1
|
Oishi Y, Asakawa K, Ishiwata Y, Oka S, Terashima R, Sugiyama M, Kizaki K, Kawaminami M, Kurusu S. Autophagy in the corpus luteum correlates with tissue growth in pregnant rats. J Reprod Dev 2024; 70:286-295. [PMID: 38972734 PMCID: PMC11461521 DOI: 10.1262/jrd.2024-019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024] Open
Abstract
The developmental activation of the corpus luteum (CL) structurally and functionally is critical for the temporally regulated establishment, maintenance, and termination of pregnancy in rats. In this study, we have investigated the possible involvement of autophagy in the regulation of the CL during pregnancy in rats. The expression ratio of microtubule-associated protein light chain 3 (LC3)-II/-I, a widely used indicator of autophagic activity, in the CL remained relatively stable until day 15 of pregnancy. Subsequently, it progressively increased until day 21, and then declined until day 3 postpartum. This fluctuation was closely associated with the tissue weight of the CL rather than progesterone (P4) production activity. Light and electron microscopy revealed the presence of immunoreactive LC3 aggregates and irregularly shaped autolysosome-like microstructures in the cytoplasm of luteal cells during late pregnancy. Notably, a bolus intrabursal injection of the autophagy inhibitor bafilomycin A1 on day 15 of pregnancy resulted in a significant reduction in luteal cell size and disrupted the normal alteration of circulating P4 levels. Consequently, treatment with this inhibitor increased the likelihood of the varied timing (both advanced and delayed) of delivery and led to reduced body weight in neonates when compared with the vehicle-treated control group. Our findings suggest that autophagy in the rat CL contributes to luteal tissue growth, influences P4 production, and thereby fine-tunes the regulation of gestation length in rats.
Collapse
Affiliation(s)
- Yasuaki Oishi
- Laboratory of Veterinary Physiology, Kitasato University School of Veterinary Medicine, Aomori 034-8628, Japan
| | - Koji Asakawa
- Laboratory of Veterinary Physiology, Kitasato University School of Veterinary Medicine, Aomori 034-8628, Japan
| | - Yuri Ishiwata
- Laboratory of Veterinary Physiology, Kitasato University School of Veterinary Medicine, Aomori 034-8628, Japan
| | - Shota Oka
- Laboratory of Veterinary Physiology, Kitasato University School of Veterinary Medicine, Aomori 034-8628, Japan
| | - Ryota Terashima
- Laboratory of Veterinary Physiology, Kitasato University School of Veterinary Medicine, Aomori 034-8628, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, Kitasato University School of Veterinary Medicine, Aomori 034-8628, Japan
| | - Keiichiro Kizaki
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Iwate University, Iwate 020-8550, Japan
| | - Mitsumori Kawaminami
- Laboratory of Veterinary Physiology, Kitasato University School of Veterinary Medicine, Aomori 034-8628, Japan
- Laboratory of Veterinary Physiology, Okayama University of Science, Ehime 794-8555, Japan
| | - Shiro Kurusu
- Laboratory of Veterinary Physiology, Kitasato University School of Veterinary Medicine, Aomori 034-8628, Japan
| |
Collapse
|
2
|
Yamamoto-Mikami A, Tanaka Y, Tsutsumi T, Kuwahara A, Tokumura A. Altered ovarian tissue level of lysophosphatidic acid and mRNA expressions of its metabolic enzymes and receptors in rats received gonadotropin-hyperstimulation. Reprod Biol 2024; 24:100849. [PMID: 38306852 DOI: 10.1016/j.repbio.2023.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/04/2024]
Abstract
Lysophosphatidic acid (LPA), a well-studied member of the lysophospholipid family, is known to exert an important bio-effect on oocyte maturation and ovulation in mammals. We attempted to determine how follicle maturation in the rat ovary affects the levels of LPA and its precursor lysophospholipids, as well as mRNA levels of LPA-producing and -degrading enzymes and LPA receptors in rats that received gonadotropin-hyper-stimulation. Tissue levels of lysophospholipids were quantified by LC-MS/MS, and relative mRNA expression levels of LPA-producing and -degrading enzymes, and LPA receptors were measured by RT-PCR. Tissue levels of n-6 polyunsaturated LPAs and LPCs were higher in the ovaries of rats after receiving human chorionic gonadotropin, unlike the distinct profiles of n-3 polyunsaturated LPAs, which had lower levels, and LPCs which had higher levels, after the gonadotropin treatment. The effects of different levels of other polyunsaturated lysophospholipids were variable: decreased levels of lysophosphatidylglycerol, and unaltered levels of lysophosphatidylethanolamine, lysophosphatidylinositol, and lysophosphatidylserine. The results indicate that expression of mRNA levels of autotaxin and acylglycerol kinase were reduced and expression of lipid phosphate phosphatase 3 was elevated, whereas expressions of two membrane phosphatidic acid phosphatases (A1α and A1β) and lipid phosphate phosphatase 1 were essentially unaltered in rat ovary at several stages after ovary hyperstimulation. After the gonadotropin treatment, the expression levels of all LPA receptors except LPA3 were decreased at various times. These results are discussed with respect to the physiological processes of the ovarian environment and development in rats.
Collapse
Affiliation(s)
- Aimi Yamamoto-Mikami
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, Shomachi, Tokushima 770-8505, Japan
| | - Yu Tanaka
- Department of Obstetrics and Gynecology, Japanese Red Cross Tokushima Hospital, Komatsushima-shi, Tokushima 773-8502, Japan; Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Toshihiko Tsutsumi
- Department of Pharmaceutics, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, Nobeoka 882-8508, Japan
| | - Akira Kuwahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, Shomachi, Tokushima 770-8505, Japan; Department of Health Chemistry, Faculty of Pharmacy, Yasuda Women's University, Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan.
| |
Collapse
|
3
|
KURUSU S, TERASHIMA R, SUGIYAMA M, TANAKA M, KADOWAKI T, KIZAKI K, KAWAMINAMI M. Expression of lysophosphatidic acid receptors in the rat uterus: cellular distribution of protein and gestation-associated changes in gene expression. J Vet Med Sci 2023; 85:1165-1171. [PMID: 37779089 PMCID: PMC10686777 DOI: 10.1292/jvms.23-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
Though lysophosphatidic acid (LPA) shows a variety of regulatory roles in reproduction, its action mechanisms in the gestational organs are still largely unknown. We here characterized cellular distribution of its six kinds of specific receptors (LPA1-6) in rat uteri by immunohistochemistry and quantitatively analyzed changes in Lpar1-6 mRNAs expression throughout pregnancy. Among LPA1-6, evident expression of LPA3, LPA4, and LPA6 was immunologically detected and less expression of immunoreactive LPA1 and LPA2 was also found. Luminal and glandular epithelial cells, stromal cells, and myometrial cells are sites of positive immunoreactions, and they are all likely to express three or more subtypes. All of Lpar1-6 mRNAs were expressed, and their alterations were variable depending on subtypes and gestational age. The present information suggests that diverse actions of LPA in the uterus involve varied expression of LPA receptors dependent on tissue/cell types, receptor subtype(s), and organ reproductive states and helps to understand uterine biology of LPA.
Collapse
Affiliation(s)
- Shiro KURUSU
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Ryota TERASHIMA
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Makoto SUGIYAMA
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Miho TANAKA
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Takuma KADOWAKI
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Keiichiro KIZAKI
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Iwate University, Iwate, Japan
| | - Mitsumori KAWAMINAMI
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| |
Collapse
|
4
|
Hussey GS, Pineda Molina C, Cramer MC, Tyurina YY, Tyurin VA, Lee YC, El-Mossier SO, Murdock MH, Timashev PS, Kagan VE, Badylak SF. Lipidomics and RNA sequencing reveal a novel subpopulation of nanovesicle within extracellular matrix biomaterials. SCIENCE ADVANCES 2020; 6:eaay4361. [PMID: 32219161 PMCID: PMC7083606 DOI: 10.1126/sciadv.aay4361] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/20/2019] [Indexed: 05/30/2023]
Abstract
Biomaterials composed of extracellular matrix (ECM) provide both mechanical support and a reservoir of constructive signaling molecules that promote functional tissue repair. Recently, matrix-bound nanovesicles (MBVs) have been reported as an integral component of ECM bioscaffolds. Although liquid-phase extracellular vesicles (EVs) have been the subject of intense investigation, their similarity to MBV is limited to size and shape. Liquid chromatography-mass spectrometry (LC-MS)-based lipidomics and redox lipidomics were used to conduct a detailed comparison of liquid-phase EV and MBV phospholipids. Combined with comprehensive RNA sequencing and bioinformatic analysis of the intravesicular cargo, we show that MBVs are a distinct and unique subpopulation of EV and a distinguishing feature of ECM-based biomaterials. The results begin to identify the differential biologic activities mediated by EV that are secreted by tissue-resident cells and deposited within the ECM.
Collapse
Affiliation(s)
- George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Catalina Pineda Molina
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Madeline C. Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15261, USA
| | - Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health and Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Vladimir A. Tyurin
- Center for Free Radical and Antioxidant Health and Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yoojin C. Lee
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15261, USA
| | - Salma O. El-Mossier
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA
| | - Mark H. Murdock
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA
| | - Peter S. Timashev
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Valerian E. Kagan
- Center for Free Radical and Antioxidant Health and Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
- Departments of Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
Benesch MGK, MacIntyre ITK, McMullen TPW, Brindley DN. Coming of Age for Autotaxin and Lysophosphatidate Signaling: Clinical Applications for Preventing, Detecting and Targeting Tumor-Promoting Inflammation. Cancers (Basel) 2018; 10:cancers10030073. [PMID: 29543710 PMCID: PMC5876648 DOI: 10.3390/cancers10030073] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
A quarter-century after the discovery of autotaxin in cell culture, the autotaxin-lysophosphatidate (LPA)-lipid phosphate phosphatase axis is now a promising clinical target for treating chronic inflammatory conditions, mitigating fibrosis progression, and improving the efficacy of existing cancer chemotherapies and radiotherapy. Nearly half of the literature on this axis has been published during the last five years. In cancer biology, LPA signaling is increasingly being recognized as a central mediator of the progression of chronic inflammation in the establishment of a tumor microenvironment which promotes cancer growth, immune evasion, metastasis, and treatment resistance. In this review, we will summarize recent advances made in understanding LPA signaling with respect to chronic inflammation and cancer. We will also provide perspectives on the applications of inhibitors of LPA signaling in preventing cancer initiation, as adjuncts extending the efficacy of current cancer treatments by blocking inflammation caused by either the cancer or the cancer therapy itself, and by disruption of the tumor microenvironment. Overall, LPA, a simple molecule that mediates a plethora of biological effects, can be targeted at its levels of production by autotaxin, LPA receptors or through LPA degradation by lipid phosphate phosphatases. Drugs for these applications will soon be entering clinical practice.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL AlB 3V6, Canada.
- Signal Transduction Research Group, Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Iain T K MacIntyre
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL AlB 3V6, Canada.
| | - Todd P W McMullen
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G7, Canada.
| | - David N Brindley
- Signal Transduction Research Group, Cancer Research Institute of Northern Alberta, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
6
|
Takeda T, Shirasaka M, Sugiyama M, Terashima R, Kawaminami M, Kurusu S. In vivo evidence for possible up-regulating roles of lysophosphatidic acid around fertilization in rats. J Vet Med Sci 2017; 80:41-48. [PMID: 29162771 PMCID: PMC5797857 DOI: 10.1292/jvms.17-0354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lysophosphatidic acid (LPA) produced by autotaxin (ATX) is recognized as a multi-functional mediator in mammalian reproduction. This study focused on possible effect(s) of LPA on ovulated cumulus-oocyte complexes (COCs)
around fertilization in rats in vivo. Immunohistochemistry revealed the cell-type-dependent localization of candidates of synthetic enzymes, ATX and two phospholipases A2 isofroms, and LPA
receptors LPA1−4 in ovulated COCs and in oviductal epithelium. The eggs ovulated with a form of COCs became denuded of cumulus cells and underwent fragmentation in the absence of fertilization. In
vivo experiments of local administration in non-copulated rats demonstrated that eggs denudation was increased by LPA and decreased by anti-ATX antibody and that fragmentation was inhibited by LPA and
stimulated by an ATX chemical inhibitor. Furthermore, LPA administration in adult copulated rats increased the rate of cleaved embryos significantly. Obtained results suggest the presence of LPA synthesis and action
system in ovulated COCs within the oviductal ampulla and positive actions of LPA possibly at multiple sites around fertilization in rats.
Collapse
Affiliation(s)
- Tae Takeda
- Laboratory of Veterinary Physiology, Kitasato University School of Veterinary Medicine, Towada, Aomori 034-8628, Japan.,Present address: Laboratory of Veterinary Surgery, The University of Tokyo Graduate School of Agricultural and Life Sciences, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Miki Shirasaka
- Laboratory of Veterinary Physiology, Kitasato University School of Veterinary Medicine, Towada, Aomori 034-8628, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, Kitasato University School of Veterinary Medicine, Towada, Aomori 034-8628, Japan
| | - Ryota Terashima
- Laboratory of Veterinary Physiology, Kitasato University School of Veterinary Medicine, Towada, Aomori 034-8628, Japan
| | - Mitsumori Kawaminami
- Laboratory of Veterinary Physiology, Kitasato University School of Veterinary Medicine, Towada, Aomori 034-8628, Japan
| | - Shiro Kurusu
- Laboratory of Veterinary Physiology, Kitasato University School of Veterinary Medicine, Towada, Aomori 034-8628, Japan
| |
Collapse
|
7
|
Satoh H, Yoshio H, Kawaminami M, Kurusu S. Type-dependent differences in Fas expression and phagocytes distribution in rat corpora lutea during natural regression: an immunohistochemical evidence. J Vet Med Sci 2017; 78:1771-1777. [PMID: 27546215 PMCID: PMC5240753 DOI: 10.1292/jvms.16-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Though Fas/Fas ligand (FasL) system-dependent apoptosis is considered to be the primary
form of cell death in regressing corpus luteum (CL), the cellular identity and regulation
of expression of the ligand and receptor molecules are not fully understood. Here, we
focused on immunohistochemical determination of Fas expression during natural regression
with comparison of three different types of rat CLs. Detected Fas was in good spatial
association with cleaved caspase-3 and FasL proteins and with macrophages and neutrophils.
In CLs of the cycle and pseudopregnancy, Fas-positive cell types included large and small
luteal (steroidogenic) cells and capillary endothelial cells mainly, and blood-derived
immune cells occasionally. Fas signals were abundant at multiple focal inflammatory-like
sites. In contrast, Fas signals in CL of pregnancy did not localize in steroidogenic
cells, but almost exclusively in endothelial cells and granulocytes. The signals scattered
evenly throughout the CL tissue as phagocytes also did. In all CLs types, the numbers of
Fas-expressing cells increased transiently after functional inactivation and at the early
phase of structural regression. This observation revealed spatio-temporally regulated
expression of Fas that was highly associated with apoptotic and phagocytotic systems and
type-dependent differences in Fas expression and phagocytes dynamics in naturally
regressing CL of rats.
Collapse
Affiliation(s)
- Hironori Satoh
- Laboratory of Veterinary Physiology, Kitasato University School of Veterinary Medicine, Towada, Aomori 034-8628, Japan
| | | | | | | |
Collapse
|
8
|
Waite C, Mejia R, Ascoli M. Gq/11-Dependent Changes in the Murine Ovarian Transcriptome at the End of Gestation. Biol Reprod 2016; 94:62. [PMID: 26843449 PMCID: PMC4829089 DOI: 10.1095/biolreprod.115.136952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/01/2016] [Indexed: 11/26/2022] Open
Abstract
Parturition in rodents is highly dependent on the engagement of the luteal prostaglandin F2 alpha receptor, which, through activation of the Gq/11 family of G proteins, increases the expression of Akr1c18, leading to an increase in progesterone catabolism. To further understand the involvement of Gq/11 on luteolysis and parturition, we used microarray analysis to compare the ovarian transcriptome of mice with a granulosa/luteal cell-specific deletion of Galphaq/11 with their control littermates on Day 18 of pregnancy, when mice from both genotypes are pregnant, and on Day 22, when mice with a granulosa/luteal cell-specific deletion of Galphaq/11 are still pregnant but their control littermates are 1–2 days postpartum. Ovarian genes up-regulated at the end of gestation in a Galphaq/11 -dependent fashion include genes involved in focal adhesion and extracellular matrix interactions. Genes down-regulated at the end of gestation in a Galphaq/11-dependent manner include Serpina6 (which encodes corticosteroid-binding globulin); Enpp2 (which encodes autotaxin, the enzyme responsible for the synthesis of lysophosphatidic acid); genes involved in protein processing and export; reproductive genes, such as Lhcgr; the three genes needed to convert progesterone to estradiol (Cyp17a1, Hsd17b7, and Cyp19a1); and Inha. Activation of ovarian Gq/11 by engagement of the prostaglandin F2 alpha receptor on Day 18 of pregnancy recapitulated the regulation of many but not all of these genes. Thus, although the ovarian transcriptome at the end of gestation is highly dependent on the activation of Gq/11, not all of these changes are dependent on the actions of prostaglandin F2 alpha.
Collapse
Affiliation(s)
- Courtney Waite
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Rachel Mejia
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Mario Ascoli
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
9
|
Benesch MGK, Tang X, Venkatraman G, Bekele RT, Brindley DN. Recent advances in targeting the autotaxin-lysophosphatidate-lipid phosphate phosphatase axis in vivo. J Biomed Res 2015; 30:272-84. [PMID: 27533936 PMCID: PMC4946318 DOI: 10.7555/jbr.30.20150058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/12/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular lysophosphatidate (LPA) is a potent bioactive lipid that signals through six G-protein-coupled receptors. This signaling is required for embryogenesis, tissue repair and remodeling processes. LPA is produced from circulating lysophosphatidylcholine by autotaxin (ATX), and is degraded outside cells by a family of three enzymes called the lipid phosphate phosphatases (LPPs). In many pathological conditions, particularly in cancers, LPA concentrations are increased due to high ATX expression and low LPP activity. In cancers, LPA signaling drives tumor growth, angiogenesis, metastasis, resistance to chemotherapy and decreased efficacy of radiotherapy. Hence, targeting the ATX-LPA-LPP axis is an attractive strategy for introducing novel adjuvant therapeutic options. In this review, we will summarize current progress in targeting the ATX-LPA-LPP axis with inhibitors of autotaxin activity, LPA receptor antagonists, LPA monoclonal antibodies, and increasing low LPP expression. Some of these agents are already in clinical trials and have applications beyond cancer, including chronic inflammatory diseases.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Ganesh Venkatraman
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - Raie T Bekele
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, T6G 2S2, Canada.
| |
Collapse
|
10
|
Autotaxin in the crosshairs: taking aim at cancer and other inflammatory conditions. FEBS Lett 2014; 588:2712-27. [PMID: 24560789 DOI: 10.1016/j.febslet.2014.02.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 02/07/2023]
Abstract
Autotaxin is a secreted enzyme that produces most of the extracellular lysophosphatidate from lysophosphatidylcholine, the most abundant phospholipid in blood plasma. Lysophosphatidate mediates many physiological and pathological processes by signaling through at least six G-protein coupled receptors to promote cell survival, proliferation and migration. The autotaxin/lysophosphatidate signaling axis is involved in wound healing and tissue remodeling, and it drives many chronic inflammatory conditions from fibrosis to colitis, asthma and cancer. In cancer, lysophosphatidate signaling promotes resistance to chemotherapy and radiotherapy, and increases both angiogenesis and metastasis. Research into autotaxin inhibitors is accelerating, both as primary and adjuvant therapy. Historically, autotaxin inhibitors had poor bioavailability profiles and thus had limited efficacy in vivo. This situation is now changing, especially since the recent crystal structure of autotaxin is now enabling rational inhibitor design. In this review, we will summarize current knowledge on autotaxin-mediated disease processes including cancer, and discuss recent advancements in the development of autotaxin-targeting strategies. We will also provide new insights into autotaxin as an inflammatory mediator in the tumor microenvironment that promotes cancer progression and therapy resistance.
Collapse
|