1
|
Sabotič J, Puerta A, González-Bakker A, Karničar K, Erzar E, Tumpej T, Turk D, Padrón JM. Fungal lectins show differential antiproliferative activity against cancer cell lines. Int J Biol Macromol 2025; 294:139220. [PMID: 39732261 DOI: 10.1016/j.ijbiomac.2024.139220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Glycosylation patterns represent an important signature of cancer cells that can be decoded by glycan-binding proteins, i.e., lectins. Fungal lectins have unique properties and diverse structural and glycan-recognition features. In this study, the bioactivities of 22 fungal proteins against nine cancer cell lines were analyzed, and cell phenotypes were assessed with live cell imaging providing mechanistic insights. Eight fungal lectins showed antiproliferative activity, which depended on glycan binding and led to different downstream effects. The β-galactoside-binding chimerolectins Marasmius oreades agglutinin (MOA) and Laetiporus sulphureus lectin (LSL) showed indiscriminate antiproliferative activities with different modes of action, whereas the non-chimeric β-galactoside-binding lectin Agrocybe aegerita galectin (AAG) showed differential antiproliferative activity. Other β-galactoside-binding lectins exerted no effects. Fucose-binding lectins showed differential and strong antiproliferative activities, of which Aleuria aurantia lectin (AAL) exerted the strongest effects. Weaker and differential antiproliferative activities were observed with the Galβ1-3GalNAc-binding actinoporin-like lectins Xerocomus chrysenteron lectin (XCL), Sordaria macrospora transcript associated with perithecial development (TAP1), and Agaricus bisporus lectin (ABL). The different downstream effects of lectins, likely influenced by the targeted glycoligands, show that fungal lectins are valuable tools for identifying new therapeutic targets that can induce cancer cell death or growth arrest via different mechanisms.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de La Laguna, La Laguna, Spain
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de La Laguna, La Laguna, Spain
| | - Katarina Karničar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia
| | - Eva Erzar
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tadeja Tumpej
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
2
|
De Coninck T, Gippert GP, Henrissat B, Desmet T, Van Damme EJM. Investigating diversity and similarity between CBM13 modules and ricin-B lectin domains using sequence similarity networks. BMC Genomics 2024; 25:643. [PMID: 38937673 PMCID: PMC11212257 DOI: 10.1186/s12864-024-10554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND The CBM13 family comprises carbohydrate-binding modules that occur mainly in enzymes and in several ricin-B lectins. The ricin-B lectin domain resembles the CBM13 module to a large extent. Historically, ricin-B lectins and CBM13 proteins were considered completely distinct, despite their structural and functional similarities. RESULTS In this data mining study, we investigate structural and functional similarities of these intertwined protein groups. Because of the high structural and functional similarities, and differences in nomenclature usage in several databases, confusion can arise. First, we demonstrate how public protein databases use different nomenclature systems to describe CBM13 modules and putative ricin-B lectin domains. We suggest the introduction of a novel CBM13 domain identifier, as well as the extension of CAZy cross-references in UniProt to guard the distinction between CAZy and non-CAZy entries in public databases. Since similar problems may occur with other lectin families and CBM families, we suggest the introduction of novel CBM InterPro domain identifiers to all existing CBM families. Second, we investigated phylogenetic, nomenclatural and structural similarities between putative ricin-B lectin domains and CBM13 modules, making use of sequence similarity networks. We concluded that the ricin-B/CBM13 superfamily may be larger than initially thought and that several putative ricin-B lectin domains may display CAZyme functionalities, although biochemical proof remains to be delivered. CONCLUSIONS Ricin-B lectin domains and CBM13 modules are associated groups of proteins whose database semantics are currently biased towards ricin-B lectins. Revision of the CAZy cross-reference in UniProt and introduction of a dedicated CBM13 domain identifier in InterPro may resolve this issue. In addition, our analyses show that several proteins with putative ricin-B lectin domains show very strong structural similarity to CBM13 modules. Therefore ricin-B lectin domains and CBM13 modules could be considered distant members of a larger ricin-B/CBM13 superfamily.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Proeftuinstraat 86, Ghent, 9000, Belgium
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Garry P Gippert
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology & Biomedicine, Technical University of Denmark, Søltofts Plads 224, Kgs. Lyngby, 2800, Denmark
| | - Bernard Henrissat
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology & Biomedicine, Technical University of Denmark, Søltofts Plads 224, Kgs. Lyngby, 2800, Denmark
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Proeftuinstraat 86, Ghent, 9000, Belgium.
| |
Collapse
|
3
|
Toumi ME, Kebaili FF, Rebai R, Derardja I, Toumi M, Calogero GS, Perduca M, Necib Y. Purification and Biochemical Characterization of Novel Galectin from the Black Poplar Medicinal Mushroom Cyclocybe cylindracea (Agaricomycetes) Strain MEST42 from Algeria. Int J Med Mushrooms 2024; 26:57-70. [PMID: 38421696 DOI: 10.1615/intjmedmushrooms.2023051925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In the present study, a new galectin designated Cyclocybe cylindracea lectin (CCL) was extracted from the fruiting bodies of the wild black popular mushroom C. cylindracea grown in Algeria. The protein was isolated using sepharose 4B as affinity chromatography matrix, and galactose as elutant. The purified galectin was composed of two subunits of 17.873 kDa each, with a total molecular mass of 35.6 kDa. Its agglutinant activity was impeded by galactose and its derivatives, as well as melibiose. Lactose showed the highest affinity, with a minimal inhibitory concentration of 0.0781 mM. CCL was sensitive to extreme pH conditions, and its binding function decreased when incubated with 10 mM EDTA, and it could be restored by metallic cations such as Ca2+, Mg2+, and Zn2+. CCL agglutinated human red blood cells, without any discernible specificity. Circular dichroism spectra demonstrated that its secondary structure contained β-sheet as dominant fold. In addition, bioinformatics investigation on their peptide fingerprint obtained after MALDI-TOF/TOF ionization using mascot software confirmed that CCL was not like any previous purified lectin from mushroom: instead, it possessed an amino acid composition with high similarity to that of the putative urea carboxylase of Emericella nidulans (strain FGSC A4/ATCC 38163/CBS 112.46/NRRL 194/M139) with 44% of similarity score.
Collapse
Affiliation(s)
- Mohammed Esseddik Toumi
- Laboratory of Microbiological Engineering and Application.Department of Biochemistry and Molecular and Cellular Biology
| | - Fethi Farouk Kebaili
- Laboratory of Microbiological Engineering and Application, Biochemistry and Molecular and Cellular Biology Department, Faculty of Nature and Life Sciences, University of Mentouri Brothers Constantine 1, Constantine 25017, Algeria
| | - Redouane Rebai
- Laboratory of Biotechnology, National Higher School of Biotechnology, Toufik Khaznadar, Universitary Town, Ali Mendjeli, BP E66 25100, Constantine, Algeria; University of Mohamed Kheider, Biskra, Algeria
| | | | - Mouad Toumi
- Laboratory of Microbiological Engineering and Application, Biochemistry and Molecular and Cellular Biology Department, Faculty of Nature and Life Sciences, University of Mentouri Brothers Constantine 1, Constantine 25017, Algeria
| | - Gaglio Salvatore Calogero
- Biocrystallography and Nanostructure Laboratory, Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Massimiliano Perduca
- Biocrystallography and Nanostructures Laboratory Faculty of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Youcef Necib
- Laboratory of Microbiological Engineering and Application, Biochemistry and Molecular and Cellular Biology Department, Faculty of Nature and Life Sciences, University of Mentouri Brothers Constantine 1, Constantine 25017, Algeria
| |
Collapse
|
4
|
Abstract
Through their specific interactions with proteins, cellular glycans play key roles in a wide range of physiological and pathological processes. One of the main goals of research in the areas of glycobiology and glycomedicine is to understand glycan-protein interactions at the molecular level. Over the past two decades, glycan microarrays have become powerful tools for the rapid evaluation of interactions between glycans and proteins. In this review, we briefly describe methods used for the preparation of glycan probes and the construction of glycan microarrays. Next, we highlight applications of glycan microarrays to rapid profiling of glycan-binding patterns of plant, animal and pathogenic lectins, as well as other proteins. Finally, we discuss other important uses of glycan microarrays, including the rapid analysis of substrate specificities of carbohydrate-active enzymes, the quantitative determination of glycan-protein interactions, discovering high-affinity or selective ligands for lectins, and identifying functional glycans within cells. We anticipate that this review will encourage researchers to employ glycan microarrays in diverse glycan-related studies.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
5
|
Georgiev YN, Vasicek O, Dzhambazov B, Batsalova TG, Denev PN, Dobreva LI, Danova ST, Simova SD, Wold CW, Ognyanov MH, Paulsen BS, Krastanov AI. Structural Features and Immunomodulatory Effects of Water-Extractable Polysaccharides from Macrolepiota procera (Scop.) Singer. J Fungi (Basel) 2022; 8:848. [PMID: 36012836 PMCID: PMC9410249 DOI: 10.3390/jof8080848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
Macrolepiota procera (MP) is an edible mushroom used in the treatment of diabetes, hypertension and inflammation. However, the structure and biological effects of its polysaccharides (PSs) are unclear. This study investigates the structural features of a PS complex from MP (MP-PSC), its immunomodulatory activities and effects on probiotic and pathogenic bacteria. MP-PSC was obtained by boiling water, and PSs were characterized by 2D NMR spectroscopy. The immunomodulatory effects on blood and derived neutrophils, other leukocytes, and murine macrophages were studied by flow cytometry, chemiluminescence, spectrophotometry, and ELISA. The total carbohydrate content of MP-PSC was 74.2%, with glycogen occupying 36.7%, followed by β-D-glucan, α-L-fuco-2-(1,6)-D-galactan, and β-D-glucomannan. MP-PSC (200 μg/mL) increased the number of CD14+ monocyte cells in the blood, after ex vivo incubation for 24 h. It dose-dependently (50-200 μg/mL) activated the spontaneous oxidative burst of whole blood phagocytes, NO, and interleukin 6 productions in RAW264.7 cells. MP-PSC exhibited a low antioxidant activity and failed to suppress the oxidative burst and NO generation, induced by inflammatory agents. It (2.0%, w/v) stimulated probiotic co-cultures and hindered the growth and biofilm development of Escherichia coli, Streptococcus mutans and Salmonella enterica. MP PSs can be included in synbiotics to test their immunostimulating effects on compromised immune systems and gut health.
Collapse
Affiliation(s)
- Yordan Nikolaev Georgiev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Ondrej Vasicek
- Department of Biophysics of Immune System, Institute of Biophysics, Czech Academy of Sciences, 135 Kralovopolska, 612 65 Brno, Czech Republic
| | - Balik Dzhambazov
- Department of Developmental Biology, Plovdiv University Paisii Hilendarski, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria
| | | | - Petko Nedyalkov Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Lili Ivaylova Dobreva
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | - Svetla Trifonova Danova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | - Svetlana Dimitrova Simova
- Bulgarian NMR Centre, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 9 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | | | - Manol Hristov Ognyanov
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Berit Smestad Paulsen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Albert Ivanov Krastanov
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
6
|
Adamska I, Tokarczyk G. Possibilities of Using Macrolepiota procera in the Production of Prohealth Food and in Medicine. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:5773275. [PMID: 35655802 PMCID: PMC9153936 DOI: 10.1155/2022/5773275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Parasol mushroom (Macrolepiota procera) is a fungus that is often included in the menu of people looking for replacements for meat products and at the same time appreciating mushrooms. Its fruiting bodies are known for their delicate flavor and aroma. The aim of the publication was to analyze the latest information (mainly from 2015 to 2021) on the chemical composition of the M. procera fruiting bodies and their antioxidant properties. The data on other health-promoting properties and the possibilities of using these mushrooms in medicine were also compiled and summarized, taking into account their antibacterial, antioxidant, anti-inflammatory, regulatory, antidepressant, and anticancer effects. Moreover, the influence of various forms of processing and conservation of raw mushroom on its health-promoting properties was discussed. The possibilities of controlling the quality of both the raw material and the prepared dishes were also discussed. Such an opportunity is offered by the possibility of modifying the growing conditions, in particular, the appropriate selection of the substrate for mushroom cultivation and the deliberate enrichment of its composition with the selected substances, which will then be incorporated into the fungus organism.
Collapse
Affiliation(s)
- Iwona Adamska
- Department of Fish, Plant and Gastronomy Technology, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Grzegorz Tokarczyk
- Department of Fish, Plant and Gastronomy Technology, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| |
Collapse
|
7
|
Renko M, Zupan T, Plaza DF, Schmieder SS, Perišić Nanut M, Kos J, Turk D, Künzler M, Sabotič J. Cocaprins, β-Trefoil Fold Inhibitors of Cysteine and Aspartic Proteases from Coprinopsis cinerea. Int J Mol Sci 2022; 23:4916. [PMID: 35563308 PMCID: PMC9104457 DOI: 10.3390/ijms23094916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
We introduce a new family of fungal protease inhibitors with β-trefoil fold from the mushroom Coprinopsis cinerea, named cocaprins, which inhibit both cysteine and aspartic proteases. Two cocaprin-encoding genes are differentially expressed in fungal tissues. One is highly transcribed in vegetative mycelium and the other in the stipes of mature fruiting bodies. Cocaprins are small proteins (15 kDa) with acidic isoelectric points that form dimers. The three-dimensional structure of cocaprin 1 showed similarity to fungal β-trefoil lectins. Cocaprins inhibit plant C1 family cysteine proteases with Ki in the micromolar range, but do not inhibit the C13 family protease legumain, which distinguishes them from mycocypins. Cocaprins also inhibit the aspartic protease pepsin with Ki in the low micromolar range. Mutagenesis revealed that the β2-β3 loop is involved in the inhibition of cysteine proteases and that the inhibitory reactive sites for aspartic and cysteine proteases are located at different positions on the protein. Their biological function is thought to be the regulation of endogenous proteolytic activities or in defense against fungal antagonists. Cocaprins are the first characterized aspartic protease inhibitors with β-trefoil fold from fungi, and demonstrate the incredible plasticity of loop functionalization in fungal proteins with β-trefoil fold.
Collapse
Affiliation(s)
- Miha Renko
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.R.); (D.T.)
| | - Tanja Zupan
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.Z.); (M.P.N.); (J.K.)
| | - David F. Plaza
- Department of Biology, Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland; (D.F.P.); (S.S.S.); (M.K.)
| | - Stefanie S. Schmieder
- Department of Biology, Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland; (D.F.P.); (S.S.S.); (M.K.)
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.Z.); (M.P.N.); (J.K.)
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.Z.); (M.P.N.); (J.K.)
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.R.); (D.T.)
| | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland; (D.F.P.); (S.S.S.); (M.K.)
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.Z.); (M.P.N.); (J.K.)
| |
Collapse
|
8
|
Transcriptomics Reveals the Putative Mycoparasitic Strategy of the Mushroom Entoloma abortivum on Species of the Mushroom Genus Armillaria. mSystems 2021; 6:e0054421. [PMID: 34636668 PMCID: PMC8510539 DOI: 10.1128/msystems.00544-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During mycoparasitism, a fungus—the host—is parasitized by another fungus—the mycoparasite. The genetic underpinnings of these relationships have been best characterized in ascomycete fungi. However, within basidiomycete fungi, there are rare instances of mushroom-forming species parasitizing the reproductive structures, or sporocarps, of other mushroom-forming species, which have been rarely investigated on a genetic level. One of the most enigmatic of these occurs between Entoloma abortivum and species of Armillaria, where hyphae of E. abortivum are hypothesized to disrupt the development of Armillaria sporocarps, resulting in the formation of carpophoroids. However, it remains unknown whether carpophoroids are the direct result of a mycoparasitic relationship. To address the nature of this unique interaction, we analyzed gene expression of field-collected Armillaria and E. abortivum sporocarps and carpophoroids. Transcripts in the carpophoroids are primarily from E. abortivum, supporting the hypothesis that this species is parasitizing Armillaria. Most notably, we identified differentially upregulated E. abortivum β-trefoil-type lectins in the carpophoroid, which we hypothesize bind to Armillaria cell wall galactomannoproteins, thereby mediating recognition between the mycoparasite and the host. The most differentially upregulated E. abortivum transcripts in the carpophoroid code for oxalate decarboxylases—enzymes that degrade oxalic acid. Oxalic acid is a virulence factor in many plant pathogens, including Armillaria species; however, E. abortivum has evolved a sophisticated strategy to overcome this defense mechanism. The number of gene models and genes that code for carbohydrate-active enzymes in the E. abortivum transcriptome was reduced compared to other closely related species, perhaps as a result of the specialized nature of this interaction. IMPORTANCE By studying fungi that parasitize other fungi, we can understand the basic biology of these unique interactions. Studies focused on the genetic mechanisms regulating mycoparasitism between host and parasite have thus far concentrated on a single fungal lineage within the Ascomycota. The work presented here expands our understanding of mycoparasitic relationships to the Basidiomycota and represents the first transcriptomic study to our knowledge that examines fungal-fungal relationships in their natural setting. The results presented here suggest that even distantly related mycoparasites utilize similar mechanisms to parasitize their host. Given that species of the mushroom-forming pathogen Armillaria cause plant root-rot diseases in many agroecosystems, an enhanced understanding of this interaction may contribute to better control of these diseases through biocontrol applications.
Collapse
|
9
|
Identification of the Ricin-B-Lectin LdRBLk in the Colorado Potato Beetle and an Analysis of Its Expression in Response to Fungal Infections. J Fungi (Basel) 2021; 7:jof7050364. [PMID: 34066637 PMCID: PMC8148562 DOI: 10.3390/jof7050364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
Ricin-B-lectins (RBLs) have been identified in many groups of organisms, including coleopterans insects, particularly the Colorado potato beetle Leptinotarsa decemlineata (LdRBLs). We hypothesized that one of these LdRBLs (LdRBLk) may be involved in the immune response to fungal infections. We performed a theoretical analysis of the structure of this protein. Additionally, the expression levels of the LdRBlk gene were measured in L. decemlineata in response to infections with the fungi Metarhizium robertsii and Beauveria bassiana. The expression levels of LdRBlk in the L. decemlineata cuticle and fat body were increased in response to both infections. The induction of LdRBlk expression was dependent on the susceptibility of larvae to the fungi. Upregulation of the LdRBlk gene was also observed in response to other stresses, particularly thermal burns. Elevation of LdRBlk expression was frequently observed to be correlated with the expression of the antimicrobial peptide attacin but was not correlated with hsp90 regulation. Commercially available β-lectin of ricin from Ricinuscommunis was observed to inhibit the germination of conidia of the fungi. We suggest that LdRBLk is involved in antifungal immune responses in the Colorado potato beetle, either exerting fungicidal properties directly or acting as a modulator of the immune response.
Collapse
|
10
|
Dhillon B, Hamelin RC, Rollins JA. Transcriptional profile of oil palm pathogen, Ganoderma boninense, reveals activation of lignin degradation machinery and possible evasion of host immune response. BMC Genomics 2021; 22:326. [PMID: 33952202 PMCID: PMC8097845 DOI: 10.1186/s12864-021-07644-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The white-rot fungi in the genus Ganoderma interact with both living and dead angiosperm tree hosts. Two Ganoderma species, a North American taxon, G. zonatum and an Asian taxon, G. boninense, have primarily been found associated with live palm hosts. During the host plant colonization process, a massive transcriptional reorganization helps the fungus evade the host immune response and utilize plant cell wall polysaccharides. RESULTS A publicly available transcriptome of G. boninense - oil palm interaction was surveyed to profile transcripts that were differentially expressed in planta. Ten percent of the G. boninense transcript loci had altered expression as it colonized oil palm plants one-month post inoculation. Carbohydrate active enzymes (CAZymes), particularly those with a role in lignin degradation, and auxiliary enzymes that facilitate lignin modification, like cytochrome P450s and haloacid dehalogenases, were up-regulated in planta. Several lineage specific proteins and secreted proteins that lack known functional domains were also up-regulated in planta, but their role in the interaction could not be established. A slowdown in G. boninense respiration during the interaction can be inferred from the down-regulation of proteins involved in electron transport chain and mitochondrial biogenesis. Additionally, pathogenicity related genes and chitin degradation machinery were down-regulated during the interaction indicating G. boninense may be evading detection by the host immune system. CONCLUSIONS This analysis offers an overview of the dynamic processes at play in G. boninense - oil palm interaction and provides a framework to investigate biology of Ganoderma fungi across plantations and landscape.
Collapse
Affiliation(s)
- Braham Dhillon
- Department of Plant Pathology, University of Florida, Fort Lauderdale Research and Education Center, Davie, FL, 33314, USA.
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680, USA
| |
Collapse
|
11
|
Kamata K, Mizutani K, Takahashi K, Marchetti R, Silipo A, Addy C, Park SY, Fujii Y, Fujita H, Konuma T, Ikegami T, Ozeki Y, Tame JRH. The structure of SeviL, a GM1b/asialo-GM1 binding R-type lectin from the mussel Mytilisepta virgata. Sci Rep 2020; 10:22102. [PMID: 33328520 PMCID: PMC7744527 DOI: 10.1038/s41598-020-78926-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/24/2020] [Indexed: 11/12/2022] Open
Abstract
SeviL is a recently isolated lectin found to bind to the linear saccharides of the ganglioside GM1b (Neu5Ac\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α(2-3)Gal\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-3)GalNAc\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-4)Gal\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-4)Glc) and its precursor, asialo-GM1 (Gal\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-3)GalNAc\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-4)Gal\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β(1-4)Glc). The crystal structures of recombinant SeviL have been determined in the presence and absence of ligand. The protein belongs to the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β-trefoil family, but shows only weak sequence similarity to known structures. SeviL forms a dimer in solution, with one binding site per subunit, close to the subunit interface. Molecular details of glycan recognition by SeviL in solution were analysed by ligand- and protein-based NMR techniques as well as ligand binding assays. SeviL shows no interaction with GM1 due to steric hindrance with the sialic acid branch that is absent from GM1b. This unusual specificity makes SeviL of great interest for the detection and control of certain cancer cells, and cells of the immune system, that display asialo-GM1.
Collapse
Affiliation(s)
- Kenichi Kamata
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Kenji Mizutani
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Katsuya Takahashi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Roberta Marchetti
- Department of Chemical Sciences, Università di Napoli Federico II, Via Cintia 4, 80126, Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, Università di Napoli Federico II, Via Cintia 4, 80126, Naples, Italy
| | - Christine Addy
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Sam-Yong Park
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuki Fujii
- Department of Pharmacy, Graduate School of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298, Japan
| | - Hideaki Fujita
- Department of Pharmacy, Graduate School of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298, Japan
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Yasuhiro Ozeki
- Laboratory of Glycobiology and Marine Biochemistry, Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Yokohama, Kanagawa, 236-0027, Japan
| | - Jeremy R H Tame
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
12
|
Liu XB, Xia EH, Li M, Cui YY, Wang PM, Zhang JX, Xie BG, Xu JP, Yan JJ, Li J, Nagy LG, Yang ZL. Transcriptome data reveal conserved patterns of fruiting body development and response to heat stress in the mushroom-forming fungus Flammulina filiformis. PLoS One 2020; 15:e0239890. [PMID: 33064719 PMCID: PMC7567395 DOI: 10.1371/journal.pone.0239890] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Mushroom-forming fungi are complex multicellular organisms that form the basis of a large industry, yet, our understanding of the mechanisms of mushroom development and its responses to various stresses remains limited. The winter mushroom (Flammulina filiformis) is cultivated at a large commercial scale in East Asia and is a species with a preference for low temperatures. This study investigated fruiting body development in F. filiformis by comparing transcriptomes of 4 developmental stages, and compared the developmental genes to a 200-genome dataset to identify conserved genes involved in fruiting body development, and examined the response of heat sensitive and -resistant strains to heat stress. Our data revealed widely conserved genes involved in primordium development of F. filiformis, many of which originated before the emergence of the Agaricomycetes, indicating co-option for complex multicellularity during evolution. We also revealed several notable fruiting-specific genes, including the genes with conserved stipe-specific expression patterns and the others which related to sexual development, water absorption, basidium formation and sporulation, among others. Comparative analysis revealed that heat stress induced more genes in the heat resistant strain (M1) than in the heat sensitive one (XR). Of particular importance are the hsp70, hsp90 and fes1 genes, which may facilitate the adjustment to heat stress in the early stages of fruiting body development. These data highlighted novel genes involved in complex multicellular development in fungi and aid further studies on gene function and efforts to improve the productivity and heat tolerance in mushroom-forming fungi.
Collapse
Affiliation(s)
- Xiao-Bin Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - En-Hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Meng Li
- Yunnan Tobacco Science Research Institute, Kunming, China
| | - Yang-Yang Cui
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - Pan-Meng Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - Jin-Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bao-Gui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian-Ping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jun-Jie Yan
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - László G. Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Szeged, Hungary
| | - Zhu L. Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
- * E-mail:
| |
Collapse
|
13
|
Kim S. Ricin B-like lectin orthologues from two mushrooms, Hericium erinaceus and Stereum hirsutum, enable recognition of highly fucosylated N-glycans. Int J Biol Macromol 2020; 147:560-568. [PMID: 31931062 DOI: 10.1016/j.ijbiomac.2020.01.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
The mushroom Hericium erinaceus contains isolectins, including the ricin B-like lectin HEL1 and the core 1 O-glycan-binding lectin HEL2. Recombinant HEL2 reportedly binds O-linked glycans, but recombinant HEL1 (rHEL1) has not been characterized. HEL1 and Stereum hirsutum lectin (SHL1) orthologues, which contain the typical (QxW)3 ricin-B like motif, were evaluated. Interestingly, under non-denaturing conditions, recombinant SHL1 (rSHL1) existed as a trimer and exhibited agglutination activity, whereas rHEL1 existed as a monomer with no agglutination activity. The hemagglutination activity of rSHL1 was inhibited by N-linked glycoprotein transferrin. A glycan-array analysis revealed that the two recombinant lectins had different binding intensities toward fucosylated N-glycans harboring fucose-α(1,2) galactose or fucose-α(1,4) N-acetylglucosamine. Isothermal calorimetry showed that compared with rHEL1, rSHL1 interacted more strongly with transferrin, a fucosylated glycoprotein, than with other fucosylated disaccharide glycoconjugates. Finally, rSHL1 and rHEL1 were comparable in their ability to detect highly fucosylated N-glycans within glycoproteins on the surface of SW1116 human colorectal carcinoma cells. Therefore, these ricin B-like lectins might enable detection of highly fucosylated glycoepitopes on cancer cells for diagnostic applications.
Collapse
Affiliation(s)
- Seonghun Kim
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup 56212, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea.
| |
Collapse
|
14
|
CNL- Clitocybe nebularis Lectin-The Fungal GalNAcβ1-4GlcNAc-Binding Lectin. Molecules 2019; 24:molecules24234204. [PMID: 31756927 PMCID: PMC6930499 DOI: 10.3390/molecules24234204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
Clitocybe nebularis lectin (CNL) is present in fruiting bodies of clouded agaric along with several similar isolectins that are all small and stable proteins. It is a beta-trefoil type lectin forming homodimers that are essential for its functionality. It binds specifically N,N′-diacetyllactosediamine (GalNAcβ1-4GlcNAc, LacDiNac) and human blood group A determinant-containing glycan epitopes. Its most probable function is to defend fruiting bodies against predators and parasites. In addition, an endogenous regulatory function is possible for CNL, as indicated by its interaction with fungal protease inhibitors sharing the beta-trefoil fold. CNL is toxic to insects, nematodes and amoebae, as well as to leukemic T-cell lines. Bivalent carbohydrate binding is essential for the toxicity of CNL, against both invertebrates and cancer-derived cell lines. In addition, CNL exhibits potent immunostimulation of human dendritic cells, resulting in a strong T helper cell type 1 response. Based on its unique characteristics, CNL is a promising candidate for applications in human and veterinary medicine as well as in agriculture, for plant protection.
Collapse
|
15
|
Fungal lectin MpL enables entry of protein drugs into cancer cells and their subcellular targeting. Oncotarget 2018; 8:26896-26910. [PMID: 28460472 PMCID: PMC5432305 DOI: 10.18632/oncotarget.15849] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/20/2017] [Indexed: 01/03/2023] Open
Abstract
Lectins have been recognized as promising carrier molecules for targeted drug delivery. They specifically bind carbohydrate moieties on cell membranes and trigger cell internalization. Fungal lectin MpL (Macrolepiota procera lectin) does not provoke cancer cell cytotoxicity but is able to bind aminopeptidase N (CD13) and integrin α3β1, two glycoproteins that are overexpressed on the membrane of tumor cells. Upon binding, MpL is endocytosed in a clathrin-dependent manner and accumulates initially in the Golgi apparatus and, finally, in the lysosomes. For effective binding and internalization a functional binding site on the α-repeat is needed. To test the potential of MpL as a carrier for delivering protein drugs to cancer cells we constructed fusion proteins consisting of MpL and the cysteine peptidase inhibitors cystatin C and clitocypin. The fused proteins followed the same endocytic route as the unlinked MpL. Peptidase inhibitor-MpL fusions impaired both the intracellular degradation of extracellular matrix and the invasiveness of cancer cells. MpL is thus shown in vitro to be a lectin that can enable protein drugs to enter cancer cells, enhance their internalization and sort them to lysosomes and the Golgi apparatus.
Collapse
|
16
|
A novel core 1 O-linked glycan-specific binding lectin from the fruiting body of Hericium erinaceus. Int J Biol Macromol 2018; 107:1528-1537. [DOI: 10.1016/j.ijbiomac.2017.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022]
|
17
|
Bleuler-Martinez S, Stutz K, Sieber R, Collot M, Mallet JM, Hengartner M, Schubert M, Varrot A, Künzler M. Dimerization of the fungal defense lectin CCL2 is essential for its toxicity against nematodes. Glycobiology 2017; 27:486-500. [PMID: 27980000 DOI: 10.1093/glycob/cww113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/09/2016] [Indexed: 11/12/2022] Open
Abstract
Lectins are used as defense effector proteins against predators, parasites and pathogens by animal, plant and fungal innate defense systems. These proteins bind to specific glycoepitopes on the cell surfaces and thereby interfere with the proper cellular functions of the various antagonists. The exact cellular toxicity mechanism is in many cases unclear. Lectin CCL2 of the mushroom Coprinopsis cinerea was previously shown to be toxic for Caenorhabditis elegans and Drosophila melanogaster. This toxicity is dependent on a single, high-affinity binding site for the trisaccharide GlcNAc(Fucα1,3)β1,4GlcNAc, which is a hallmark of nematode and insect N-glycan cores. The carbohydrate-binding site is located at an unusual position on the protein surface when compared to other β-trefoil lectins. Here, we show that CCL2 forms a compact dimer in solution and in crystals. Substitution of two amino acid residues at the dimer interface, R18A and F133A, interfered with dimerization of CCL2 and reduced toxicity but left carbohydrate-binding unaffected. These results, together with the positioning of the two carbohydrate-binding sites on the surface of the protein dimer, suggest that crosslinking of N-glycoproteins on the surface of intestinal cells of invertebrates is a crucial step in the mechanism of CCL2-mediated toxicity. Comparisons of the number and positioning of carbohydrate-binding sites among different dimerizing fungal β-trefoil lectins revealed a considerable variability in the carbohydrate-binding patterns of these proteins, which are likely to correlate with their respective functions.
Collapse
Affiliation(s)
| | - Katrin Stutz
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Ramon Sieber
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Mayeul Collot
- Laboratoire des Biomolécules, UPMC Université Paris 06, Ecole Normale Supérieure, Paris, France
| | - Jean-Maurice Mallet
- Laboratoire des Biomolécules, UPMC Université Paris 06, Ecole Normale Supérieure, Paris, France
| | - Michael Hengartner
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Mario Schubert
- Institute of Molecular Biology and Biophysics, ETH Zürich, Schafmattstr. 20, 8093 Zürich, Switzerland.,Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Annabelle Varrot
- CERMAV, UPR5301, CNRS and Université Grenoble Alpes, 38041 Grenoble, France
| | - Markus Künzler
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
18
|
Terada D, Voet ARD, Noguchi H, Kamata K, Ohki M, Addy C, Fujii Y, Yamamoto D, Ozeki Y, Tame JRH, Zhang KYJ. Computational design of a symmetrical β-trefoil lectin with cancer cell binding activity. Sci Rep 2017; 7:5943. [PMID: 28724971 PMCID: PMC5517649 DOI: 10.1038/s41598-017-06332-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/12/2017] [Indexed: 01/24/2023] Open
Abstract
Computational protein design has advanced very rapidly over the last decade, but there remain few examples of artificial proteins with direct medical applications. This study describes a new artificial β-trefoil lectin that recognises Burkitt’s lymphoma cells, and which was designed with the intention of finding a basis for novel cancer treatments or diagnostics. The new protein, called “Mitsuba”, is based on the structure of the natural shellfish lectin MytiLec-1, a member of a small lectin family that uses unique sequence motifs to bind α-D-galactose. The three subdomains of MytiLec-1 each carry one galactose binding site, and the 149-residue protein forms a tight dimer in solution. Mitsuba (meaning “three-leaf” in Japanese) was created by symmetry constraining the structure of a MytiLec-1 subunit, resulting in a 150-residue sequence that contains three identical tandem repeats. Mitsuba-1 was expressed and crystallised to confirm the X-ray structure matches the predicted model. Mitsuba-1 recognises cancer cells that express globotriose (Galα(1,4)Galβ(1,4)Glc) on the surface, but the cytotoxicity is abolished.
Collapse
Affiliation(s)
- Daiki Terada
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan.,Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Arnout R D Voet
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001, Heverlee, Belgium
| | - Hiroki Noguchi
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001, Heverlee, Belgium
| | - Kenichi Kamata
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Mio Ohki
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Christine Addy
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuki Fujii
- Department of Pharmacy, Graduate School of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298, Japan
| | - Daiki Yamamoto
- Laboratory of Glycobiology and Marine Biochemistry, Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Yokohama, Kanagawa, 236-0027, Japan
| | - Yasuhiro Ozeki
- Laboratory of Glycobiology and Marine Biochemistry, Graduate School of NanoBio Sciences, Yokohama City University, 22-2, Seto, Yokohama, Kanagawa, 236-0027, Japan
| | - Jeremy R H Tame
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa, 230-0045, Japan.
| | - Kam Y J Zhang
- Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
19
|
Structural and binding studies of a C-type galactose-binding lectin from Bothrops jararacussu snake venom. Toxicon 2017; 126:59-69. [DOI: 10.1016/j.toxicon.2016.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 01/26/2023]
|
20
|
Making Use of Genomic Information to Explore the Biotechnological Potential of Medicinal Mushrooms. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Crystal structure of MytiLec, a galactose-binding lectin from the mussel Mytilus galloprovincialis with cytotoxicity against certain cancer cell types. Sci Rep 2016; 6:28344. [PMID: 27321048 PMCID: PMC4913266 DOI: 10.1038/srep28344] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/31/2016] [Indexed: 01/07/2023] Open
Abstract
MytiLec is a lectin, isolated from bivalves, with cytotoxic activity against cancer cell lines that express globotriaosyl ceramide, Galα(1,4)Galβ(1,4)Glcα1-Cer, on the cell surface. Functional analysis shows that the protein binds to the disaccharide melibiose, Galα(1,6)Glc, and the trisaccharide globotriose, Galα(1,4)Galβ(1,4)Glc. Recombinant MytiLec expressed in bacteria showed the same haemagglutinating and cytotoxic activity against Burkitt's lymphoma (Raji) cells as the native form. The crystal structure has been determined to atomic resolution, in the presence and absence of ligands, showing the protein to be a member of the β-trefoil family, but with a mode of ligand binding unique to a small group of related trefoil lectins. Each of the three pseudo-equivalent binding sites within the monomer shows ligand binding, and the protein forms a tight dimer in solution. An engineered monomer mutant lost all cytotoxic activity against Raji cells, but retained some haemagglutination activity, showing that the quaternary structure of the protein is important for its cellular effects.
Collapse
|
22
|
Takeuchi T, Arata Y, Kasai KI. Galactoseβ1-4fucose: A unique disaccharide unit found inN-glycans of invertebrates including nematodes. Proteomics 2016; 16:3137-3147. [DOI: 10.1002/pmic.201600001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/22/2016] [Accepted: 04/12/2016] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yoichiro Arata
- Faculty of Pharmaceutical Sciences; Josai University; Saitama Japan
| | - Ken-ichi Kasai
- School of Pharmaceutical Sciences; Teikyo University; Tokyo Japan
| |
Collapse
|
23
|
Liao JH, Chien CTH, Wu HY, Huang KF, Wang I, Ho MR, Tu IF, Lee IM, Li W, Shih YL, Wu CY, Lukyanov PA, Hsu STD, Wu SH. A Multivalent Marine Lectin from Crenomytilus grayanus Possesses Anti-cancer Activity through Recognizing Globotriose Gb3. J Am Chem Soc 2016; 138:4787-95. [PMID: 27010847 DOI: 10.1021/jacs.6b00111] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this study, we report the structure and function of a lectin from the sea mollusk Crenomytilus grayanus collected from the sublittoral zone of Peter the Great Bay of the Sea of Japan. The crystal structure of C. grayanus lectin (CGL) was solved to a resolution of 1.08 Å, revealing a β-trefoil fold that dimerizes into a dumbbell-shaped quaternary structure. Analysis of the crystal CGL structures bound to galactose, galactosamine, and globotriose Gb3 indicated that each CGL can bind three ligands through a carbohydrate-binding motif involving an extensive histidine- and water-mediated hydrogen bond network. CGL binding to Gb3 is further enhanced by additional side-chain-mediated hydrogen bonds in each of the three ligand-binding sites. NMR titrations revealed that the three binding sites have distinct microscopic affinities toward galactose and galactosamine. Cell viability assays showed that CGL recognizes Gb3 on the surface of breast cancer cells, leading to cell death. Our findings suggest the use of this lectin in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - Chih-Ta Henry Chien
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University , Taipei 106, Taiwan
| | - Han-Ying Wu
- Institute of Biological Chemistry, Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica , Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University , Hsinchu 30043, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - Iren Wang
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - I-Fan Tu
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - I-Ming Lee
- Institute of Biochemical Science, National Taiwan University , Taipei 106, Taiwan
| | - Wei Li
- Key Laboratory of Aquatic Products Processing and Utilization of Liaoning Province, Dalian Ocean University , Dalian 116023, P.R. China
| | - Yu-Ling Shih
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica , Taipei 11529, Taiwan
| | - Pavel A Lukyanov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences , Vladivostok 690022, Russian Federation
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan.,Institute of Biological Chemistry, Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Science, National Taiwan University , Taipei 106, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University , Taipei 106, Taiwan.,Institute of Biological Chemistry, Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Science, National Taiwan University , Taipei 106, Taiwan
| |
Collapse
|
24
|
Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies. Appl Microbiol Biotechnol 2015; 100:91-111. [DOI: 10.1007/s00253-015-7075-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/04/2015] [Accepted: 10/11/2015] [Indexed: 01/26/2023]
|
25
|
Yan S, Brecker L, Jin C, Titz A, Dragosits M, Karlsson NG, Jantsch V, Wilson IBH, Paschinger K. Bisecting Galactose as a Feature of N-Glycans of Wild-type and Mutant Caenorhabditis elegans. Mol Cell Proteomics 2015; 14:2111-25. [PMID: 26002521 DOI: 10.1074/mcp.m115.049817] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Indexed: 01/15/2023] Open
Abstract
The N-glycosylation of the model nematode Caenorhabditis elegans has proven to be highly variable and rather complex; it is an example to contradict the existing impression that "simple" organisms possess also a rather simple glycomic capacity. In previous studies in a number of laboratories, N-glycans with up to four fucose residues have been detected. However, although the linkage of three fucose residues to the N,N'-diacetylchitobiosyl core has been proven by structural and enzymatic analyses, the nature of the fourth fucose has remained uncertain. By constructing a triple mutant with deletions in the three genes responsible for core fucosylation (fut-1, fut-6 and fut-8), we have produced a nematode strain lacking products of these enzymes, but still retaining maximally one fucose residue on its N-glycans. Using mass spectrometry and HPLC in conjunction with chemical and enzymatic treatments as well as NMR, we examined a set of α-mannosidase-resistant N-glycans. Within this glycomic subpool, we can reveal that the core β-mannose can be trisubstituted and so carries not only the ubiquitous α1,3- and α1,6-mannose residues, but also a "bisecting" β-galactose, which is substoichiometrically modified with fucose or methylfucose. In addition, the α1,3-mannose can also be α-galactosylated. Our data, showing the presence of novel N-glycan modifications, will enable more targeted studies to understand the biological functions and interactions of nematode glycans.
Collapse
Affiliation(s)
- Shi Yan
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Lothar Brecker
- §Institut für Organische Chemie, Universität Wien, 1090 Wien, Austria
| | - Chunsheng Jin
- ¶Institutionen för Biomedicin, Göteborgs universitet, 405 30 Göteborg, Sweden
| | - Alexander Titz
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Martin Dragosits
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Niclas G Karlsson
- ¶Institutionen för Biomedicin, Göteborgs universitet, 405 30 Göteborg, Sweden
| | - Verena Jantsch
- ‖Department für Chromosomenbiologie, Max F. Perutz Laboratories, Universität Wien, 1030 Wien, Austria
| | - Iain B H Wilson
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria;
| | - Katharina Paschinger
- From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| |
Collapse
|
26
|
Hitting the sweet spot-glycans as targets of fungal defense effector proteins. Molecules 2015; 20:8144-67. [PMID: 25955890 PMCID: PMC6272156 DOI: 10.3390/molecules20058144] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/16/2022] Open
Abstract
Organisms which rely solely on innate defense systems must combat a large number of antagonists with a comparably low number of defense effector molecules. As one solution of this problem, these organisms have evolved effector molecules targeting epitopes that are conserved between different antagonists of a specific taxon or, if possible, even of different taxa. In order to restrict the activity of the defense effector molecules to physiologically relevant taxa, these target epitopes should, on the other hand, be taxon-specific and easily accessible. Glycans fulfill all these requirements and are therefore a preferred target of defense effector molecules, in particular defense proteins. Here, we review this defense strategy using the example of the defense system of multicellular (filamentous) fungi against microbial competitors and animal predators.
Collapse
|
27
|
Mushroom lectins: specificity, structure and bioactivity relevant to human disease. Int J Mol Sci 2015; 16:7802-38. [PMID: 25856678 PMCID: PMC4425051 DOI: 10.3390/ijms16047802] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 11/16/2022] Open
Abstract
Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell-cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity.
Collapse
|
28
|
Žurga S, Pohleven J, Kos J, Sabotič J. β-Trefoil structure enables interactions between lectins and protease inhibitors that regulate their biological functions. J Biochem 2015; 158:83-90. [PMID: 25742738 DOI: 10.1093/jb/mvv025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/22/2015] [Indexed: 11/12/2022] Open
Abstract
Fungal ricin B-like lectins and protease inhibitors, mycocypins and mycospins, are important mediators in fungal defence against antagonists and all possess the β-trefoil fold. We demonstrate here that fungal β-trefoil proteins interact with each other, in addition to their apparent targets, and that these interactions modulate their biological activity. Such regulation of carbohydrate binding or inhibitory activity is observed for the first time in β-trefoil proteins and could constitute a mechanism for regulating their physiological functions. It could also have implications in molecular recognition of other combinations of β-trefoil proteins in other species.
Collapse
Affiliation(s)
- Simon Žurga
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; and Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Jure Pohleven
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; and Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; and Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; and Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; and Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
29
|
Rohlfs M. Fungal secondary metabolite dynamics in fungus-grazer interactions: novel insights and unanswered questions. Front Microbiol 2015; 5:788. [PMID: 25628619 PMCID: PMC4292314 DOI: 10.3389/fmicb.2014.00788] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/22/2014] [Indexed: 11/26/2022] Open
Abstract
In response to fungivore grazing fungi are assumed to have evolved secondary metabolite-based defense mechanisms that harm and repel grazers, and hence provide a benefit to the metabolite producer. However, since research into the ecological meaning of highly diverse fungal secondary metabolites is still in its infancy, many central questions still remain. Which components of the enormous metabolite diversity of fungi act as direct chemical defense mechanisms against grazers? Is the proposed chemical defense of fungi induced by grazer attack? Which role do volatile compounds play in communicating noxiousness to grazers? What is the relative impact of grazers and that of interactions with competing microbes on the evolution of fungal secondary metabolism? Here, I briefly summarize and discuss the results of the very few studies that have tried to tackle some of these questions by (i) using secondary metabolite mutant fungi in controlled experiments with grazers, and by (ii) investigating fungal secondary metabolism as a flexible means to adapt to grazer-rich niches.
Collapse
Affiliation(s)
- Marko Rohlfs
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg-August-University Göttingen Göttingen, Germany
| |
Collapse
|
30
|
Singh SS, Wang H, Chan YS, Pan W, Dan X, Yin CM, Akkouh O, Ng TB. Lectins from edible mushrooms. Molecules 2014; 20:446-69. [PMID: 25558856 PMCID: PMC6272671 DOI: 10.3390/molecules20010446] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/23/2014] [Indexed: 11/16/2022] Open
Abstract
Mushrooms are famous for their nutritional and medicinal values and also for the diversity of bioactive compounds they contain including lectins. The present review is an attempt to summarize and discuss data available on molecular weights, structures, biological properties, N-terminal sequences and possible applications of lectins from edible mushrooms. It further aims to update and discuss/examine the recent advancements in the study of these lectins regarding their structures, functions, and exploitable properties. A detailed tabling of all the available data for N-terminal sequences of these lectins is also presented here.
Collapse
Affiliation(s)
- Senjam Sunil Singh
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal 795003, India.
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing 100193, China.
| | - Yau Sang Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Wenliang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Cui Ming Yin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Ouafae Akkouh
- Department of Biology and Medical Laboratory Research, Leiden University of Applied Science, Zernikedreef 11, Leiden 2333 CK, The Netherlands.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
31
|
van Eerde A, Grahn EM, Winter HC, Goldstein IJ, Krengel U. Atomic-resolution structure of the -galactosyl binding Lyophyllum decastes lectin reveals a new protein family found in both fungi and plants. Glycobiology 2014; 25:492-501. [DOI: 10.1093/glycob/cwu136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|