1
|
Yang T, Chen J, Shi N, Fan B, Yi R, Liang S, Ji A, Liu Z, Li C, Wang Q, Duan L. Discovery and Functional Identification of 2,3-Oxidosqualene Cyclases and Cytochrome P450s in Triterpenoid Metabolic Pathways of Actinidia eriantha. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27902-27911. [PMID: 39648448 DOI: 10.1021/acs.jafc.4c06937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Actinidia eriantha Benth, known as the "king of fruits", is rich in triterpenoid compounds, particularly ursane-type and oleanane-type triterpenic acids. These secondary metabolites have been widely applied in medicine, cosmetics, agriculture, and other fields. To date, key enzyme genes involved in triterpenoid metabolic pathways in A. eriantha remain unexplored. This study employed transcriptome sequencing analysis combined with synthetic biology approaches involving heterologous expression in yeast to identify crucial genes responsible for the biosynthesis of triterpenoid components in A. eriantha: Two 2,3-oxidosqualene cyclases (AeOSC2 and AeOSC3) were characterized to catalyze the formation of major triterpene scaffolds, α-amyrin [precursor of ursolic acid (UA)], β-amyrin [precursor of oleanolic acid (OA)], and ψ-taraxasterol, and two cytochrome P450s (AeCYP716A8 and AeCYP716A9) mediating three-step oxidation at the C-28 position of ursane-type and oleanane-type triterpene scaffolds to form UA, OA, and intermediate oxidation products. We successfully reconstructed the biosynthetic pathway of ursane- and oleanane-type triterpenoids from A. eriantha in a heterologous yeast host and elucidated the two-step enzymatic reactions involved in triterpenoid biosynthesis. These findings lay the foundation for further understanding the biosynthesis of key active components in A. eriantha.
Collapse
Affiliation(s)
- Tingxing Yang
- Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Jitong Chen
- Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Ningwei Shi
- Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Baolian Fan
- Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Runxiang Yi
- Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Shun Liang
- Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Aijia Ji
- Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Zhongqiu Liu
- Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Chi Li
- Xiamen Key Laboratory of Traditional Chinese Medicine Bio-engineering, Xiamen Medical College, Xiamen 361023, P. R. China
| | - Qing Wang
- Xiamen Key Laboratory of Traditional Chinese Medicine Bio-engineering, Xiamen Medical College, Xiamen 361023, P. R. China
| | - Lixin Duan
- Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| |
Collapse
|
2
|
Zhang S, Meng F, Pan X, Qiu X, Li C, Lu S. Chromosome-level genome assembly of Prunella vulgaris L. provides insights into pentacyclic triterpenoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:731-752. [PMID: 38226777 DOI: 10.1111/tpj.16629] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Prunella vulgaris is one of the bestselling and widely used medicinal herbs. It is recorded as an ace medicine for cleansing and protecting the liver in Chinese Pharmacopoeia and has been used as the main constitutions of many herbal tea formulas in China for centuries. It is also a traditional folk medicine in Europe and other countries of Asia. Pentacyclic triterpenoids are a major class of bioactive compounds produced in P. vulgaris. However, their biosynthetic mechanism remains to be elucidated. Here, we report a chromosome-level reference genome of P. vulgaris using an approach combining Illumina, ONT, and Hi-C technologies. It is 671.95 Mb in size with a scaffold N50 of 49.10 Mb and a complete BUSCO of 98.45%. About 98.31% of the sequence was anchored into 14 pseudochromosomes. Comparative genome analysis revealed a recent WGD in P. vulgaris. Genome-wide analysis identified 35 932 protein-coding genes (PCGs), of which 59 encode enzymes involved in 2,3-oxidosqualene biosynthesis. In addition, 10 PvOSC, 358 PvCYP, and 177 PvUGT genes were identified, of which five PvOSCs, 25 PvCYPs, and 9 PvUGTs were predicted to be involved in the biosynthesis of pentacyclic triterpenoids. Biochemical activity assay of PvOSC2, PvOSC4, and PvOSC6 recombinant proteins showed that they were mixed amyrin synthase (MAS), lupeol synthase (LUS), and β-amyrin synthase (BAS), respectively. The results provide a solid foundation for further elucidating the biosynthetic mechanism of pentacyclic triterpenoids in P. vulgaris.
Collapse
Affiliation(s)
- Sixuan Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Fanqi Meng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xian Pan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xiaoxiao Qiu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Caili Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Shanfa Lu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| |
Collapse
|
3
|
Li X, Chen G, Gao QQ, Xiang CF, Yuan CX, Li XN, Shu YY, Zhang GH, Liang YL, Yang SC, Zhai CX, Zhao Y. Site-directed mutagenesis identified the key active site residues of 2,3-oxidosqualene cyclase HcOSC6 responsible for cucurbitacins biosynthesis in Hemsleya chinensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1138893. [PMID: 37056503 PMCID: PMC10086137 DOI: 10.3389/fpls.2023.1138893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/21/2023] [Indexed: 06/19/2023]
Abstract
Hemsleya chinensis is a Chinese traditional medicinal plant, containing cucurbitacin IIa (CuIIa) and cucurbitacin IIb (CuIIb), both of which have a wide range of pharmacological effects, including antiallergic, anti-inflammatory, and anticancer properties. However, few studies have been explored on the key enzymes that are involved in cucurbitacins biosynthesis in H. chinensis. Oxidosqualene cyclase (OSC) is a vital enzyme for cyclizing 2,3-oxidosqualene and its analogues. Here, a gene encoding the oxidosqualene cyclase of H. chinensis (HcOSC6), catalyzing to produce cucurbitadienol, was used as a template of mutagenesis. With the assistance of AlphaFold2 and molecular docking, we have proposed for the first time to our knowledge the 3D structure of HcOSC6 and its binding features to 2,3-oxidosqualene. Mutagenesis experiments on HcOSC6 generated seventeen different single-point mutants, showing that single-residue changes could affect its activity. Three key amino acid residues of HcOSC6, E246, M261 and D490, were identified as a prominent role in controlling cyclization ability. Our findings not only comprehensively characterize three key residues that are potentially useful for producing cucurbitacins, but also provide insights into the significant role they could play in metabolic engineering.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Geng Chen
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Qing-Qing Gao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Chun-Fan Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Cheng-Xiao Yuan
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Xiao-Ning Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Yan-Yu Shu
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Guang-Hui Zhang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yan-Li Liang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Sheng-Chao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Chen-Xi Zhai
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Yan Zhao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Altunayar-Unsalan C, Unsalan O, Mavromoustakos T. Molecular interactions of hesperidin with DMPC/cholesterol bilayers. Chem Biol Interact 2022; 366:110131. [PMID: 36037876 DOI: 10.1016/j.cbi.2022.110131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/05/2022] [Accepted: 08/20/2022] [Indexed: 11/03/2022]
Abstract
Since cell membranes are complex systems, the use of model lipid bilayers is quite important for the study of their interactions with bioactive molecules. Mammalian cell membranes require cholesterol (CHOL) for their structure and function. For this reason, the mixtures of phospholipid and cholesterol are necessary to use in model membrane studies to better simulate the real systems. In the present study, we investigated the effect of the incorporation of hesperidin in model membranes consisting of dimyristoylphosphatidylcholine (DMPC) and CHOL by using differential scanning calorimetry (DSC), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and atomic force microscopy (AFM). ATR-FTIR results demonstrated that hesperidin increases the fluidity of the DMPC/CHOL binary system. DSC findings indicated that the presence of 5 mol% hesperidin induces a broadening of the main phase transition consisting of three overlapping components. AFM experiments showed that hesperidin increases the thickness of DMPC/CHOL lipid bilayer model membranes. In addition to experimental results, molecular docking studies were conducted with hesperidin and human lanosterol synthase (LS), which is an enzyme found in the final step of cholesterol synthesis, to characterize hesperidin's interactions with its surrounding via its hydroxyl and oxygen groups. Then, hesperidin's ADME/Tox (absorption, distribution, metabolism, excretion and toxicity) profile was computed to see the potential impact on living system. In conclusion, considering the data obtained from experimental studies, this work ensures molecular insights in the interaction between a flavonoid, as an antioxidant drug model, and lipids mimicking those found in mammalian membranes. Moreover, computational studies demonstrated that hesperidin may be a great potential for use as a therapeutic agent for hypercholesterolemia due to its antioxidant property.
Collapse
Affiliation(s)
- Cisem Altunayar-Unsalan
- Ege University Central Research Testing and Analysis Laboratory Research and Application Center, 35100, Bornova, Izmir, Turkey.
| | - Ozan Unsalan
- Ege University, Faculty of Science, Department of Physics, 35100, Bornova, Izmir, Turkey.
| | - Thomas Mavromoustakos
- Section of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece.
| |
Collapse
|
5
|
Lertphadungkit P, Qiao X, Ye M, Bunsupa S. Characterization of oxidosqualene cyclases from Trichosanthes cucumerina L. reveals key amino acids responsible for substrate specificity of isomultiflorenol synthase. PLANTA 2022; 256:58. [PMID: 35980476 DOI: 10.1007/s00425-022-03972-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Two key amino acids of isomultiflorenol synthase, Y125 and M254, were first proposed. They could be associated with the production of isomultiflorenol. Oxidosqualene cyclases (OSCs) are the first committed enzymes in the triterpenoid biosynthesis by converting 2,3-oxidosqualene to specific triterpenoid backbones. Thus, these enzymes are potential targets for developing plant-active compounds through the study of triterpenoid biosynthesis. We applied transcriptome information and metabolite profiling from Trichosanthes cucumerina L. to define the diversity of triterpenoids in this plant through OSCs. Isomultiflorenol synthase and cucurbitadienol synthase were previously identified in this plant. Here, three new OSCs, TcBAS, TcLAS, and TcCAS, were cloned and functionally characterized as β-amyrin synthase, lanosterol synthase, and cycloartenol synthase activities, respectively. We also took advantage of the multiple sequence alignment and molecular docking of OSCs exhibiting in this plant and other plant OSCs to identify key residues associated with isomultiflorenol synthase specificity. Two novel key amino acids, referred to the Y125 and M254, were first discovered. These results provide information on a possible catalytic mechanism for plant OSCs that produce specific products.
Collapse
Affiliation(s)
- Pornpatsorn Lertphadungkit
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Road, Bangkok, 10400, Thailand
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Somnuk Bunsupa
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Road, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Molecular dissection of genes and promoters involved in glycyrrhizin biosynthesis revealed phytohormone induced modulation in Glycyrrhiza glabra L. Gene 2022; 836:146682. [PMID: 35714794 DOI: 10.1016/j.gene.2022.146682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
The study reports cloning and characterization of complete biosynthetic gene cluster committed to glycyrrhizin biosynthesis along with their corresponding promoter regions from Glycyrrhiza glabra. The identified genes namely, β-amyrin synthase, β-amyrin-11-oxidase, 11-oxo-beta-amyrin 30-oxidase and UDP-dependent glucosyltransferase, were hetrologously expressed in Nicotiana benthamiana for functional validation. The phyto-hormone, naphthalene acetic acid was shown to prompt maximum up regulation (1.3-14.0 folds) of all the genes, followed by gibberellic acid (0.001-10.0 folds) and abscisic acid (0.2-7.7 folds) treatments. The promoter-GUS fusion constructs infiltrated leaves of the identified genes exhibited enhanced promoter activity of β-amyrin synthase (3.9 & 3.0 folds) and 11-oxo-beta-amyrin 30-oxidase (3.6 & 3.2 folds) under the GA3 and NAA treatments, respectively as compared to their respective untreated controls. The transcriptional control of the three phytohormones studied could be correlated to the cis-responsive elements present in the upstream regions of the individual genes. The study provided an insight into the intricate interaction between hormone-responsive motifs with the corresponding co-expression of the glycyrrhizin biosynthetic pathway genes. The study will help in understanding the phytohormones-mediated regulation of glycyrrhizin biosynthesis and its modulation in the plant.
Collapse
|
7
|
Chen K, Zhang M, Xu L, Yi Y, Wang L, Wang H, Wang Z, Xing J, Li P, Zhang X, Shi X, Ye M, Osbourn A, Qiao X. Identification of oxidosqualene cyclases associated with saponin biosynthesis from Astragalus membranaceus reveals a conserved motif important for catalytic function. J Adv Res 2022; 43:247-257. [PMID: 36585112 PMCID: PMC9811366 DOI: 10.1016/j.jare.2022.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/10/2022] [Accepted: 03/22/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Triterpenoids and saponins have a broad range of pharmacological activities. Unlike most legumes which contain mainly oleanane-type scaffold, Astragalus membranaceus contains not only oleanane-type but also cycloartane-type saponins, for which the biosynthetic pathways are unknown. OBJECTIVES This work aims to study the function and catalytic mechanism of oxidosqualene cyclases (OSCs), one of the most important enzymes in triterpenoid biosynthesis, in A. membranaceus. METHODS Two OSC genes, AmOSC2 and AmOSC3, were cloned from A. membranaceus. Their functions were studied by heterologous expression in tobacco and yeast, together with in vivo transient expression and virus-induced gene silencing. Site-directed mutagenesis and molecular docking were used to explain the catalytic mechanism for the conserved motif. RESULTS AmOSC2 is a β-amyrin synthase which showed higher expression levels in underground parts. It is associated with the production of β-amyrin and soyasaponins (oleanane-type) in vivo. AmOSC3 is a cycloartenol synthase expressed in both aerial and underground parts. It is related to the synthesis of astragalosides (cycloartane-type) in the roots, and to the synthesis of cycloartenol as a plant sterol precursor. From AmOSC2/3, conserved triad motifs VFM/VFN were discovered for β-amyrin/cycloartenol synthases, respectively. The motif is a critical determinant of yield as proved by 10 variants from different OSCs, where the variant containing the conserved motif increased the yield by up to 12.8-fold. Molecular docking and mutagenesis revealed that Val, Phe and Met residues acted together to stabilize the substrate, and the cation-π interactions from Phe played the major role. CONCLUSION The study provides insights into the biogenic origin of oleanane-type and cycloartane-type triterpenoids in Astragalus membranaceus. The conserved motif offers new opportunities for OSC engineering.
Collapse
Affiliation(s)
- Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lulu Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Linlin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Haotian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zilong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Jiangtao Xing
- Thermo Fisher Scientific, Building A, Qiming Plaza, No.101, Wangjing Lize Middle Street, Beijing 100102, China
| | - Pi Li
- Thermo Fisher Scientific, Building A, Qiming Plaza, No.101, Wangjing Lize Middle Street, Beijing 100102, China
| | - Xiaohui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xiaomeng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom,Corresponding authors at: State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China (X. Qiao); Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (A. Osbourn).
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China,Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom,Corresponding authors at: State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China (X. Qiao); Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (A. Osbourn).
| |
Collapse
|
8
|
Ye S, Feng L, Zhang S, Lu Y, Xiang G, Nian B, Wang Q, Zhang S, Song W, Yang L, Liu X, Feng B, Zhang G, Hao B, Yang S. Integrated Metabolomic and Transcriptomic Analysis and Identification of Dammarenediol-II Synthase Involved in Saponin Biosynthesis in Gynostemma longipes. FRONTIERS IN PLANT SCIENCE 2022; 13:852377. [PMID: 35401630 PMCID: PMC8990310 DOI: 10.3389/fpls.2022.852377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/28/2022] [Indexed: 05/17/2023]
Abstract
Gynostemma longipes contains an abundance of dammarane-type ginsenosides and gypenosides that exhibit extensive pharmacological activities. Increasing attention has been paid to the elucidation of cytochrome P450 monooxygenases (CYPs) and UDP-dependent glycosyltransferases (UGTs) that participate downstream of ginsenoside biosynthesis in the Panax genus. However, information on oxidosqualene cyclases (OSCs), the upstream genes responsible for the biosynthesis of different skeletons of ginsenoside and gypenosides, is rarely reported. Here, an integrative study of the metabolome and the transcriptome in the leaf, stolon, and rattan was conducted and the function of GlOSC1 was demonstrated. In total, 46 triterpenes were detected and found to be highly abundant in the stolon, whereas gene expression analysis indicated that the upstream OSC genes responsible for saponin skeleton biosynthesis were highly expressed in the leaf. These findings indicated that the saponin skeletons were mainly biosynthesized in the leaf by OSCs, and subsequently transferred to the stolon via CYPs and UGTs biosynthesis to form various ginsenoside and gypenosides. Additionally, a new dammarane-II synthase (DDS), GlOSC1, was identified by bioinformatics analysis, yeast expression assay, and enzyme assays. The results of the liquid chromatography-mass spectrometry (LC-MS) analysis proved that GlOSC1 could catalyze 2,3-oxidosqualene to form dammarenediol-II via cyclization. This work uncovered the biosynthetic mechanism of dammarenediol-II, an important starting substrate for ginsenoside and gypenosides biosynthesis, and may achieve the increased yield of valuable ginsenosides and gypenosides produced under excess substrate in a yeast cell factory through synthetic biology strategy.
Collapse
Affiliation(s)
- Shuang Ye
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Lei Feng
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Shiyu Zhang
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Yingchun Lu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Guisheng Xiang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Bo Nian
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Qian Wang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Shuangyan Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Wanling Song
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Ling Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Xiangyu Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Baowen Feng
- Honwin Pharma (Lianghe) Co., LTD., Dehong, China
| | - Guanghui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Bing Hao
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
9
|
Günther J, Erthmann PØ, Khakimov B, Bak S. Reciprocal mutations of two multifunctional β-amyrin synthases from Barbarea vulgaris shift α/β-amyrin ratios. PLANT PHYSIOLOGY 2022; 188:1483-1495. [PMID: 34865155 PMCID: PMC8896598 DOI: 10.1093/plphys/kiab545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/25/2021] [Indexed: 05/09/2023]
Abstract
In the wild cruciferous wintercress (Barbarea vulgaris), β-amyrin-derived saponins are involved in resistance against insect herbivores like the major agricultural pest diamondback moth (Plutella xylostella). Enzymes belonging to the 2,3-oxidosqualene cyclase family have been identified and characterized in B. vulgaris G-type and P-type plants that differ in their natural habitat, insect resistance and saponin content. Both G-type and P-type plants possess highly similar 2,3-oxidosqualene cyclase enzymes that mainly produce β-amyrin (Barbarea vulgaris Lupeol synthase 5 G-Type; BvLUP5-G) or α-amyrin (Barbarea vulgaris Lupeol synthase 5 P-Type; BvLUP5-P), respectively. Despite the difference in product formation, the two BvLUP5 enzymes are 98% identical at the amino acid level. This provides a unique opportunity to investigate determinants of product formation, using the B. vulgaris 2,3-oxidosqualene cyclase enzymes as a model for studying amino acid residues that determine differences in product formation. In this study, we identified two amino acid residues at position 121 and 735 that are responsible for the dominant changes in generated product ratios of β-amyrin and α-amyrin in both BvLUP5 enzymes. These amino acid residues have not previously been highlighted as directly involved in 2,3-oxidosqualene cyclase product specificity. Our results highlight the functional diversity and promiscuity of 2,3-oxidosqualene cyclase enzymes. These enzymes serve as important mediators of metabolic plasticity throughout plant evolution.
Collapse
Affiliation(s)
- Jan Günther
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Denmark
| | - Pernille Østerbye Erthmann
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Denmark
| | - Bekzod Khakimov
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Denmark
- Department of Food Science, University of Copenhagen, Denmark
| | - Søren Bak
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Denmark
- Author for communication:
| |
Collapse
|
10
|
Huang Y, An W, Yang Z, Xie C, Liu S, Zhan T, Pan H, Zheng X. Metabolic stimulation-elicited transcriptional responses and biosynthesis of acylated triterpenoids precursors in the medicinal plant Helicteres angustifolia. BMC PLANT BIOLOGY 2022; 22:86. [PMID: 35216551 PMCID: PMC8876399 DOI: 10.1186/s12870-022-03429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Helicteres angustifolia has long been used in Chinese traditional medicine. It has multiple pharmacological benefits, including anti-inflammatory, anti-viral and anti-tumor effects. Its main active chemicals include betulinic acid, oleanolic acid, helicteric acid, helicterilic acid, and other triterpenoid saponins. It is worth noting that some acylated triterpenoids, such as helicteric acid and helicterilic acid, are characteristic components of Helicteres and are relatively rare among other plants. However, reliance on natural plants as the only sources of these is not enough to meet the market requirement. Therefore, the engineering of its metabolic pathway is of high research value for enhancing the production of secondary metabolites. Unfortunately, there are few studies on the biosynthetic pathways of triterpenoids in H. angustifolia, hindering its further investigation. RESULTS Here, the RNAs of different groups treated by metabolic stimulation were sequenced with an Illumina high-throughput sequencing platform, resulting in 121 gigabases of data. A total of 424,824 unigenes were obtained after the trimming and assembly of the raw data, and 22,430 unigenes were determined to be differentially expressed. In addition, three oxidosqualene cyclases (OSCs) and four Cytochrome P450 (CYP450s) were screened, of which one OSC (HaOSC1) and one CYP450 (HaCYPi3) achieved functional verification, suggesting that they could catalyze the production of lupeol and oleanolic acid, respectively. CONCLUSION In general, the transcriptomic data of H. angustifolia was first reported and analyzed to study functional genes. Three OSCs, four CYP450s and three acyltransferases were screened out as candidate genes to perform further functional verification, which demonstrated that HaOSC1 and HaCYPi3 encode for lupeol synthase and β-amyrin oxidase, which produce corresponding products of lupeol and oleanolic acid, respectively. Their successful identification revealed pivotal steps in the biosynthesis of acylated triterpenoids precursors, which laid a foundation for further study on acylated triterpenoids. Overall, these results shed light on the regulation of acylated triterpenoids biosynthesis.
Collapse
Affiliation(s)
- Yuying Huang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Wenli An
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Zerui Yang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Chunzhu Xie
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Shanshan Liu
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Ting Zhan
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Huaigeng Pan
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Xiasheng Zheng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| |
Collapse
|
11
|
Li M, Zhao M, Wei P, Zhang C, Lu W. Biosynthesis of Soyasapogenol B by Engineered Saccharomyces cerevisiae. Appl Biochem Biotechnol 2021; 193:3202-3213. [PMID: 34097255 DOI: 10.1007/s12010-021-03599-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022]
Abstract
Soyasapogenol B is an oleanane-type pentacyclic triterpene that has various applications in food and healthcare and has a higher biological activity than soyasaponin. Saccharomyces cerevisiae is a potential platform for terpenoid production with mature genetic tools for metabolic pathway manipulation. In this study, we developed a biosynthesis method to produce soyasapogenol B. First, we expressed β-amyrin synthase derived from Glycyrrhiza glabra in S. cerevisiae to generate β-amyrin, as the precursor of soyasapogenol B. Several different types of promoters were then used to regulate the expression of key genes in the mevalonate pathway (MVA), and this subsequently increased the yield of β-amyrin to 17.6 mg/L, 25-fold more than that produced in the original strain L01 (0.68 mg/L). Then, using the β-amyrin-producing strain, we expressed soyasapogenol B synthases from Medicago truncatula (CYP93E2 and CYP72A61V2) and from G. glabra (CYP93E3 and CYP72A566). Soyasapogenol B yields were then optimized by using soyasapogenol B synthases and cytochrome P450 reductase from G. glabra. The most effective soyasapogenol B production strain was used for fermentation, and the yield of soyasapogenol B reached 2.9 mg/L in flask and 8.36 mg/L in a 5-L bioreactor with fed glucose and ethanol. This study demonstrated the heterologous synthesis of soyasapogenol B in S. cerevisiae using the combined expression of CYP93E3 and CYP72A566 in the synthesis pathway, which significantly increased the production of soyasapogenol B and provides a reference method for the biosynthesis of other triterpenes.
Collapse
Affiliation(s)
- Man Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Mengya Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Panpan Wei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People's Republic of China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People's Republic of China.
| |
Collapse
|
12
|
Yu H, Liu M, Yin M, Shan T, Peng H, Wang J, Chang X, Peng D, Zha L, Gui S. Transcriptome analysis identifies putative genes involved in triterpenoid biosynthesis in Platycodon grandiflorus. PLANTA 2021; 254:34. [PMID: 34291354 DOI: 10.1007/s00425-021-03677-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/30/2021] [Indexed: 05/25/2023]
Abstract
Comprehensive transcriptome analysis of different Platycodon grandiflorus tissues discovered genes related to triterpenoid saponin biosynthesis. Platycodon grandiflorus (Jacq.) A. DC. (P. grandiflorus), a traditional Chinese medicine, contains considerable triterpenoid saponins with broad pharmacological activities. Triterpenoid saponins are the major components of P. grandiflorus. Here, single-molecule real-time and next-generation sequencing technologies were combined to comprehensively analyse the transcriptome and identify genes involved in triterpenoid saponin biosynthesis in P. grandiflorus. We quantified four saponins in P. grandiflorus and found that their total content was highest in the roots and lowest in the stems and leaves. A total of 173,354 non-redundant transcripts were generated from the PacBio platform, and three full-length transcripts of β-amyrin synthase, the key synthase of β-amyrin, were identified. A total of 132,610 clean reads obtained from the DNBSEQ platform were utilised to explore key genes related to the triterpenoid saponin biosynthetic pathway in P. grandiflorus, and 96 differentially expressed genes were selected as candidates. The expression levels of these genes were verified by quantitative real-time PCR. Our reliable transcriptome data provide valuable information on the related biosynthesis pathway and may provide insights into the molecular mechanisms of triterpenoid saponin biosynthesis in P. grandiflorus.
Collapse
Affiliation(s)
- Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Mengli Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Minzhen Yin
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Tingyu Shan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Huasheng Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU057), National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jutao Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Conservation and Development of Traditional Chinese Medicine Resources, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
13
|
Madan B, Virshup DM, Nes WD, Leaver DJ. Unearthing the Janus-face cholesterogenesis pathways in cancer. Biochem Pharmacol 2021; 196:114611. [PMID: 34010597 DOI: 10.1016/j.bcp.2021.114611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022]
Abstract
Cholesterol biosynthesis, primarily associated with eukaryotes, occurs as an essential component of human metabolism with biosynthetic deregulation a factor in cancer viability. The segment that partitions between squalene and the C27-end cholesterol yields the main cholesterogenesis branch subdivided into the Bloch and Kandutsch-Russell pathways. Their importance in cell viability, in normal growth and development originates primarily from the amphipathic property and shape of the cholesterol molecule which makes it suitable as a membrane insert. Cholesterol can also convert to variant oxygenated product metabolites of distinct function producing a complex interplay between cholesterol synthesis and overall steroidogenesis. In this review, we disassociate the two sides of cholesterogenesisis affecting the type and amounts of systemic sterols-one which is beneficial to human welfare while the other dysfunctional leading to misery and disease that could result in premature death. Our focus here is first to examine the cholesterol biosynthetic genes, enzymes, and order of biosynthetic intermediates in human cholesterogenesis pathways, then compare the effect of proximal and distal inhibitors of cholesterol biosynthesis against normal and cancer cell growth and metabolism. Collectively, the inhibitor studies of druggable enzymes and specific biosynthetic steps, suggest a potential role of disrupted cholesterol biosynthesis, in coordination with imported cholesterol, as a factor in cancer development and as discussed some of these inhibitors have chemotherapeutic implications.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore; Department of Pediatrics, Duke University, Durham, NC, USA
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - David J Leaver
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX, USA.
| |
Collapse
|
14
|
Chen K, Zhang M, Ye M, Qiao X. Site-directed mutagenesis and substrate compatibility to reveal the structure-function relationships of plant oxidosqualene cyclases. Nat Prod Rep 2021; 38:2261-2275. [PMID: 33988197 DOI: 10.1039/d1np00015b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to May 2020Oxidosqualene cyclases (OSCs) catalyze one of the most complex polycyclization reactions in nature, using the linear 2,3-oxidosqualene to generate an array of triterpene skeletons in plants. Despite the structural diversity of the products, the protein sequences of plant OSCs are highly conserved, where a few key amino acids could govern the product selectivity. Due to the absence of crystal structures, site-directed mutagenesis and substrate structural modification become key approaches to understand the cyclization mechanism. In this review, 98 mutation sites in 25 plant OSCs have been summarized, and the conserved key residues have been identified by sequence alignment. Structure-function relationships are further discussed. Meanwhile, the substrate selectivity has been summarized to probe the active site cavity of plant OSCs. A total of 77 references are included.
Collapse
Affiliation(s)
- Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
15
|
Yu Y, Rasool A, Liu H, Lv B, Chang P, Song H, Wang Y, Li C. Engineering Saccharomyces cerevisiae for high yield production of α-amyrin via synergistic remodeling of α-amyrin synthase and expanding the storage pool. Metab Eng 2020; 62:72-83. [DOI: 10.1016/j.ymben.2020.08.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
|
16
|
Guo H, Wang H, Huo YX. Engineering Critical Enzymes and Pathways for Improved Triterpenoid Biosynthesis in Yeast. ACS Synth Biol 2020; 9:2214-2227. [PMID: 32786348 DOI: 10.1021/acssynbio.0c00124] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Triterpenoids represent a diverse group of phytochemicals that are widely distributed in the plant kingdom and have many biological activities. The heterologous production of triterpenoids in Saccharomyces cerevisiae has been successfully implemented by introducing various triterpenoid biosynthetic pathways. By engineering related enzymes as well as through yeast metabolism, the yield of various triterpenoids is significantly improved from the milligram per liter scale to the gram per liter scale. This achievement demonstrates that engineering critical enzymes is considered a potential strategy to overcome the main hurdles of the industrial application of these potent natural products. Here, we review strategies for designing enzymes to improve the yield of triterpenoids in S. cerevisiae in terms of three main aspects: 1, elevating the supply of the precursor 2,3-oxidosqualene; 2, optimizing triterpenoid-involved reactions; and 3, lowering the competition of the native sterol pathway. Then, we provide challenges and prospects for further enhancing triterpenoid production in S. cerevisiae.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huiyan Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
- SIP-UCLA Institute for Technology Advancement, Suzhou, 215123, P. R. China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| |
Collapse
|
17
|
Dale MP, Moses T, Johnston EJ, Rosser SJ. A systematic comparison of triterpenoid biosynthetic enzymes for the production of oleanolic acid in Saccharomyces cerevisiae. PLoS One 2020; 15:e0231980. [PMID: 32357188 PMCID: PMC7194398 DOI: 10.1371/journal.pone.0231980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Triterpenoids are high-value plant metabolites with numerous applications in medicine, agriculture, food, and home and personal care products. However, plants produce triterpenoids in low abundance, and their complex structures make their chemical synthesis prohibitively expensive and often impossible. As such, the yeast Saccharomyces cerevisiae has been explored as an alternative means of production. An important triterpenoid is oleanolic acid because it is the precursor to many bioactive triterpenoids of commercial interest, such as QS-21 which is being evaluated as a vaccine adjuvant in clinical trials against HIV and malaria. Oleanolic acid is derived from 2,3-oxidosqualene (natively produced by yeast) via a cyclisation and a multi-step oxidation reaction, catalysed by a β-amyrin synthase and a cytochrome P450 of the CYP716A subfamily, respectively. Although many homologues have been characterised, previous studies have used arbitrarily chosen β-amyrin synthases and CYP716As to produce oleanolic acid and its derivatives in yeast. This study presents the first comprehensive comparison of β-amyrin synthase and CYP716A enzyme activities in yeast. Strains expressing different homologues are compared for production, revealing 6.3- and 4.5-fold differences in β-amyrin and oleanolic acid productivities and varying CYP716A product profiles, which are important to consider when engineering strains for the production of bioactive oleanolic acid derivatives.
Collapse
Affiliation(s)
- Matthew P Dale
- School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Tessa Moses
- School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Emily J Johnston
- School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Susan J Rosser
- School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
18
|
Suzuki A, Aikawa Y, Ito R, Hoshino T. Oryza sativa
Parkeol Cyclase: Changes in the Substrate‐Folding Conformation and the Deprotonation Sites on Mutation at Tyr257: Importance of the Hydroxy Group and Steric Bulk. Chembiochem 2019; 20:2862-2875. [DOI: 10.1002/cbic.201900314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Asuka Suzuki
- Graduate School of Science and Technology andDepartment of Applied Biological ChemistryFaculty of AgricultureNiigata University Ikarashi 2-8050 Nishi-ku Niigata 950–2181 Japan
| | - Yuko Aikawa
- Graduate School of Science and Technology andDepartment of Applied Biological ChemistryFaculty of AgricultureNiigata University Ikarashi 2-8050 Nishi-ku Niigata 950–2181 Japan
| | - Ryousuke Ito
- Graduate School of Science and Technology andDepartment of Applied Biological ChemistryFaculty of AgricultureNiigata University Ikarashi 2-8050 Nishi-ku Niigata 950–2181 Japan
| | - Tsutomu Hoshino
- Graduate School of Science and Technology andDepartment of Applied Biological ChemistryFaculty of AgricultureNiigata University Ikarashi 2-8050 Nishi-ku Niigata 950–2181 Japan
| |
Collapse
|
19
|
Srisawat P, Fukushima EO, Yasumoto S, Robertlee J, Suzuki H, Seki H, Muranaka T. Identification of oxidosqualene cyclases from the medicinal legume tree Bauhinia forficata: a step toward discovering preponderant α-amyrin-producing activity. THE NEW PHYTOLOGIST 2019; 224:352-366. [PMID: 31230357 DOI: 10.1111/nph.16013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/15/2019] [Indexed: 05/27/2023]
Abstract
Triterpenoids are widely distributed among plants of the legume family. However, most studies have focused on triterpenoids and their biosynthetic enzymes in model legumes. We evaluated the triterpenoid aglycones profile of the medicinal legume tree Bauhinia forficata by gas chromatography-mass spectrometry. Through transcriptome analyses, homology-based cloning, and heterologous expression, we discovered four oxidosqualene cyclases (OSCs) which are responsible for the diversity of triterpenols in B. forficata. We also investigated the effects of the unique motif TLCYCR on α-amyrin synthase activity. B. forficata highly accumulated α-amyrin. We discovered an OSC with a preponderant α-amyrin-producing activity, which accounted for at least 95% of the total triterpenols. We also discovered three other functional OSCs (BfOSC1, BfOSC2, and BfOSC4) that produce β-amyrin, germanicol, and cycloartenol. Furthermore, by replacing the unique motif TLCYCR from BfOSC3 with the MWCYCR motif, we altered the function of BfOSC3 such that it no longer produced α-amyrin. Our results provide new insights into OSC cyclization, which is responsible for the diversity of triterpenoid metabolites in B. forficata, a non-model legume plant.
Collapse
Affiliation(s)
- Pisanee Srisawat
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Ery Odette Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- Universidad Regional Amazónica IKIAM, Tena, 150150, Ecuador
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Jekson Robertlee
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- Department of Frontier Research, Kazusa DNA Research Institute, Kisarazu, 292-0818, Japan
| | - Hideyuki Suzuki
- Department of Research & Development, Kazusa DNA Research Institute, Kisarazu, 292-0818, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
20
|
Molecular Docking and Molecular Dynamics Studies on Selective Synthesis of α-Amyrin and β-Amyrin by Oxidosqualene Cyclases from Ilex Asprella. Int J Mol Sci 2019; 20:ijms20143469. [PMID: 31311103 PMCID: PMC6678101 DOI: 10.3390/ijms20143469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/22/2022] Open
Abstract
Amyrins are the immediate precursors of many pharmaceutically important pentacyclic triterpenoids. Although various amyrin synthases have been identified, little is known about the relationship between protein structures and the constituent and content of the products. IaAS1 and IaAS2 identified from Ilex asprella in our previous work belong to multifunctional oxidosqualene cyclases and can produce α-amyrin and β-amyrin at different ratios. More than 80% of total production of IaAS1 is α-amyrin; while IaAS2 mainly produces β-amyrin with a yield of 95%. Here, we present a molecular modeling approach to explore the underlying mechanism for selective synthesis. The structures of IaAS1 and IaAS2 were constructed by homology modeling, and were evaluated by Ramachandran Plot and Verify 3D program. The enzyme-product conformations generated by molecular docking indicated that ASP484 residue plays an important role in the catalytic process; and TRP611 residue of IaAS2 had interaction with β-amyrin through π–σ interaction. MM/GBSA binding free energy calculations and free energy decomposition after 50 ns molecular dynamics simulations were performed. The binding affinity between the main product and corresponding enzyme was higher than that of the by-product. Conserved amino acid residues such as TRP257; TYR259; PHE47; TRP534; TRP612; and TYR728 for IaAS1 (TRP257; TYR259; PHE473; TRP533; TRP611; and TYR727 for IaAS2) had strong interactions with both products. GLN450 and LYS372 had negative contribution to binding affinity between α-amyrin or β-amyrin and IaAS1. LYS372 and ARG261 had strong repulsive effects for the binding of α-amyrin with IaAS2. The importance of Lys372 and TRP612 of IaAS1, and Lys372 and TRP611 of IaAS2, for synthesizing amyrins were confirmed by site-directed mutagenesis. The different patterns of residue–product interactions is the cause for the difference in the yields of two products.
Collapse
|
21
|
Shi Y, Zhang S, Peng D, Wang C, Zhao D, Ma K, Wu J, Huang L. Transcriptome Analysis of Clinopodium chinense (Benth.) O. Kuntze and Identification of Genes Involved in Triterpenoid Saponin Biosynthesis. Int J Mol Sci 2019; 20:E2643. [PMID: 31146369 PMCID: PMC6600151 DOI: 10.3390/ijms20112643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 11/28/2022] Open
Abstract
Clinopodium chinense (Benth.) O. Kuntze (C. chinense) is an important herb in traditional Chinese medicine. Triterpenoid saponins are a major class of active compounds in C. chinense with broad pharmacological activities and hemostatic, antitumor, and anti-hyperglycemic effects. To identify genes involved in triterpenoid saponin biosynthesis, transcriptomic analyses of leaves, stems, and roots from C. chinense were performed. A total of 135,968 unigenes were obtained by assembling the leaf, stem, and root transcripts, of which 102,154 were annotated in public databases. Differentially expressed genes were determined based on expression profile analysis and analyzed for differential expression of unique genes related to triterpenoid saponin biosynthesis. Multiple unigenes encoding crucial enzymes or transcription factors involved in triterpenoid saponin synthesis were identified and analyzed. The expression levels of unigenes encoding enzymes were experimentally validated using quantitative real-time PCR. This study greatly broadens the public transcriptome database for this species and provides a valuable resource for identifying candidate genes involved in the biosynthesis of triterpenoid saponins and other secondary metabolites.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| | - Shengxiang Zhang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| | - Daiyin Peng
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China.
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China.
| | - Chenkai Wang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| | - Derui Zhao
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| | - Kelong Ma
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China.
- Clinical College of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Jiawen Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China.
| | - Luqi Huang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China.
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
22
|
Berni R, Hoque MZ, Legay S, Cai G, Siddiqui KS, Hausman JF, Andre CM, Guerriero G. Tuscan Varieties of Sweet Cherry Are Rich Sources of Ursolic and Oleanolic Acid: Protein Modeling Coupled to Targeted Gene Expression and Metabolite Analyses. Molecules 2019; 24:E1590. [PMID: 31013661 PMCID: PMC6515059 DOI: 10.3390/molecules24081590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/20/2019] [Accepted: 04/20/2019] [Indexed: 11/16/2022] Open
Abstract
The potential of six ancient Tuscan sweet cherry (Prunus avium L.) varieties as a source of health-promoting pentacyclic triterpenes is here evaluated by means of a targeted gene expression and metabolite analysis. By using a sequence homology criterion, we identify five oxidosqualene cyclase genes (OSCs) and three cytochrome P450s (CYP85s) that are putatively involved in the triterpene production pathway in sweet cherries. We performed 3D structure prediction and induced-fit docking using cation intermediates and reaction products for some OSCs to predict their function. We show that the Tuscan varieties have different amounts of ursolic and oleanolic acids and that these variations are related to different gene expression profiles. This study stresses the interest of valorizing ancient fruits as alternative sources of functional molecules with nutraceutical value. It also provides information on sweet cherry triterpene biosynthetic genes, which could be the object of follow-up functional studies.
Collapse
Affiliation(s)
- Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100 Siena, Italy.
- Trees and Timber Institute, National Research Council of Italy (CNR-IVALSA), via Aurelia 49, 58022 Follonica (GR), Italy.
| | - Mubasher Zahir Hoque
- Bio-Bio-1 Research Foundation, Sangskriti Bikash Kendra Bhaban, 1/E/1 Poribagh, Dhaka 1000, Bangladesh.
- Life Sciences Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| | - Sylvain Legay
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100 Siena, Italy.
| | - Khawar Sohail Siddiqui
- Life Sciences Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Christelle M Andre
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| |
Collapse
|
23
|
Yu Y, Chang P, Yu H, Ren H, Hong D, Li Z, Wang Y, Song H, Huo Y, Li C. Productive Amyrin Synthases for Efficient α-Amyrin Synthesis in Engineered Saccharomyces cerevisiae. ACS Synth Biol 2018; 7:2391-2402. [PMID: 30216049 DOI: 10.1021/acssynbio.8b00176] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
α-Amyrin is a plant-derived pentacyclic triterpenoid, with a lot of important physiological and pharmacological activities. The formation of α-amyrin from (3 S)-2,3-oxidosqualene is catalyzed by α-amyrin synthase (α-AS), a member of the oxidosqualene cyclase (OSC) protein family. However, α-amyrin is not yet commercially developed due to its extremely low productivity in plants. The engineered Saccharomyces cerevisiae with efficient α-amyrin production pathway could be used as an alternative and sustainable solution to produce α-amyrin from renewable raw materials. To efficiently improve α-amyrin production in S. cerevisiae, we identified two α-ASs, EjAS and MdOSC1 from Eriobotrya japonica and Malus × domestica, respectively, through strict bioinformatics screening criteria and phylogenetic analysis. The specific activities of purified EjAS and MdOSC1 were 0.0032 and 0.0293 μmol/min/mg, respectively. EjAS produced α-amyrin and β-amyrin at a ratio of 17:3, MdOSC1 produced α-amyrin, β-amyrin and lupeol at a ratio of 86:13:1, indicating MdOSC1 had significantly higher specific activity and higher ratio of α-amyrin than EjAS. Furthermore, MdOSC1 was introduced into S. cerevisiae combining with the increased supply of (3 S)-2,3-oxidosqualene to achieve the encouraging α-amyrin production, and the titer of α-amyrin achieved 11.97 ± 0.61 mg/L, 5.8 folds of the maximum production reported.
Collapse
Affiliation(s)
- Yuan Yu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 Zhong Guan Cun Nan Road, Beijing 100081, PR China
- College of Life Sciences, North China University of Science and Technology, 21 Bo Hai Road, Tangshan 063210, PR China
| | - Pengcheng Chang
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 Zhong Guan Cun Nan Road, Beijing 100081, PR China
| | - Huan Yu
- School of Life Sciences, Beijing Institute of Technology, 5 Zhong Guan Cun Nan Road, Beijing 100081, PR China
| | - Huiyong Ren
- School of Life Sciences, Beijing Institute of Technology, 5 Zhong Guan Cun Nan Road, Beijing 100081, PR China
| | - Danning Hong
- School of Life Sciences, Beijing Institute of Technology, 5 Zhong Guan Cun Nan Road, Beijing 100081, PR China
| | - Zeyan Li
- School of Life Sciences, Beijing Institute of Technology, 5 Zhong Guan Cun Nan Road, Beijing 100081, PR China
| | - Ying Wang
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 Zhong Guan Cun Nan Road, Beijing 100081, PR China
| | - Hao Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yixin Huo
- School of Life Sciences, Beijing Institute of Technology, 5 Zhong Guan Cun Nan Road, Beijing 100081, PR China
| | - Chun Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 Zhong Guan Cun Nan Road, Beijing 100081, PR China
| |
Collapse
|
24
|
Lu C, Zhang C, Zhao F, Li D, Lu W. Biosynthesis of ursolic acid and oleanolic acid inSaccharomyces cerevisiae. AIChE J 2018. [DOI: 10.1002/aic.16370] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chunzhe Lu
- Dept. of Biological Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Chuanbo Zhang
- Dept. of Biological Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Fanglong Zhao
- Dept. of Biological Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Dashuai Li
- Dept. of Biological Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Wenyu Lu
- Dept. of Biological Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Key Laboratory of system bioengineering (Tianjin University), Ministry of Education; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| |
Collapse
|
25
|
Aiba Y, Watanabe T, Terasawa Y, Nakano C, Hoshino T. Strictly Conserved Residues in Euphorbia tirucalli
β-Amyrin Cyclase: Trp612 Stabilizes Transient Cation through Cation-π Interaction and CH-π Interaction of Tyr736 with Leu734 Confers Robust Local Protein Architecture. Chembiochem 2018; 19:486-495. [DOI: 10.1002/cbic.201700572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Yukari Aiba
- Graduate School of Science and Technology and Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| | - Takumi Watanabe
- Graduate School of Science and Technology and Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| | - Yuri Terasawa
- Graduate School of Science and Technology and Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| | - Chiaki Nakano
- Graduate School of Science and Technology and Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| | - Tsutomu Hoshino
- Graduate School of Science and Technology and Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| |
Collapse
|
26
|
Lu Y, Zhou J, Hu T, Zhang Y, Su P, Wang J, Gao W, Huang L. A multifunctional oxidosqualene cyclase from Tripterygium regelii that produces both α- and β-amyrin. RSC Adv 2018; 8:23516-23521. [PMID: 35540266 PMCID: PMC9081704 DOI: 10.1039/c8ra03468k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/16/2018] [Indexed: 11/21/2022] Open
Abstract
Tripterygium regelii is a rich source of triterpenoids, containing many types of triterpenes with high chemical diversity and interesting pharmacological properties. The cDNA of the multifunctional oxidosqualene cyclase (TrOSC, GenBank accession number: MH161182), consisting of a 2289 bp open reading frame and coding for 762 amino acids, was cloned from the stems and roots of Tripterygium regelii. Phylogenetic analysis using OSC genes from other plants suggested that TrOSC might be a mixed-amyrin synthase. The coding sequence was cloned into the expression vector pYES2 and transformed into the yeast Saccharomyces cerevisiae. The resulting products were analysed by GC-MS. Surprisingly, although it showed 76% sequence identity to lupeol synthase from Ricinus communis, TrOSC was found to be a multifunctional triterpene synthase producing both α- and β-amyrin, the precursors of ursane and oleanane type triterpenes, respectively. qRT-PCR analysis revealed that the transcript of TrOSC accumulated mainly in roots and stems. Taken together, our findings contribute to the knowledge of key genes in the pentacyclic triterpene biosynthesis pathway. A multifunctional oxidosqualene cyclase was cloned from Tripterygium regelii and identified as a mixed-amyrin synthase, which can produce both α- and β-amyrin.![]()
Collapse
Affiliation(s)
- Yun Lu
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Tianyuan Hu
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Yifeng Zhang
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
- State Key Laboratory of Dao-di Herbs
| | - Ping Su
- State Key Laboratory of Dao-di Herbs
- National Resource Center for Chinese MateriaMedica
- China Academy of ChineseMedical Sciences
- Beijing
- China
| | - Jiadian Wang
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
- State Key Laboratory of Dao-di Herbs
| | - Wei Gao
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Lab of TCM Collateral Disease Theory Research
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs
- National Resource Center for Chinese MateriaMedica
- China Academy of ChineseMedical Sciences
- Beijing
- China
| |
Collapse
|
27
|
Hoshino T, Nakagawa K, Aiba Y, Itoh D, Nakada C, Masukawa Y. Euphorbia tirucalli
β-Amyrin Synthase: Critical Roles of Steric Sizes at Val483 and Met729 and the CH-π Interaction between Val483 and Trp534 for Catalytic Action. Chembiochem 2017; 18:2145-2155. [DOI: 10.1002/cbic.201700368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Tsutomu Hoshino
- Graduate School of Science and Technology and; Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan), E-mail: address
| | - Kazuya Nakagawa
- Graduate School of Science and Technology and; Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan), E-mail: address
| | - Yukari Aiba
- Graduate School of Science and Technology and; Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan), E-mail: address
| | - Daichi Itoh
- Graduate School of Science and Technology and; Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan), E-mail: address
| | - Chika Nakada
- Graduate School of Science and Technology and; Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan), E-mail: address
| | - Yukari Masukawa
- Graduate School of Science and Technology and; Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan), E-mail: address
| |
Collapse
|
28
|
Sun R, Liu S, Tang ZZ, Zheng TR, Wang T, Chen H, Li CL, Wu Q. β-Amyrin synthase from Conyza blinii expressed in Saccharomyces cerevisiae. FEBS Open Bio 2017; 7:1575-1585. [PMID: 28979844 PMCID: PMC5623702 DOI: 10.1002/2211-5463.12299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/03/2017] [Accepted: 08/06/2017] [Indexed: 11/09/2022] Open
Abstract
Conyza blinii H.Lév. is a widely used medicinal herb in southwestern China. The main pharmacological components of C. blinii are a class of oleanane-type pentacyclic triterpene glycosides known as conyzasaponins, which are thought to be synthesized from β-amyrin. However, no genes involved in the conyzasaponin pathway have previously been identified. Here, we identify an oxidosqualene cyclase (OSC), a β-amyrin synthase, which mediates cyclization of 2,3-oxidosqualene to yield β-amyrin. Ten OSC sequences were isolated from C. blinii transcript tags. Phylogenetic analysis was used to select the tag Cb18076 as the putative β-amyrin synthase, named CbβAS. The open reading frame of CbβAS is 2286 bp and encodes 761 amino acids. Its mature protein contains the highly conserved motifs (QXXXGXW/DCTAE) of OSCs and (MWCYCR) of β-amyrin synthases. Transcription of CbβAS was upregulated 4-24 h after treatment of the seedlings of the C. blinii cultivar with methyl jasmonate. Furthermore, expression of CbβAS in Saccharomyces cerevisiae successfully yielded β-amyrin. The chemical structures and concentrations of β-amyrin were confirmed by GC-MS/MS. The target yeast ultimately produced 4.432 mg·L-1 β-amyrin. Thus, CbβAS is an OSC involved in conyzasaponin biosynthesis.
Collapse
Affiliation(s)
- Rong Sun
- College of Life Science Sichuan Agricultural University Ya'an China
| | - Shan Liu
- College of Biological and Chemical Engineering Panzhihua University China
| | - Zi-Zhong Tang
- College of Life Science Sichuan Agricultural University Ya'an China
| | - Tian-Run Zheng
- College of Life Science Sichuan Agricultural University Ya'an China
| | - Tao Wang
- College of Life Science Sichuan Agricultural University Ya'an China
| | - Hui Chen
- College of Life Science Sichuan Agricultural University Ya'an China
| | - Cheng-Lei Li
- College of Life Science Sichuan Agricultural University Ya'an China
| | - Qi Wu
- College of Life Science Sichuan Agricultural University Ya'an China
| |
Collapse
|
29
|
Hoshino T. β-Amyrin biosynthesis: catalytic mechanism and substrate recognition. Org Biomol Chem 2017; 15:2869-2891. [DOI: 10.1039/c7ob00238f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the past five years, there have been remarkable advances in the study of β-amyrin synthase. This review outlines the catalytic mechanism and substrate recognition in β-amyrin biosynthesis, which have been attained by the site-directed mutagenesis and substrate analog experiments.
Collapse
Affiliation(s)
- Tsutomu Hoshino
- Graduate School of Science and Technology and Department of Applied Biological Chemistry
- Faculty of Agriculture
- Niigata University
- Niigata 950-2181
- Japan
| |
Collapse
|
30
|
Ito R, Nakada C, Hoshino T. β-Amyrin synthase from Euphorbia tirucalli L. functional analyses of the highly conserved aromatic residues Phe413, Tyr259 and Trp257 disclose the importance of the appropriate steric bulk, and cation-π and CH-π interactions for the efficient catalytic action of the polyolefin cyclization cascade. Org Biomol Chem 2016; 15:177-188. [PMID: 27942657 DOI: 10.1039/c6ob02539k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Many of the functions of the active site residues in β-amyrin synthase and its catalytic mechanism remain unclear. Herein, we examined the functions of the highly conserved Phe413, Tyr259, and Trp257 residues in the β-amyrin synthase of Euphorbia tirucalli. The site-specific mutants F413V and F413M [corrected] showed nearly the same enzymatic activities as the wild type, indicating that π-electrons are not needed for the catalytic reaction. However, the F413A [corrected] mutant yielded a large amount of the tetracyclic dammarane skeleton, with decreased production of β-amyrin. This indicates that the Phe413 [corrected] residue is located near the D-ring formation site and works to position the oxidosqualene substrate correctly within the reaction cavity. On the other hand, the major catalysis-related function of the Tyr259 and Trp257 residues is to yield their π-electrons to the cationic intermediates. The Y259F variant showed nearly equivalent activity to that of the wild type, but aliphatic mutants such as the Ala, Val, and Leu variants showed significantly decreased the activity and yielded the tetracyclic dammarane scaffold, strongly demonstrating that the Tyr259 residue stabilizes the baccharenyl secondary cation via cation-π interaction. The aliphatic variants of Trp257 exhibited remarkably decreased enzymatic activity, and lupeol was produced in a high production ratio, indicating that Trp257 stabilizes the oleanyl cation via cation-π interaction. The aromatic Phe and Tyr mutants exhibited high activities owing to their more increased π-electron density relative to that of the aliphatic mutants, but lupeol was produced in a significantly high yield besides β-amyrin. The Trp residue is likely to be responsible for the robust binding of Me-30 through CH-π interaction. The decreased π-electron density of the Phe and Tyr mutants compared to that of Trp would have resulted in the high production of lupeol.
Collapse
Affiliation(s)
- Ryousuke Ito
- Graduate School of Science and Technology and Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
| | - Chika Nakada
- Graduate School of Science and Technology and Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
| | - Tsutomu Hoshino
- Graduate School of Science and Technology and Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
| |
Collapse
|
31
|
Terasawa Y, Sasaki Y, Yamaguchi Y, Takahashi K, Hoshino T. β-Amyrin Biosynthesis: Effect of Steric Bulk at the 6-, 10- and 15-Positions in the 2,3-Oxidosqualene Backbone on Polycyclisation Cascades. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuri Terasawa
- Department of Applied Biological Chemistry; Faculty of Agriculture and Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050 950-2181 Nishi-ku, Niigata Japan
| | - Yusuke Sasaki
- Department of Applied Biological Chemistry; Faculty of Agriculture and Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050 950-2181 Nishi-ku, Niigata Japan
| | - Yuki Yamaguchi
- Department of Applied Biological Chemistry; Faculty of Agriculture and Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050 950-2181 Nishi-ku, Niigata Japan
| | - Kazunari Takahashi
- Department of Applied Biological Chemistry; Faculty of Agriculture and Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050 950-2181 Nishi-ku, Niigata Japan
| | - Tsutomu Hoshino
- Department of Applied Biological Chemistry; Faculty of Agriculture and Graduate School of Science and Technology; Niigata University; Ikarashi 2-8050 950-2181 Nishi-ku, Niigata Japan
| |
Collapse
|
32
|
An Intronless β-amyrin Synthase Gene is More Efficient in Oleanolic Acid Accumulation than its Paralog in Gentiana straminea. Sci Rep 2016; 6:33364. [PMID: 27624821 PMCID: PMC5022052 DOI: 10.1038/srep33364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022] Open
Abstract
Paralogous members of the oxidosqualene cyclase (OSC) family encode a diversity of enzymes that are important in triterpenoid biosynthesis. This report describes the isolation of the Gentiana straminea gene GsAS2 that encodes a β-amyrin synthase (βAS) enzyme. Unlike its previously isolated paralog GsAS1, GsAS2 lacks introns. Its predicted protein product was is a 759 residue polypeptide that shares high homology with other known β-amyrin synthases (βASs). Heterologously expressed GsAS2 generates more β-amyrin in yeast than does GsAS1. Constitutive over-expression of GsAS2 resulted in a 5.7 fold increase in oleanolic acid accumulation, while over-expression of GsAS1 led to a 3 fold increase. Additionally, RNAi-directed suppression of GsAS2 and GsAS1 in G. straminea decreased oleonolic acid levels by 65.9% and 21% respectively, indicating that GsAS2 plays a more important role than GsAS1 in oleanolic acid biosynthesis in G. straminea. We uses a docking model to explore the catalytic mechanism of GsAS1/2 and predicted that GsAS2, with its Y560, have higher efficiency than GsAS1 and mutated versions of GsAS2 in β-amyrin produce. When the key residue in GsAS2 was mutagenized, it produced about 41.29% and 71.15% less β-amyrin than native, while the key residue in GsAS1 was mutagenized to that in GsAS2, the mutant produced 38.02% more β-amyrin than native GsAS1.
Collapse
|
33
|
Kaneko I, Hoshino T. β-Amyrin Biosynthesis: Promiscuity for Steric Bulk at Position 23 in the Oxidosqualene Substrate and the Significance of Hydrophobic Interaction between the Methyl Group at Position 30 and the Binding Site. J Org Chem 2016; 81:6657-71. [DOI: 10.1021/acs.joc.6b01313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ikki Kaneko
- Department
of Applied Biological
Chemistry, Faculty of Agriculture and Graduate School of Science and
Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata, Japan 950-2181
| | - Tsutomu Hoshino
- Department
of Applied Biological
Chemistry, Faculty of Agriculture and Graduate School of Science and
Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata, Japan 950-2181
| |
Collapse
|
34
|
A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases. Proc Natl Acad Sci U S A 2016; 113:E4407-14. [PMID: 27412861 DOI: 10.1073/pnas.1605509113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply.
Collapse
|
35
|
Hoshino T, Miyahara Y, Hanaoka M, Takahashi K, Kaneko I. β-Amyrin Biosynthesis: The Methyl-30 Group of (3S)-2,3-Oxidosqualene Is More Critical to Its Correct Folding To Generate the Pentacyclic Scaffold than the Methyl-24 Group. Chemistry 2015; 21:15769-84. [DOI: 10.1002/chem.201502389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 11/11/2022]
|
36
|
Ohtake K, Saito N, Shibuya S, Kobayashi W, Amano R, Hirai T, Sasaki S, Nakano C, Hoshino T. Biochemical characterization of the water-soluble squalene synthase fromMethylococcus capsulatusand the functional analyses of its two DXXD(E)D motifs and the highly conserved aromatic amino acid residues. FEBS J 2014; 281:5479-97. [DOI: 10.1111/febs.13090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/12/2014] [Accepted: 09/30/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Kana Ohtake
- Department of Applied Biological Chemistry; Faculty of Agriculture and Graduate School of Science and Technology; Niigata University; Japan
| | - Naoki Saito
- Department of Applied Biological Chemistry; Faculty of Agriculture and Graduate School of Science and Technology; Niigata University; Japan
| | - Satoshi Shibuya
- Department of Applied Biological Chemistry; Faculty of Agriculture and Graduate School of Science and Technology; Niigata University; Japan
| | - Wakako Kobayashi
- Department of Applied Biological Chemistry; Faculty of Agriculture and Graduate School of Science and Technology; Niigata University; Japan
| | - Ryosuke Amano
- Department of Applied Biological Chemistry; Faculty of Agriculture and Graduate School of Science and Technology; Niigata University; Japan
| | - Takumi Hirai
- Department of Applied Biological Chemistry; Faculty of Agriculture and Graduate School of Science and Technology; Niigata University; Japan
| | - Shinji Sasaki
- Department of Applied Biological Chemistry; Faculty of Agriculture and Graduate School of Science and Technology; Niigata University; Japan
| | - Chiaki Nakano
- Department of Applied Biological Chemistry; Faculty of Agriculture and Graduate School of Science and Technology; Niigata University; Japan
| | - Tsutomu Hoshino
- Department of Applied Biological Chemistry; Faculty of Agriculture and Graduate School of Science and Technology; Niigata University; Japan
| |
Collapse
|
37
|
Hoshino T, Yamaguchi Y, Takahashi K, Ito R. β-Amyrin Biosynthesis: The Critical Role of Steric Volume at C-19 of 2,3-Oxidosqualene for Its Correct Folding To Generate the Pentacyclic Scaffold. Org Lett 2014; 16:3548-51. [DOI: 10.1021/ol501498q] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tsutomu Hoshino
- Graduate School of Science
and Technology, and Department of Applied Biological Chemistry, Faculty
of Agriculture, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Yuki Yamaguchi
- Graduate School of Science
and Technology, and Department of Applied Biological Chemistry, Faculty
of Agriculture, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Kazunari Takahashi
- Graduate School of Science
and Technology, and Department of Applied Biological Chemistry, Faculty
of Agriculture, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Ryousuke Ito
- Graduate School of Science
and Technology, and Department of Applied Biological Chemistry, Faculty
of Agriculture, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
38
|
Jin ML, Lee DY, Um Y, Lee JH, Park CG, Jetter R, Kim OT. Isolation and characterization of an oxidosqualene cyclase gene encoding a β-amyrin synthase involved in Polygala tenuifolia Willd. saponin biosynthesis. PLANT CELL REPORTS 2014; 33:511-519. [PMID: 24420413 DOI: 10.1007/s00299-013-1554-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/15/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
KEY MESSAGE Expression of PtBS (Polygala tenuifolia β-amyrin synthase) led to the production of β-amyrin as sole product. ABSTRACT Polygala tenuifolia Willdenow is a rich source of triterpene saponins, onjisaponins and polygalasaponins, used as herbal medicine to treat phlegms and for detumescence in traditional Asian healing. The Polygala saponins share the oleanane backbone structure and are, therefore, likely synthesized via β-amyrin as a common precursor. We hypothesized that, in analogy to diverse other plant species, this central intermediate should be formed by a β-amyrin synthase catalyzing the complex cyclization of oxidosqualene. This member of the oxidosqualene cyclase (OSC) family of enzymes is thus defining an important branch point between primary and secondary metabolisms, and playing a crucial role in the control of oleanane-type triterpene saponin biosynthesis. From P. tenuifolia roots, we isolated an OSC cDNA containing a reading frame of 2,289 bp nucleotides. The predicted protein of 763 amino acids (molecular weight 87.353 kDa) showed particularly high amino acid sequence identities to known β-amyrin synthases (85-87 %) and was, therefore, named PtBS. Expression of PtBS in the triterpenoid synthase-deficient yeast mutant GIL77 led to the production of β-amyrin as sole product. qRT-PCR analysis of various P. tenuifolia organs showed that PtBS transcript levels were highest in the roots, consistent with onjisaponin accumulation patterns. Therefore, we conclude that PtBS is the β-amyrin synthase enzyme catalyzing the first committed step in the biosynthesis of onjisaponins and polygalasaponins in P. tenuifolia.
Collapse
Affiliation(s)
- Mei Lan Jin
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 369-873, South Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Ito R, Masukawa Y, Nakada C, Amari K, Nakano C, Hoshino T. β-Amyrin synthase from Euphorbia tirucalli. Steric bulk, not the π-electrons of Phe, at position 474 has a key role in affording the correct folding of the substrate to complete the normal polycyclization cascade. Org Biomol Chem 2014; 12:3836-46. [DOI: 10.1039/c4ob00064a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The importance of the steric bulk at 474 residue is described for completion of the cyclization cascade, but not the π-electrons of the Phe residue.
Collapse
Affiliation(s)
- Ryousuke Ito
- Graduate School of Science and Technology
- and Department of Applied Biological Chemistry
- Faculty of Agriculture
- Niigata University
- Niigata 950-2181, Japan
| | - Yukari Masukawa
- Graduate School of Science and Technology
- and Department of Applied Biological Chemistry
- Faculty of Agriculture
- Niigata University
- Niigata 950-2181, Japan
| | - Chika Nakada
- Graduate School of Science and Technology
- and Department of Applied Biological Chemistry
- Faculty of Agriculture
- Niigata University
- Niigata 950-2181, Japan
| | - Kanako Amari
- Graduate School of Science and Technology
- and Department of Applied Biological Chemistry
- Faculty of Agriculture
- Niigata University
- Niigata 950-2181, Japan
| | - Chiaki Nakano
- Graduate School of Science and Technology
- and Department of Applied Biological Chemistry
- Faculty of Agriculture
- Niigata University
- Niigata 950-2181, Japan
| | - Tsutomu Hoshino
- Graduate School of Science and Technology
- and Department of Applied Biological Chemistry
- Faculty of Agriculture
- Niigata University
- Niigata 950-2181, Japan
| |
Collapse
|
40
|
Ito R, Hashimoto I, Masukawa Y, Hoshino T. Effect of Cation-π Interactions and Steric Bulk on the Catalytic Action of Oxidosqualene Cyclase: A Case Study of Phe728 of β-Amyrin Synthase fromEuphorbia tirucalli L. Chemistry 2013; 19:17150-8. [DOI: 10.1002/chem.201301917] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/31/2013] [Indexed: 11/06/2022]
|
41
|
Vishwakarma RK, Sonawane P, Singh S, Kumari U, Khan BM. Molecular characterization and differential expression studies of an oxidosqualene cyclase (OSC) gene of Brahmi (Bacopa monniera). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:547-53. [PMID: 24431524 PMCID: PMC3781283 DOI: 10.1007/s12298-013-0195-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Triterpenoid saponins are the class of secondary metabolites, synthesized via isoprenoid pathway. Oxidosqualene cyclases (OSCs) catalyzes the cyclization of 2, 3-oxidosqualene to various triterpene skeletons, the first committed step in triterpenoid biosynthesis. A full-length oxidosqualene cyclase cDNA from Bacopa monniera (BmOSC) was isolated and characterized. The open reading frame (ORF) of BmOSC consists of 2,292 bp, encoding 764 amino acid residues with an apparent molecular mass of 87.62 kDa and theoretical pI 6.21. It contained four QxxxxxW motifs, one Asp-Cys-Thr-Ala-Glu (DCTAE) motif which is highly conserved among the triterpene synthases and another MWCYCR motif involved in the formation of triterpenoid skeletons. The deduced amino acid sequence of BmOSC shares 80.5 % & 71.8 % identity and 89.7 % & 83.5 % similarity with Olea europaea mixed amyrin synthase and Panax notoginseng dammarenediol synthase respectively. Phylogenetic analysis revealed that BmOSC is closely related with other plant OSCs. Quantitative real-time PCR (qRT-PCR) data showed that BmOSC is expressed in all tissues examined with higher expression in stem and leaves as compared to roots and floral parts.
Collapse
Affiliation(s)
- Rishi K. Vishwakarma
- Plant Tissue Culture Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008 Maharashtra India
| | - Prashant Sonawane
- Plant Tissue Culture Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008 Maharashtra India
| | - Somesh Singh
- Plant Tissue Culture Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008 Maharashtra India
| | - Uma Kumari
- Plant Tissue Culture Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008 Maharashtra India
| | - Bashir M. Khan
- Plant Tissue Culture Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008 Maharashtra India
| |
Collapse
|