1
|
Zhao Y, Yang L, Que S, An L, Teeti AA, Xiao S. Systemic mechanism of Panax noteginseng saponins in antiaging based on network pharmacology combined with experimental validation. IBRAIN 2024; 10:519-535. [PMID: 39691419 PMCID: PMC11649391 DOI: 10.1002/ibra.12165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 12/19/2024]
Abstract
This study aims to investigate the systemic mechanism of Panax notoginseng saponins (PNS) in antiaging using network pharmacology combined with experimental validation. String database and Cytoscape3.7.2 were used to perform the protein-protein interaction (PPI) and construct genes network. The key target genes were analyzed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Then, the aging-related genes were verified by reverse-transcription polymerase chain reaction in SAM-P/8 mice, and performed molecular docking with the main components of PNS. Moreover, it produced cluster between Hub genes and differential genes. A total of 169 crossover genes were obtained, and the results of GO and KEGG indicated that the antiaging effect of PNS was mediated by apoptosis, cancer, and neurodegeneration and that five of the eight Hub genes had good binding activity with the main components of PNS. In addition, animal experiments reported that MAP2, MAPKK4, RAB6A, and Sortilin-1 have different levels of expression in the brain tissues of aging mice, and bind well docking with the main active components of PNS. However, there was no crossover between the 169 PNS intersecting genes and the four differential genes, while they yielded a link from PPI in which MAP2K4 was only linked to AKT1 and CASP3; MAP2 was only linked to AKT1 and CASP3; RAB6A was only linked to AKT1; but Sortlin-1 did not link to the Hub genes. In summary, the antiaging effect of PNS is associated with the eight Hub genes and four differential genes. All of them consist of a cluster or group that is possibly related to the antiaging effect of PNS.
Collapse
Affiliation(s)
- Yang‐Yang Zhao
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Li‐Xia Yang
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Shuang‐Yu Que
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Lei‐Xing An
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Abeer A. Teeti
- Department of Chemistry, School of ScienceHebron UniversityHebronPalestine
| | - Shun‐Wu Xiao
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
2
|
Sunder-Plassmann R, Geusau A, Endler G, Weninger W, Wielscher M. Identification of Genetic Risk Factors for Keratinocyte Cancer in Immunosuppressed Solid Organ Transplant Recipients: A Case-Control Study. Cancers (Basel) 2023; 15:3354. [PMID: 37444464 DOI: 10.3390/cancers15133354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Because of long-term immunosuppression, solid organ transplant recipients are at increased risk for keratinocyte cancer. We matched solid organ transplant patients (n = 150), cases with keratinocyte cancers and tumor-free controls, considering the most important risk factors for keratinocyte cancer in solid organ transplant recipients. Using whole exome data of germline DNA from this patient cohort, we identified several genetic loci associated with the occurrence of multiple keratinocyte cancers. We found one genome-wide significant association of a common single nucleotide polymorphism located in EXOC3 (rs72698504). In addition, we found several variants with a p-value of less than 10-5 associated with the number of keratinocyte cancers. These variants were located in the genes CYB561, WASHC1, PITRM1-AS1, MUC8, ABI3BP, and THBS2-AS1. Using whole exome sequencing data, we performed groupwise tests for rare missense variants in our dataset and found robust associations (p < 10-6, Burden Zeggini test) between MC1R, EPHA8, EPO, MYCT1, ADGRG3, and MGME1 and keratinocyte cancer. Thus, overall, we detected genes involved in pigmentation/UV protection, tumor suppression, immunomodulation, intracellular traffic, and response to UV as genetic risk factors for multiple keratinocyte cancers in solid organ transplant recipients. We also grouped selected genes to pathways and found a selection of genes involved in the "cellular response to UV" to be significantly associated with multiple keratinocyte cancers.
Collapse
Affiliation(s)
| | - Alexandra Geusau
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Endler
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Matthias Wielscher
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Liu X, Li W, Xiao J, Zhong H, Yang K. Case Report: Co-existence of a novel EXOC4-TRHDE gene fusion with PML-RARA in acute promyelocytic leukemia. Front Oncol 2023; 13:1165819. [PMID: 37152017 PMCID: PMC10160461 DOI: 10.3389/fonc.2023.1165819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is a type of myeloid leukemia with a specific chromosomal translocation t(15;17)(q22; q12) forming the PML-RARA fusion gene. However, approximately one third of newly diagnosed patients with APL have additional chromosomal abnormalities. Here, we report a case of APL with co-existence of a novel translocation t(7;12)(q32;q13) involving an out-of-frame fusion between EXOC4 and TRHDE, together with PML-RARA. The patient achieved complete remission after treatment with conventional therapy with all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). Although the causative link between EXOC4-TRHDE and PML-RARA has yet to be established, the patient had a good response to therapy, suggesting that the EXOC4-TRHDE fusion does not affect the efficacy of combined treatment with ATRA and ATO.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Hematology, Zigong First People’s Hospital, Zigong, China
| | - Wanting Li
- Department of Hematology, Zigong First People’s Hospital, Zigong, China
| | - Jian Xiao
- Department of Hematology, Zigong First People’s Hospital, Zigong, China
| | - Huixiu Zhong
- Department of Laboratory Medicine, Zigong First People’s Hospital, Zigong, China
| | - Kun Yang
- Department of Hematology, Zigong First People’s Hospital, Zigong, China
- *Correspondence: Kun Yang,
| |
Collapse
|
4
|
Li H, Fu X, Zhao J, Li C, Li L, Xia P, Guo J, Wei W, Zeng R, Wu J, Sun Y, Huang L, Wang X. EXOC4 Promotes Diffuse-Type Gastric Cancer Metastasis via Activating FAK Signal. Mol Cancer Res 2022; 20:1021-1034. [PMID: 35471457 PMCID: PMC9381130 DOI: 10.1158/1541-7786.mcr-21-0441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/01/2021] [Accepted: 03/17/2022] [Indexed: 01/07/2023]
Abstract
In comparison with intestinal-type gastric cancer, diffuse-type gastric cancer (DGC) is more likely to recur, metastasize, and exhibit worse clinical outcomes; however, the underlying mechanism of DGC recurrence remains elusive. By employing an LC/MS-MS proteomic approach, we identified that exocyst complex component 4 (EXOC4) was significantly upregulated in DGC with recurrence, compared to those with nonrecurrence. High expression of EXOC4 was correlated with tumor metastasis and poor prognosis in patients with DGC. Moreover, EXOC4 promoted cell migration and invasion as well as the tumor metastasis of DGC cells. Mechanistically, EXOC4 regulated the phosphorylation of focal adhesion kinase (FAK) at Y397 sites by stimulating the secretion of integrin α5/β1/EGF and enhancing the interaction of FAK and integrin or EGFR. The FAK inhibitor VS-4718 reversed the metastasis mediated by EXOC4 overexpression and suppressed the tumor growth of patient-derived xenografts derived from DGC with high EXOC4 expression. The EXOC4-FAK axis could be a potential therapeutic target for patients with DGC with high expression of EXOC4. IMPLICATIONS The EXOC4-FAK axis promoted DGC metastasis and could be a potential therapeutic target for patients with DGC.
Collapse
Affiliation(s)
- Haojie Li
- Department of General Surgery, Zhongshan Hospital, General Surgery Research Institute, Fudan University, Shanghai, China
| | - Xuhong Fu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junjie Zhao
- Department of General Surgery, Zhongshan Hospital, General Surgery Research Institute, Fudan University, Shanghai, China
| | - Chen Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingmeng Li
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peiyan Xia
- University of Michigan-Shanghai Jiaotong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Rong Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Corresponding Authors: Xuefei Wang, Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China. Phone: 216-404-1990; Fax: 216-403-7224; E-mail: ; Jiarui Wu, Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China. Phone: 212-030-5000; Fax: 212-032-5034; E-mail: ; Yihong Sun, Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China. Phone: 216-404-1990; Fax: 216-403-7269; E-mail: ; and Liyu Huang, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. Phone: 213-420-7042; E-mail:
| | - Yihong Sun
- Department of General Surgery, Zhongshan Hospital, General Surgery Research Institute, Fudan University, Shanghai, China.,Corresponding Authors: Xuefei Wang, Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China. Phone: 216-404-1990; Fax: 216-403-7224; E-mail: ; Jiarui Wu, Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China. Phone: 212-030-5000; Fax: 212-032-5034; E-mail: ; Yihong Sun, Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China. Phone: 216-404-1990; Fax: 216-403-7269; E-mail: ; and Liyu Huang, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. Phone: 213-420-7042; E-mail:
| | - Liyu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,Corresponding Authors: Xuefei Wang, Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China. Phone: 216-404-1990; Fax: 216-403-7224; E-mail: ; Jiarui Wu, Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China. Phone: 212-030-5000; Fax: 212-032-5034; E-mail: ; Yihong Sun, Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China. Phone: 216-404-1990; Fax: 216-403-7269; E-mail: ; and Liyu Huang, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. Phone: 213-420-7042; E-mail:
| | - Xuefei Wang
- Department of General Surgery, Zhongshan Hospital, General Surgery Research Institute, Fudan University, Shanghai, China.,Corresponding Authors: Xuefei Wang, Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China. Phone: 216-404-1990; Fax: 216-403-7224; E-mail: ; Jiarui Wu, Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China. Phone: 212-030-5000; Fax: 212-032-5034; E-mail: ; Yihong Sun, Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China. Phone: 216-404-1990; Fax: 216-403-7269; E-mail: ; and Liyu Huang, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. Phone: 213-420-7042; E-mail:
| |
Collapse
|
5
|
Lu Z, Zhu X, Ye Y, Fu H, Mao J. PP2A protects podocytes against Adriamycin-induced injury and epithelial-to-mesenchymal transition via suppressing JIP4/p38-MAPK pathway. Cytotechnology 2021; 73:697-713. [PMID: 34629746 DOI: 10.1007/s10616-021-00484-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is one of the major protein serine/threonine phosphatases (PPPs) with regulatory effects on several cellular processes, but its role and function in Adriamycin (ADR)-treated podocytes injury needs to be further explored. Mice podocytes were treated with ADR and PP2A inhibitor (okadaic acid, OA). After transfection, cell apoptosis was detected by flow cytometry. Expressions of podocytes injury-, apoptosis- and epithelial-to-mesenchymal transition (EMT)- and JNK-interacting protein 4/p38-Mitogen-Activated Protein Kinase (JIP4/p38-MAPK) pathway-related factors were measured using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as needed. Interaction between PP2A and JIP4/MAPK pathway was confirmed using co-immunoprecipitation (Co-Ip) assay. In podocytes, ADR inhibited PP2A, Nephrin and Wilms' tumor (WT) 1 expressions yet upregulated apoptosis and Desmin expression, and suppressing PP2A expressionenhanced the effects. PP2A overexpression reversed the effects of ADR on PP2A and podocyte injury-related factors expressions and apoptosis of podocytes. JIP4 was the candidate gene interacting with both PP2A and p38-MAPK pathway, and PP2A overexpression alleviated the effects of ADR on p38-MAPK pathway-related factors expressions. Additionally, in ADR-treated podocytes, PP2A suppression enhanced the effects of ADR, yet silencing of JIP4 reversed the effects of PP2A suppression on regulating p38-MAPK pathway-, apoptosis- and EMT-related factors expressions and apoptosis, with upregulations of B-cell lymphoma-2 (Bcl-2) and E-cadherin and down-regulations of Bcl-2 associated protein X (Bax), cleaved (C)-casapse-3, N-cadherin, Vimentin and Snail. PP2A protects ADR-treated podocytes against injury and EMT by suppressing JIP4/p38-MAPK pathway, showing their interaction in podocytes.
Collapse
Affiliation(s)
- Zhihong Lu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310052 Zhejiang China
| | - Xiujuan Zhu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310052 Zhejiang China
| | - Yuhong Ye
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310052 Zhejiang China
| | - Haidong Fu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310052 Zhejiang China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310052 Zhejiang China
| |
Collapse
|
6
|
Benoit B, Baillet A, Poüs C. Cytoskeleton and Associated Proteins: Pleiotropic JNK Substrates and Regulators. Int J Mol Sci 2021; 22:8375. [PMID: 34445080 PMCID: PMC8395060 DOI: 10.3390/ijms22168375] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
This review extensively reports data from the literature concerning the complex relationships between the stress-induced c-Jun N-terminal kinases (JNKs) and the four main cytoskeleton elements, which are actin filaments, microtubules, intermediate filaments, and septins. To a lesser extent, we also focused on the two membrane-associated cytoskeletons spectrin and ESCRT-III. We gather the mechanisms controlling cytoskeleton-associated JNK activation and the known cytoskeleton-related substrates directly phosphorylated by JNK. We also point out specific locations of the JNK upstream regulators at cytoskeletal components. We finally compile available techniques and tools that could allow a better characterization of the interplay between the different types of cytoskeleton filaments upon JNK-mediated stress and during development. This overview may bring new important information for applied medical research.
Collapse
Affiliation(s)
- Béatrice Benoit
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
| | - Anita Baillet
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
| | - Christian Poüs
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
- Biochimie-Hormonologie, AP-HP Université Paris-Saclay, Site Antoine Béclère, 157 Rue de la Porte de Trivaux, 92141 Clamart, France
| |
Collapse
|
7
|
Bonet-Ponce L, Beilina A, Williamson CD, Lindberg E, Kluss JH, Saez-Atienzar S, Landeck N, Kumaran R, Mamais A, Bleck CKE, Li Y, Cookson MR. LRRK2 mediates tubulation and vesicle sorting from lysosomes. SCIENCE ADVANCES 2020; 6:6/46/eabb2454. [PMID: 33177079 PMCID: PMC7673727 DOI: 10.1126/sciadv.abb2454] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/24/2020] [Indexed: 05/20/2023]
Abstract
Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). However, the biological functions of LRRK2 remain incompletely understood. Here, we report that LRRK2 is recruited to lysosomes after exposure of cells to the lysosome membrane-rupturing agent LLOME. Using an unbiased proteomic screen, we identified the motor adaptor protein JIP4 as an LRRK2 partner at the lysosomal membrane. LRRK2 can recruit JIP4 to lysosomes in a kinase-dependent manner via the phosphorylation of RAB35 and RAB10. Using super-resolution live-cell imaging microscopy and FIB-SEM, we demonstrate that JIP4 promotes the formation of LAMP1-negative tubules that release membranous content from lysosomes. Thus, we describe a new process orchestrated by LRRK2, which we name LYTL (LYsosomal Tubulation/sorting driven by LRRK2), by which lysosomal tubulation is used to release vesicles from lysosomes. Given the central role of the lysosome in PD, LYTL is likely to be disease relevant.
Collapse
Affiliation(s)
- Luis Bonet-Ponce
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra Beilina
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chad D Williamson
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric Lindberg
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jillian H Kluss
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalie Landeck
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ravindran Kumaran
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adamantios Mamais
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher K E Bleck
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Shevchenko E, Poso A, Pantsar T. The autoinhibited state of MKK4: Phosphorylation, putative dimerization and R134W mutant studied by molecular dynamics simulations. Comput Struct Biotechnol J 2020; 18:2687-2698. [PMID: 33101607 PMCID: PMC7550801 DOI: 10.1016/j.csbj.2020.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Protein kinases are crucial components of the cell-signalling machinery that orchestrate and convey messages to their downstream targets. Most often, kinases are activated upon a phosphorylation to their activation loop, which will shift the kinase into the active conformation. The Dual specificity mitogen-activated protein kinase kinase 4 (MKK4) exists in a unique conformation in its inactive unphosphorylated state, where its activation segment appears in a stable α-helical conformation. However, the precise role of this unique conformational state of MKK4 is unknown. Here, by all-atom molecular dynamics simulations (MD simulations), we show that this inactive state is unstable as monomer even when unphosphorylated and that the phosphorylation of the activation segment further destabilizes the autoinhibited α-helix. The specific phosphorylation pattern of the activation segment has also a unique influence on MKK4 dynamics. Furthermore, we observed that this specific inactive state is stable as a dimer, which becomes destabilized upon phosphorylation. Finally, we noticed that the most frequent MKK4 mutation observed in cancer, R134W, which role has not been disclosed to date, contributes to the dimer stability. Based on these data we postulate that MKK4 occurs as a dimer in its inactive autoinhibited state, providing an additional layer for its activity regulation.
Collapse
Affiliation(s)
- Ekaterina Shevchenko
- Dept of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Antti Poso
- Dept of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - Tatu Pantsar
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Corresponding author.
| |
Collapse
|
9
|
Inferring novel genes related to oral cancer with a network embedding method and one-class learning algorithms. Gene Ther 2019; 26:465-478. [PMID: 31455874 DOI: 10.1038/s41434-019-0099-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Oral cancer (OC) is one of the most common cancers threatening human lives. However, OC pathogenesis has yet to be fully uncovered, and thus designing effective treatments remains difficult. Identifying genes related to OC is an important way for achieving this purpose. In this study, we proposed three computational models for inferring novel OC-related genes. In contrast to previously proposed computational methods, which lacked the learning procedures, each proposed model adopted a one-class learning algorithm, which can provide a deep insight into features of validated OC-related genes. A network embedding algorithm (i.e., node2vec) was applied to the protein-protein interaction network to produce the representation of genes. The features of the OC-related genes were used in the training of the one-class algorithm, and the performance of the final inferring model was improved through a feature selection procedure. Then, candidate genes were produced by applying the trained inferring model to other genes. Three tests were performed to screen out the important candidate genes. Accordingly, we obtained three inferred gene sets, any two of which were different. The inferred genes were also different from previous reported genes and some of them have been included in the public Oral Cancer Gene Database. Finally, we analyzed several inferred genes to confirm whether they are novel OC-related genes.
Collapse
|
10
|
Li Z, Yan M, Yu Y, Wang Y, Lei G, Pan Y, Li N, Gobin R, Yu J. LncRNA H19 promotes the committed differentiation of stem cells from apical papilla via miR-141/SPAG9 pathway. Cell Death Dis 2019; 10:130. [PMID: 30755596 PMCID: PMC6372621 DOI: 10.1038/s41419-019-1337-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) exert significant roles at transcriptional and post-transcriptional levels. Stem cells from apical papilla (SCAPs) differentiate into dentin/bone-like tissues under certain conditions. So far, whether lncRNA-H19 can affect the proliferative behaviors and osteo/odontogenesis of SCAPs, as well as its specific mechanism remain to be elucidated. Here, SCAPs were isolated and transfected with the lentiviruses or packaging vectors. Our results showed that lncRNA-H19 had no significant effect on the proliferative behaviors of SCAPs, as presented by CCK-8 assay, EdU assay and flow cytometry (FCM). Furthermore, alkaline phosphatase (ALP) activity, alizarin red staining, Western blot assay (WB), quantitative real-time polymerase chain reaction (qRT-PCR) and in vivo bone formation assay were conducted to verify the biological influences of H19 on SCAPs. Overexpression of H19 led to the enhanced osteo/odontogenesis of SCAPs, whereas knockdown of H19 inhibited these effects. Mechanistically, H19 competitively bound to miR-141 and prevented SPAG9 from miRNA-mediated degradation, thus significantly elevating phosphorylated levels of p38 and JNK and facilitating the committed differentiation of SCAPs. Taken together, the osteo/odontogenesis of SCAPs was upregulated by overexpression of H19 via miR-141/SPAG9 pathway.
Collapse
Affiliation(s)
- Zehan Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Ming Yan
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yan Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yanqiu Wang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Gang Lei
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yin Pan
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Na Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Romila Gobin
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China. .,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
11
|
Yu Y, Zhang M, Hu Y, Zhao Y, Teng F, Lv X, Li J, Zhang Y, Hatch GM, Chen L. Increased Bioavailable Berberine Protects Against Myocardial Ischemia Reperfusion Injury Through Attenuation of NFκB and JNK Signaling Pathways. Int Heart J 2018; 59:1378-1388. [DOI: 10.1536/ihj.17-458] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yang Yu
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University
| | - Yali Hu
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University
| | - Yali Zhao
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University
| | - Fei Teng
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University
| | - Xiaoyan Lv
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University
| | - Ji Li
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University
| | - Ying Zhang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University
| | - Grant M. Hatch
- Department of Pharmacology & Therapeutics, University of Manitoba, Manitoba Institute of Child Health
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University
| |
Collapse
|
12
|
Sec6 enhances cell migration and suppresses apoptosis by elevating the phosphorylation of p38 MAPK, MK2, and HSP27. Cell Signal 2018; 49:1-16. [DOI: 10.1016/j.cellsig.2018.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 11/20/2022]
|
13
|
NAP1L1 regulates NF-κB signaling pathway acting on anti-apoptotic Mcl-1 gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1759-1768. [DOI: 10.1016/j.bbamcr.2017.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/20/2023]
|
14
|
Tanaka T, Goto K, Iino M. Diverse Functions and Signal Transduction of the Exocyst Complex in Tumor Cells. J Cell Physiol 2016; 232:939-957. [DOI: 10.1002/jcp.25619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| |
Collapse
|
15
|
Rodríguez-Carballo E, Gámez B, Ventura F. p38 MAPK Signaling in Osteoblast Differentiation. Front Cell Dev Biol 2016; 4:40. [PMID: 27200351 PMCID: PMC4858538 DOI: 10.3389/fcell.2016.00040] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
The skeleton is a highly dynamic tissue whose structure relies on the balance between bone deposition and resorption. This equilibrium, which depends on osteoblast and osteoclast functions, is controlled by multiple factors that can be modulated post-translationally. Some of the modulators are Mitogen-activated kinases (MAPKs), whose role has been studied in vivo and in vitro. p38-MAPK modifies the transactivation ability of some key transcription factors in chondrocytes, osteoblasts and osteoclasts, which affects their differentiation and function. Several commercially available inhibitors have helped to determine p38 action on these processes. Although it is frequently mentioned in the literature, this chemical approach is not always as accurate as it should be. Conditional knockouts are a useful genetic tool that could unravel the role of p38 in shaping the skeleton. In this review, we will summarize the state of the art on p38 activity during osteoblast differentiation and function, and emphasize the triggers of this MAPK.
Collapse
Affiliation(s)
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| |
Collapse
|
16
|
Martin-Urdiroz M, Deeks MJ, Horton CG, Dawe HR, Jourdain I. The Exocyst Complex in Health and Disease. Front Cell Dev Biol 2016; 4:24. [PMID: 27148529 PMCID: PMC4828438 DOI: 10.3389/fcell.2016.00024] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/11/2016] [Indexed: 01/23/2023] Open
Abstract
Exocytosis involves the fusion of intracellular secretory vesicles with the plasma membrane, thereby delivering integral membrane proteins to the cell surface and releasing material into the extracellular space. Importantly, exocytosis also provides a source of lipid moieties for membrane extension. The tethering of the secretory vesicle before docking and fusion with the plasma membrane is mediated by the exocyst complex, an evolutionary conserved octameric complex of proteins. Recent findings indicate that the exocyst complex also takes part in other intra-cellular processes besides secretion. These various functions seem to converge toward defining a direction of membrane growth in a range of systems from fungi to plants and from neurons to cilia. In this review we summarize the current knowledge of exocyst function in cell polarity, signaling and cell-cell communication and discuss implications for plant and animal health and disease.
Collapse
Affiliation(s)
| | - Michael J Deeks
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Connor G Horton
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Helen R Dawe
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Isabelle Jourdain
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
17
|
Tanaka T, Iino M. Nuclear Translocation of p65 is Controlled by Sec6 via the Degradation of IκBα. J Cell Physiol 2016; 231:719-30. [PMID: 26247921 DOI: 10.1002/jcp.25122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/04/2015] [Indexed: 12/18/2022]
Abstract
Nuclear factor-κB (NF-κB) is an inducible transcription factor that mediates immune and inflammatory responses. NF-κB pathways are also involved in cell adhesion, differentiation, proliferation, autophagy, senescence, and protection against apoptosis. The deregulation of NF-κB activity is found in a number of disease states, including cancer, arthritis, chronic inflammation, asthma, neurodegenerative diseases, and heart disease. The 90 kDa ribosomal S6 kinase (p90RSK) family, which is serine/threonine kinases, is phosphorylated by extracellular signal-regulated kinase1/2 (ERK1/2) and is related to NF-κB pathways. Our previous studies revealed that Sec6, a component of the exocyst complex, plays specific roles in cell-cell adhesion and cell cycle arrest. However, the mechanism by which Sec6 regulates the NF-κB signaling pathway is unknown. We demonstrated that Sec6 knockdown inhibited the degradation of IκBα and delayed the nucleus-cytoplasm translocation of p65 in HeLa cells transfected with Sec6 siRNAs after treatment with tumor necrosis factor alpha (TNF-α). Furthermore, the binding of p65 and cAMP response element binding protein (CREB) binding protein (CBP) or p300 decreased and NF-κB related genes which were inhibitors of NF-κB alpha (IκBα), A20, B cell lymphoma protein 2 (Bcl-2), and monocyte chemoattractant protein-1 (MCP-1) were low in cells transfected with Sec6 siRNAs in response to TNF-α stimulation. Sec6 knockdown decreased the expression of p90RSKs and the phosphorylation of ERK or p90RSK1 at Ser380 or IκBα at Ser32. The present study suggests that Sec6 regulates NF-κB transcriptional activity via the control of the phosphorylation of IκBα, p90RSK1, and ERK.
Collapse
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology, School of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata, Japan.,Department of Dentistry, Oral and Maxillofacial Surgery, Plastic and Reconstructive Surgery, School of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata, Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Surgery, Plastic and Reconstructive Surgery, School of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata, Japan
| |
Collapse
|
18
|
Sec6/8 regulates Bcl-2 and Mcl-1, but not Bcl-xl, in malignant peripheral nerve sheath tumor cells. Apoptosis 2016; 21:594-608. [DOI: 10.1007/s10495-016-1230-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|