse
Affiliation(s)
- Ulrich Blank
- INSERM UMRS 1149 , Paris , France ; CNRS ERL8252 , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX , Paris , France
| | - Iris Karina Madera-Salcedo
- INSERM UMRS 1149 , Paris , France ; CNRS ERL8252 , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX , Paris , France
| | - Luca Danelli
- INSERM UMRS 1149 , Paris , France ; CNRS ERL8252 , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX , Paris , France
| | - Julien Claver
- INSERM UMRS 1149 , Paris , France ; CNRS ERL8252 , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX , Paris , France
| | - Neeraj Tiwari
- INSERM UMRS 1149 , Paris , France ; CNRS ERL8252 , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX , Paris , France
| | | | - Genaro Vázquez-Victorio
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , México City , México
| | | | - Marina Macias-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , México City , México
| | | |
Collapse
|
40
|
Brochetta C, Suzuki R, Vita F, Soranzo MR, Claver J, Madjene LC, Attout T, Vitte J, Varin-Blank N, Zabucchi G, Rivera J, Blank U. Munc18-2 and syntaxin 3 control distinct essential steps in mast cell degranulation. THE JOURNAL OF IMMUNOLOGY 2013; 192:41-51. [PMID: 24323579 DOI: 10.4049/jimmunol.1301277] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mast cell degranulation requires N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) and mammalian uncoordinated18 (Munc18) fusion accessory proteins for membrane fusion. However, it is still unknown how their interaction supports fusion. In this study, we found that small interfering RNA-mediated silencing of the isoform Munc18-2 in mast cells inhibits cytoplasmic secretory granule (SG) release but not CCL2 chemokine secretion. Silencing of its SNARE-binding partner syntaxin 3 (STX3) also markedly inhibited degranulation, whereas combined knockdown produced an additive inhibitory effect. Strikingly, while Munc18-2 silencing impaired SG translocation, silencing of STX3 inhibited fusion, demonstrating unique roles of each protein. Immunogold studies showed that both Munc18-2 and STX3 are located on the granule surface, but also within the granule matrix and in small nocodazole-sensitive clusters of the cytoskeletal meshwork surrounding SG. After stimulation, clusters containing both effectors were detected at fusion sites. In resting cells, Munc18-2, but not STX3, interacted with tubulin. This interaction was sensitive to nocodazole treatment and decreased after stimulation. Our results indicate that Munc18-2 dynamically couples the membrane fusion machinery to the microtubule cytoskeleton and demonstrate that Munc18-2 and STX3 perform distinct, but complementary, functions to support, respectively, SG translocation and membrane fusion in mast cells.
Collapse
Affiliation(s)
- Cristiana Brochetta
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| | - Ryo Suzuki
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Francesca Vita
- Department of Life Sciences Department of Physiology and Pathology, University of Trieste, Italy
| | - Maria Rosa Soranzo
- Department of Life Sciences Department of Physiology and Pathology, University of Trieste, Italy
| | - Julien Claver
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| | - Lydia Celia Madjene
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| | - Tarik Attout
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| | - Joana Vitte
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| | - Nadine Varin-Blank
- Inserm U978, 93000 Bobigny, France.,Laboratoire d'excellence "Inflamex," Unité de Formation et de Recherche Santé-Médecine-Biologie Humaine, 93000 Bobigny, France
| | - Giuliano Zabucchi
- Department of Life Sciences Department of Physiology and Pathology, University of Trieste, Italy
| | - Juan Rivera
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Ulrich Blank
- Inserm UMRS-699, 75018 Paris, France.,Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| |
Collapse
|
41
|
Aldi S, Robador PA, Tomita K, Di Lorenzo A, Levi R. IgE receptor-mediated mast-cell renin release. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:376-81. [PMID: 24262755 DOI: 10.1016/j.ajpath.2013.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/17/2013] [Accepted: 10/23/2013] [Indexed: 11/26/2022]
Abstract
Renin is a newly discovered constituent of mast cells. Given that mast cells play a major role in IgE-mediated allergic hypersensitivity, we investigated whether activation of the high-affinity IgE receptor FcεRI elicits release of mast-cell renin. Cross-linking of FcεRI on the surface of mature bone marrow-derived mast cells elicited release of enzymatically active renin protein. The angiotensin I-forming activity of the renin protein was completely blocked by the selective renin inhibitor BILA 2157, which excludes formation of angiotensin I by proteases other than renin. FcεRI-mediated mast-cell renin release was inhibited by dexamethasone and potentiated by the proinflammatory mediator PGE2. Furthermore, cross-linking of mast-cell FcεRI in ex vivo murine hearts passively sensitized with monoclonal anti-DNP IgE also resulted in mast-cell degranulation and overflow of renin. Our findings indicate that IgE-mediated allergic hypersensitivity provokes release of renin from both cultured and resident cardiac mast cells, a process likely to be exacerbated in a chronic inflammatory background. Given the widespread distribution of mast cells, and the presence of angiotensinogen and angiotensin-converting enzyme in many tissues, renin release in immediate hypersensitivity reactions could result in local angiotensin II generation and multiorgan dysfunctions.
Collapse
Affiliation(s)
- Silvia Aldi
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Pablo A Robador
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Kengo Tomita
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Roberto Levi
- Department of Pharmacology, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
42
|
Nightingale T, Cutler D. The secretion of von Willebrand factor from endothelial cells; an increasingly complicated story. J Thromb Haemost 2013; 11 Suppl 1:192-201. [PMID: 23809123 PMCID: PMC4255685 DOI: 10.1111/jth.12225] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
von Willebrand factor (VWF) plays key roles in both primary and secondary hemostasis by capturing platelets and chaperoning clotting factor VIII, respectively. It is stored within the Weibel-Palade bodies (WPBs) of endothelial cells as a highly prothrombotic protein, and its release is thus necessarily under tight control. Regulating the secretion of VWF involves multiple layers of cellular machinery that act together at different stages, leading to the exocytic fusion of WPBs with the plasma membrane and the consequent release of VWF. This review aims to provide a snapshot of the current understanding of those components, in particular the members of the Rab family, acting in the increasingly complex story of VWF secretion.
Collapse
Affiliation(s)
- T Nightingale
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | | |
Collapse
|
43
|
Catz SD. Regulation of vesicular trafficking and leukocyte function by Rab27 GTPases and their effectors. J Leukoc Biol 2013; 94:613-22. [PMID: 23378593 DOI: 10.1189/jlb.1112600] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Rab27 family of GTPases regulates the efficiency and specificity of exocytosis in hematopoietic cells, including neutrophils, CTLs, NK cells, and mast cells. However, the mechanisms regulated by Rab27 GTPases are cell-specific, as they depend on the differential expression and function of particular effector molecules that are recruited by the GTPases. In addition, Rab27 GTPases participate in multiple steps of the regulation of the secretory process, including priming, tethering, docking, and fusion through sequential interaction with multiple effector molecules. Finally, recent reports suggest that Rab27 GTPases and their effectors regulate vesicular trafficking mechanisms other than exocytosis, including endocytosis and phagocytosis. This review focuses on the latest discoveries on the function of Rab27 GTPases and their effectors Munc13-4 and Slp1 in neutrophil function comparatively to their functions in other leukocytes.
Collapse
Affiliation(s)
- Sergio Daniel Catz
- 1.The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA. ; Twitter: http://www.scripps.edu/catz/
| |
Collapse
|