1
|
Sindic CT, Muiño PL, Callis PR. Surveying Enzyme Crystal Structures Reveals the Commonality of Active-Site Solvent Accessibility and Enzymatic Water Networks. ACS OMEGA 2025; 10:18419-18427. [PMID: 40385134 PMCID: PMC12079200 DOI: 10.1021/acsomega.4c10721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 05/20/2025]
Abstract
Despite the demonstrable dependence of enzyme functionality on solvation, the notion of water being directly chemically required for catalysis inside active sites remains unexplored. Here we report that over 99% of 1013 enzyme crystals obtained by X-ray crystallography with high resolution (<1.5 Å) contain continuous chains of water linking residues within the active site to bulk water. Also reported are the findings which inspired this study-that electric fields experienced by water hydrogen atoms are on average twice as strong in the active sites of both chains of bacterial polynucleotide kinase (PDB 4QM6) structures compared to those in bulk water. These results point to the possibility that water molecules within active sites may be paramount to the immense catalytic power of enzymes, especially for mechanisms requiring hydronium or hydroxide ions.
Collapse
Affiliation(s)
- Caleb
M. T. Sindic
- Montana
State University, Chemistry
and Biochemistry Building, PO Box 173400, Bozeman, Montana 59717, United States
| | - Pedro L. Muiño
- Department
of Chemistry, Saint Francis University, PO Box 600, Loretto, Pennsylvania 15940, United States
| | - Patrik R. Callis
- Montana
State University, Chemistry
and Biochemistry Building, PO Box 173400, Bozeman, Montana 59717, United States
| |
Collapse
|
2
|
Martínez-Rodríguez S, Cámara-Artigas A, Gavira JA. First 3-D structural evidence of a native-like intertwined dimer in the acylphosphatase family. Biochem Biophys Res Commun 2023; 682:85-90. [PMID: 37804591 DOI: 10.1016/j.bbrc.2023.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023]
Abstract
Acylphosphatase (AcP, EC 3.6.1.7) is a small model protein conformed by a ferredoxin-like fold, profoundly studied to get insights into protein folding and aggregation processes. Numerous studies focused on the aggregation and/or amyloidogenic properties of AcPs suggest the importance of edge-β-strands in the process. In this work, we present the first crystallographic structure of Escherichia coli AcP (EcoAcP), showing notable differences with the only available NMR structure for this enzyme. EcoAcP is crystalised as an intertwined dimer formed by replacing a single C-terminal β-strand between two protomers, suggesting a flexible character of the C-terminal edge of EcoAcP. Despite numerous works where AcP from different sources have been used as a model system for protein aggregation, our domain-swapped EcoAcP structure is the first 3-D structural evidence of native-like aggregated species for any AcP reported to date, providing clues on molecular determinants unleashing aggregation.
Collapse
Affiliation(s)
- Sergio Martínez-Rodríguez
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Avenida de La Investigación 11, Granada, 18071, Spain; Laboratorio de Estudios Cristalográficos, CSIC-UGR, Avda. de Las Palmeras 4, Armilla, Granada, 18100, Spain.
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence (ceiA3), Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAMBITAL), Carretera de Sacramento S/n, Almería, 04120, Spain
| | - Jose Antonio Gavira
- Laboratorio de Estudios Cristalográficos, CSIC-UGR, Avda. de Las Palmeras 4, Armilla, Granada, 18100, Spain
| |
Collapse
|
3
|
Lee KY, Kim DG, Lee KY, Pathak C, Koo JS, Ahn HC, Lee BJ. Structural and functional study of SaAcP, an acylphosphatase from Staphylococcus aureus. Biochem Biophys Res Commun 2020; 532:173-178. [PMID: 32838967 DOI: 10.1016/j.bbrc.2020.07.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 11/18/2022]
Abstract
Acylphosphatase is the smallest enzyme that is widely distributed in many diverse organisms ranging from archaebacteria to higher-eukaryotes including the humans. The enzyme hydrolyzes the carboxyl-phosphate bonds of the acyl phosphates which are important intermediates in glycolysis, membrane pumps, tricarboxylic acid cycle, and urea biosynthesis. Despite its biological importance in critical cellular functions, very limited structural investigations have been conducted on bacterial acylphosphatases. Here, we first unveiled the crystal structure of SaAcP, an acylphosphatase from gram-positive S. aureus at the atomic level. Structural insights on the active site together with mutation study provided greater understanding of the catalytic mechanism of SaAcP as a bacterial acylphosphatase and as a putative apyrase. Furthermore, through NMR titration experiment of SaAcP in its solution state, the dynamics and the alterations of residues affected by the phosphate ion were validated. Our findings elucidate the structure-function relationship of acylphosphatases in gram-positive bacteria and will provide a valuable basis for researchers in the field related to bacterial acylphosphatases.
Collapse
Affiliation(s)
- Kyu-Yeon Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Gyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki-Young Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chinar Pathak
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji Sung Koo
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee-Chul Ahn
- Department of Pharmacy, Dongguk University-Seoul, Dongguk-ro 32, Ilsandong-gu, Goyang, Geonggi-do, 10326, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
The Structure of Amyloid Versus the Structure of Globular Proteins. Int J Mol Sci 2020; 21:ijms21134683. [PMID: 32630137 PMCID: PMC7370054 DOI: 10.3390/ijms21134683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 12/19/2022] Open
Abstract
The issue of changing the structure of globular proteins into an amyloid form is in the focus of researchers' attention. Numerous experimental studies are carried out, and mathematical models to define the essence of amyloid transformation are sought. The present work focuses on the issue of the hydrophobic core structure in amyloids. The form of ordering the hydrophobic core in globular proteins is described by a 3D Gaussian distribution analog to the distribution of hydrophobicity in a spherical micelle. Amyloid fibril is a ribbon-like micelle made up of numerous individual chains, each representing a flat structure. The distribution of hydrophobicity within a single chain included in the fibril describes the 2D Gaussian distribution. Such a description expresses the location of polar residues on a circle with a center with a high level of hydrophobicity. The presence of this type of order in the amyloid forms available in Preotin Data Bank (PDB) (both in proto- and superfibrils) is demonstrated in the present work. In this system, it can be assumed that the amyloid transformation is a chain transition from 3D Gauss ordering to 2D Gauss ordering. This means changing the globular structure to a ribbon-like structure. This observation can provide a simple mathematical model for simulating the amyloid transformation of proteins.
Collapse
|
5
|
Digiovanni S, Visentin C, Degani G, Barbiroli A, Chiara M, Regazzoni L, Di Pisa F, Borchert AJ, Downs DM, Ricagno S, Vanoni MA, Popolo L. Two novel fish paralogs provide insights into the Rid family of imine deaminases active in pre-empting enamine/imine metabolic damage. Sci Rep 2020; 10:10135. [PMID: 32576850 PMCID: PMC7311433 DOI: 10.1038/s41598-020-66663-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
Reactive Intermediate Deaminase (Rid) protein superfamily includes eight families among which the RidA is conserved in all domains of life. RidA proteins accelerate the deamination of the reactive 2-aminoacrylate (2AA), an enamine produced by some pyridoxal phosphate (PLP)-dependent enzymes. 2AA accumulation inhibits target enzymes with a detrimental impact on fitness. As a consequence of whole genome duplication, teleost fish have two ridA paralogs, while other extant vertebrates contain a single-copy gene. We investigated the biochemical properties of the products of two paralogs, identified in Salmo salar. SsRidA-1 and SsRidA-2 complemented the growth defect of a Salmonella enterica ridA mutant, an in vivo model of 2AA stress. In vitro, both proteins hydrolyzed 2-imino acids (IA) to keto-acids and ammonia. SsRidA-1 was active on IA derived from nonpolar amino acids and poorly active or inactive on IA derived from other amino acids tested. In contrast, SsRidA-2 had a generally low catalytic efficiency, but showed a relatively higher activity with IA derived from L-Glu and aromatic amino acids. The crystal structures of SsRidA-1 and SsRidA-2 provided hints of the remarkably different conformational stability and substrate specificity. Overall, SsRidA-1 is similar to the mammalian orthologs whereas SsRidA-2 displays unique properties likely generated by functional specialization of a duplicated ancestral gene.
Collapse
Affiliation(s)
- Stefania Digiovanni
- Department of Biosciences, University of Milan, Milan, Italy.,Department of Chemical Biology I, University of Groningen, Groningen, The Netherlands
| | | | - Genny Degani
- Department of Biosciences, University of Milan, Milan, Italy
| | - Alberto Barbiroli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Matteo Chiara
- Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Flavio Di Pisa
- Department of Biosciences, University of Milan, Milan, Italy
| | - Andrew J Borchert
- Department of Microbiology, University of Georgia, Athens, GA, United States.,National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Laura Popolo
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
6
|
Abstract
There is an opinion in professional literature that edge-strands in β-sheet are critical to the processes of amyloid transformation. Propagation of fibrillar forms mainly takes place on the basis of β-sheet type interactions. In many proteins, the edge strands represent only a partially matched form to the β-sheet. Therefore, the edge-strand takes slightly distorted forms. The assessment of the level of arrangement can be carried out based on studying the secondary structure as well as the structure of the hydrophobic core. For this purpose, a fuzzy oil drop model was used to determine the contribution of each fragment with a specific secondary structure to the construction of the system being the effect of a certain synergy, which results in the construction of a hydrophobic core. Studying the participation of β-sheets edge fragments in the hydrophobic core construction is the subject of the current analysis. Statuses of these edge fragments in β-sheets in ferredoxin-like folds are treated as factors that disturb the symmetry of the system.
Collapse
|
7
|
Protein misfolding, aggregation and mechanism of amyloid cytotoxicity: An overview and therapeutic strategies to inhibit aggregation. Int J Biol Macromol 2019; 134:1022-1037. [PMID: 31128177 DOI: 10.1016/j.ijbiomac.2019.05.109] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/18/2019] [Indexed: 12/18/2022]
Abstract
Protein and peptides are converted from their soluble forms into highly ordered fibrillar aggregates under various conditions inside the cell. Such transitions confer diverse neurodegenerative diseases including Alzheimer's disease, Huntington's disease Prion's disease, Parkinson's disease, polyQ and share abnormal folding of potentially cytotoxic protein species linked with degeneration and death of precise neuronal populations. Presently, major advances are made to understand and get detailed insight into the structural basis and mechanism of amyloid formation, cytotoxicity and therapeutic approaches to combat them. Here we highlight classifies and summarizes the detailed overview of protein misfolding and aggregation at their molecular level including the factors that promote protein aggregation under in vivo and in vitro conditions. In addition, we describe the recent technologies that aid the characterization of amyloid aggregates along with several models that might be responsible for amyloid induced cytotoxicity to cells. Overview on the inhibition of amyloidosis by targeting different small molecules (both natural and synthetic origin) have been also discussed, that provides important approaches to identify novel targets and develop specific therapeutic strategies to combat protein aggregation related neurodegenerative diseases.
Collapse
|
8
|
Olajos G, Hetényi A, Wéber E, Szögi T, Fülöp L, Martinek TA. Peripheral cyclic β-amino acids balance the stability and edge-protection of β-sandwiches. Org Biomol Chem 2019; 16:5492-5499. [PMID: 30024580 DOI: 10.1039/c8ob01322e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineering water-soluble stand-alone β-sandwich mimetics is a current challenge because of the difficulties associated with tailoring long-range interactions. In this work, single cis-(1R,2S)-2-aminocyclohexanecarboxylic acid mutations were introduced into the edge strands of the eight-stranded β-sandwich mimetic structures from the betabellin family. Temperature-dependent NMR and CD measurements, together with thermodynamic analyses, demonstrated that the modified peripheral strands exhibited an irregular and partially disordered structure but were able to exert sufficient shielding on the hydrophobic core to retain the predominantly β-sandwich structure. Although the frustrated interactions decreased the free energy of unfolding, the temperature of the maximum stabilities increased to or remained at physiologically relevant temperatures. We found that the irregular peripheral strands were able to prevent edge-to-edge association and fibril formation in the aggregation-prone model. These findings establish a β-sandwich stabilization and aggregation inhibition approach, which does not interfere with the pillars of the peptide bond or change the net charge of the peptide.
Collapse
Affiliation(s)
- Gábor Olajos
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research Group, University of Szeged, Somogyi u. 4., H-6720 Szeged, Hungary. and MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm ter 8., H-6720 Szeged, Hungary
| | - Anasztázia Hetényi
- Department of Medical Chemistry, University of Szeged, Dóm ter 8., H-6720 Szeged, Hungary
| | - Edit Wéber
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research Group, University of Szeged, Somogyi u. 4., H-6720 Szeged, Hungary.
| | - Titanilla Szögi
- Department of Medical Chemistry, University of Szeged, Dóm ter 8., H-6720 Szeged, Hungary
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Dóm ter 8., H-6720 Szeged, Hungary
| | - Tamás A Martinek
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research Group, University of Szeged, Somogyi u. 4., H-6720 Szeged, Hungary. and MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm ter 8., H-6720 Szeged, Hungary
| |
Collapse
|
9
|
Elia F, Cantini F, Chiti F, Dobson CM, Bemporad F. Direct Conversion of an Enzyme from Native-like to Amyloid-like Aggregates within Inclusion Bodies. Biophys J 2017; 112:2540-2551. [PMID: 28636911 PMCID: PMC5479110 DOI: 10.1016/j.bpj.2017.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 01/29/2023] Open
Abstract
The acylphosphatase from Sulfolobus solfataricus (Sso AcP) is a globular protein able to aggregate in vitro from a native-like conformational ensemble without the need for a transition across the major unfolding energy barrier. This process leads to the formation of assemblies in which the protein retains its native-like structure, which subsequently convert into amyloid-like aggregates. Here, we investigate the mechanism by which Sso AcP aggregates in vivo to form bacterial inclusion bodies after expression in E. coli. Shortly after the initiation of expression, Sso AcP is incorporated into inclusion bodies as a native-like protein, still exhibiting small but significant enzymatic activity. Additional experiments revealed that this overall process of aggregation is enhanced by the presence of the unfolded N-terminal region of the sequence and by destabilization of the globular segment of the protein. At later times, the Sso AcP molecules in the inclusion bodies lose their native-like properties and convert into β-sheet-rich amyloid-like structures, as indicated by their ability to bind thioflavin T and Congo red. These results show that the aggregation behavior of this protein is similar in vivo to that observed in vitro, and that, at least for a predominant part of the protein population, the transition from a native to an amyloid-like structure occurs within the aggregate state.
Collapse
Affiliation(s)
- Francesco Elia
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Firenze, Italy
| | - Francesca Cantini
- Centro Risonanze Magnetiche (CERM) and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Firenze, Italy
| | | | - Francesco Bemporad
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Firenze, Italy.
| |
Collapse
|
10
|
Bemporad F, Ramazzotti M. From the Evolution of Protein Sequences Able to Resist Self-Assembly to the Prediction of Aggregation Propensity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:1-47. [PMID: 28109326 DOI: 10.1016/bs.ircmb.2016.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Folding of polypeptide chains into biologically active entities is an astonishingly complex process, determined by the nature and the sequence of residues emerging from ribosomes. While it has been long believed that evolution has pressed genomes so that specific sequences could adopt unique, functional three-dimensional folds, it is now clear that complex protein machineries act as quality control system and supervise folding. Notwithstanding that, events such as erroneous folding, partial folding, or misfolding are frequent during the life of a cell or a whole organism, and they can escape controls. One of the possible outcomes of this misbehavior is cross-β aggregation, a super secondary structure which represents the hallmark of self-assembled, well organized, and extremely ordered structures termed amyloid fibrils. What if evolution would have not taken into account such possibilities? Twenty years of research point toward the idea that, in fact, evolution has constantly supervised the risk of errors and minimized their impact. In this review we tried to survey the major findings in the amyloid field, trying to describe what the real pitfalls of protein folding are-from an evolutionary perspective-and how sequence and structural features have evolved to balance the need for perfect, dynamic, functionally efficient structures, and the detrimental effects implicit in the dangerous process of folding. We will discuss how the knowledge obtained from these studies has been employed to produce computational methods able to assess, predict, and discriminate the aggregation properties of protein sequences.
Collapse
Affiliation(s)
- F Bemporad
- Università degli Studi di Firenze, Firenze, Italy.
| | - M Ramazzotti
- Università degli Studi di Firenze, Firenze, Italy.
| |
Collapse
|
11
|
Pallarès I, Ventura S. Understanding and predicting protein misfolding and aggregation: Insights from proteomics. Proteomics 2016; 16:2570-2581. [PMID: 27479752 DOI: 10.1002/pmic.201500529] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/08/2016] [Accepted: 07/25/2016] [Indexed: 11/09/2022]
Abstract
Protein misfolding and aggregation are being found to be associated with an increasing number of human diseases and premature aging, either because they promote a loss of protein function or, more frequently, because the aggregated species gain a toxic activity. Despite potentially harmful, aggregation seems to be a generic property of polypeptide chains and aggregation-prone protein sequences seem to be ubiquitous, which, counterintuitively, suggests that they serve evolutionary conserved functions. The in vitro study of individual aggregation reactions of a large number of proteins has provided important insights on the structural and sequential determinants of this process. However, it is clear that understanding the role played by protein aggregation and its regulation in health and disease at the cellular, developmental, and evolutionary levels require more global approaches. The use of model organisms and their proteomic analysis hold the power to provide answers to such issues. In the present review, we address how, initially, computational large-scale analysis and, more recently, experimental proteomics are helping us to rationalize how, why and when proteins aggregate, as well as to decipher the strategies organisms have developed to control proteins aggregation propensities.
Collapse
Affiliation(s)
- Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain. .,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
12
|
Chaturvedi SK, Siddiqi MK, Alam P, Khan RH. Protein misfolding and aggregation: Mechanism, factors and detection. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.05.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Camilloni C, Sala BM, Sormanni P, Porcari R, Corazza A, De Rosa M, Zanini S, Barbiroli A, Esposito G, Bolognesi M, Bellotti V, Vendruscolo M, Ricagno S. Rational design of mutations that change the aggregation rate of a protein while maintaining its native structure and stability. Sci Rep 2016; 6:25559. [PMID: 27150430 PMCID: PMC4858664 DOI: 10.1038/srep25559] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/20/2016] [Indexed: 01/27/2023] Open
Abstract
A wide range of human diseases is associated with mutations that, destabilizing proteins native state, promote their aggregation. However, the mechanisms leading from folded to aggregated states are still incompletely understood. To investigate these mechanisms, we used a combination of NMR spectroscopy and molecular dynamics simulations to compare the native state dynamics of Beta-2 microglobulin (β2m), whose aggregation is associated with dialysis-related amyloidosis, and its aggregation-resistant mutant W60G. Our results indicate that W60G low aggregation propensity can be explained, beyond its higher stability, by an increased average protection of the aggregation-prone residues at its surface. To validate these findings, we designed β2m variants that alter the aggregation-prone exposed surface of wild-type and W60G β2m modifying their aggregation propensity. These results allowed us to pinpoint the role of dynamics in β2m aggregation and to provide a new strategy to tune protein aggregation by modulating the exposure of aggregation-prone residues.
Collapse
Affiliation(s)
- Carlo Camilloni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.,Department of Chemistry and Institute for Advanced Study, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching, Germany
| | - Benedetta Maria Sala
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Pietro Sormanni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Riccardo Porcari
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London NW3 2PF, UK
| | - Alessandra Corazza
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, 33100 Udine, Italy
| | - Matteo De Rosa
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Stefano Zanini
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, 33100 Udine, Italy
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milano, Italy
| | - Gennaro Esposito
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, 33100 Udine, Italy.,Science and Math Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, UAE
| | - Martino Bolognesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy.,CIMAINA and CNR Istituto di Biofisica, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Vittorio Bellotti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London NW3 2PF, UK
| | | | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
14
|
Wild type beta-2 microglobulin and DE loop mutants display a common fibrillar architecture. PLoS One 2015; 10:e0122449. [PMID: 25803608 PMCID: PMC4372401 DOI: 10.1371/journal.pone.0122449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/15/2015] [Indexed: 12/14/2022] Open
Abstract
Beta-2 microglobulin (β2m) is the protein responsible for a pathologic condition known as dialysis related amyloidosis. In recent years an important role has been assigned to the peptide loop linking strands D and E (DE loop) in determining β2m stability and amyloid propensity. Several mutants of the DE loop have been studied, showing a good correlation between DE loop geometrical strain, protein stability and aggregation propensity. However, it remains unclear whether the aggregates formed by wild type (wt) β2m and by the DE loop variants are of the same kind, or whether the mutations open new aggregation pathways. In order to address this question, fibrillar samples of wt and mutated β2m variants have been analysed by means of atomic force microscopy and infrared spectroscopy. The data here reported indicate that the DE loop mutants form aggregates with morphology and structural organisation very similar to the wt protein. Therefore, the main effect of β2m DE loop mutations is proposed to stem from the different stabilities of the native fold. Considerations on the structural role of the DE loop in the free monomeric β2m and as part of the Major Histocompatibility Complex are also presented.
Collapse
|