1
|
Börding T, Janik T, Bischoff P, Morkel M, Sers C, Horst D. GPA33 expression in colorectal cancer can be induced by WNT inhibition and targeted by cellular therapy. Oncogene 2025; 44:30-41. [PMID: 39472498 DOI: 10.1038/s41388-024-03200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 01/07/2025]
Abstract
GPA33 is a promising surface antigen for targeted therapy in colorectal cancer (CRC). It is expressed almost exclusively in CRC and intestinal epithelia. However, previous clinical studies have not achieved expected response rates. We investigated GPA33 expression and regulation in CRC and developed a GPA33-targeted cellular therapy. We examined GPA33 expression in CRC cohorts using immunohistochemistry and immunofluorescence. We analyzed GPA33 regulation by interference with oncogenic signaling in vitro and in vivo using inhibitors and conditional inducible regulators. Furthermore, we engineered anti-GPA33-CAR T cells and assessed their activity in vitro and in vivo. GPA33 expression showed consistent intratumoral heterogeneity in CRC with antigen loss at the infiltrative tumor edge. This pattern was preserved at metastatic sites. GPA33-positive cells had a differentiated phenotype and low WNT activity. Low GPA33 expression levels were linked to tumor progression in patients with CRC. Downregulation of WNT activity induced GPA33 expression in vitro and in GPA33-negative tumor cell subpopulations in xenografts. GPA33-CAR T cells were activated in response to GPA33 and reduced xenograft growth in mice after intratumoral application. GPA33-targeted therapy may be improved by simultaneous WNT inhibition to enhance GPA33 expression. Furthermore, GPA33 is a promising target for cellular immunotherapy in CRC.
Collapse
Affiliation(s)
- Teresa Börding
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tobias Janik
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philip Bischoff
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Markus Morkel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Sers
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
Patra A, Kandasamy T, Ghosh SS, Saini GK. In vitro anticancer effects of recombinant anisoplin through activation of SAPK/JNK and downregulation of NFκB. Toxicol In Vitro 2024; 94:105737. [PMID: 37984481 DOI: 10.1016/j.tiv.2023.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Emerging chemotherapeutic resistance is considered as one of the major obstacles in breast cancer therapy. Fungal ribotoxins possess promising therapeutic potential against cancer owing to their ribosome-targeted protein synthesis inhibitory action. Though the entomopathogenic ribotoxin anisoplin was characterized in the earlier study, its therapeutic efficacy against cancer cells remained unexplored. In the current study, recombinant anisoplin has been successfully produced in Escherichia coli BL21(DE3) expression system and further purified and validated by in silico, biophysical and functional characterizations. Recombinant anisoplin significantly reduced the viability of MCF-7 breast cancer cells in a dose-dependent manner. It exhibited an IC50 value of 4 μM with concurrent 3.5 fold elevation in the intracellular reactive oxygen species. Anisoplin also resulted in depolarization of the mitochondrial membrane and subsequently induced apoptosis, as evident from flow cytometric analyses. In addition, MCF-7 cells significantly lost their self-renewal capability for clonal expansion and regeneration upon treatment. Immunoblotting experiments further confirmed activation of downstream JNK-dependent MAP kinase signaling pathway due to ribotoxic stress response generated by anisoplin through upregulation of phospho-SAPK/JNK expression. This upregulation was further correlated with the NFκB expression profile, leading to cell death, highlighting therapeutic potential of the recombinant anisoplin.
Collapse
Affiliation(s)
- Arupam Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam, India
| | - Thirukumaran Kandasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam, India
| | - Gurvinder Kaur Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam, India.
| |
Collapse
|
3
|
Narbona J, Gordo RG, Tomé-Amat J, Lacadena J. A New Optimized Version of a Colorectal Cancer-Targeted Immunotoxin Based on a Non-Immunogenic Variant of the Ribotoxin α-Sarcin. Cancers (Basel) 2023; 15:cancers15041114. [PMID: 36831456 PMCID: PMC9954630 DOI: 10.3390/cancers15041114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Due to its incidence and mortality, cancer remains one of the main risks to human health and lifespans. In order to overcome this worldwide disease, immunotherapy and the therapeutic use of immunotoxins have arisen as promising approaches. However, the immunogenicity of foreign proteins limits the dose of immunotoxins administered, thereby leading to a decrease in its therapeutic benefit. In this study, we designed two different variants of non-immunogenic immunotoxins (IMTXA33αSDI and IMTXA33furαSDI) based on a deimmunized variant of the ribotoxin α-sarcin. The inclusion of a furin cleavage site in IMTXA33furαSDI would allow a more efficient release of the toxic domain to the cytosol. Both immunotoxins were produced and purified in the yeast Pichia pastoris and later functionally characterized (both in vitro and in vivo), and immunogenicity assays were carried out. The results showed that both immunotoxins were functionally active and less immunogenic than the wild-type immunotoxin. In addition, IMTXA33furαSDI showed a more efficient antitumor effect (both in vitro and in vivo) due to the inclusion of the furin linker. These results constituted a step forward in the optimization of immunotoxins with low immunogenicity and enhanced antitumor activity, which can lead to potential better outcomes in cancer treatment.
Collapse
Affiliation(s)
- Javier Narbona
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Rubén G. Gordo
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Jaime Tomé-Amat
- Centre for Plant Biotechnology and Genomics (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
4
|
A novel shiga based immunotoxin against Fn-14 receptor on colorectal and lung cancer. Int Immunopharmacol 2022; 110:109076. [DOI: 10.1016/j.intimp.2022.109076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
|
5
|
Sanz L, Ibáñez-Pérez R, Guerrero-Ochoa P, Lacadena J, Anel A. Antibody-Based Immunotoxins for Colorectal Cancer Therapy. Biomedicines 2021; 9:1729. [PMID: 34829955 PMCID: PMC8615520 DOI: 10.3390/biomedicines9111729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023] Open
Abstract
Monoclonal antibodies (mAbs) are included among the treatment options for advanced colorectal cancer (CRC). However, while these mAbs effectively target cancer cells, they may have limited clinical activity. A strategy to improve their therapeutic potential is arming them with a toxic payload. Immunotoxins (ITX) combining the cell-killing ability of a toxin with the specificity of a mAb constitute a promising strategy for CRC therapy. However, several important challenges in optimizing ITX remain, including suboptimal pharmacokinetics and especially the immunogenicity of the toxin moiety. Nonetheless, ongoing research is working to solve these limitations and expand CRC patients' therapeutic armory. In this review, we provide a comprehensive overview of targets and toxins employed in the design of ITX for CRC and highlight a wide selection of ITX tested in CRC patients as well as preclinical candidates.
Collapse
Affiliation(s)
- Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute, Hospital Universitario Puerta de Hierro, 28222 Madrid, Spain
| | - Raquel Ibáñez-Pérez
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Patricia Guerrero-Ochoa
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| |
Collapse
|
6
|
Ghani S, Deravi N, Pirzadeh M, Rafiee B, Gatabi ZR, Bandehpour M, Yarian F. Antibody fragment and targeted colorectal cancer therapy: A global systematic review. Curr Pharm Biotechnol 2021; 23:1061-1071. [PMID: 34375187 DOI: 10.2174/1389201022666210810104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Antibody-based therapeutics have been evidenced promising for the treatment of colorectal cancer patients. However, the size and long circulating half-lives of antibodies can limit their reproducible manufacture in clinical studies. Consequently, in novel therapeutic approaches conventional antibodies are minimized and engineered to produce fragments like Fab, scFv, nanobody, bifunctional antibody, bispecific antibody, minibody and diabody to preserve their high affinity and specificity to target pharmaceutical nanoparticle conjugates. This systematic review for the first time aimed to elucidate the role of various antibody fragments in colorectal cancer treatment. METHOD A systematic literature search in web of sciences, PubMed, Scopus, Google scholar and ProQuest was conducted. Reference lists of the articles were reviewed to identify the relevant papers. The full text search included articles published in English during 1990-2021. RESULTS Most the 53 included studies were conducted in vitro and in most conducted studies single-chain antibodies were among the most used antibody fragments. Most antibodies targeted CEA in the treatment of colorectal cancer. Moreover, a large number of studies observed apoptosis induction and tumor growth inhibition. In addition, few studies implicated the role of the innate immune system as an indirect mechanisms of tumor growth by enhancing NK-cell killing. CONCLUSION Antibody-based therapy was demonstrated to be of a great promise in the treatment of colorectal cancer rather than common treatments such as radiotherapy, chemotherapy, and surgical operations. This type of specified cancer treatment can also induce the activation of innate and specific immune system to eradicate tumor cells.
Collapse
Affiliation(s)
- Sepideh Ghani
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Pirzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Behnam Rafiee
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Zahra Rezanejad Gatabi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mojgan Bandehpour
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yarian
- SBUMS, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, Iran
| |
Collapse
|
7
|
Bioprospecting and Applications of Fungi: A Game Changer in Present Scenario. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Olombrada M, Peña C, Rodríguez-Galán O, Klingauf-Nerurkar P, Portugal-Calisto D, Oborská-Oplová M, Altvater M, Gavilanes JG, Martínez-Del-Pozo Á, de la Cruz J, García-Ortega L, Panse VG. The ribotoxin α-sarcin can cleave the sarcin/ricin loop on late 60S pre-ribosomes. Nucleic Acids Res 2020; 48:6210-6222. [PMID: 32365182 PMCID: PMC7293039 DOI: 10.1093/nar/gkaa315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/27/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
The ribotoxin α-sarcin belongs to a family of ribonucleases that cleave the sarcin/ricin loop (SRL), a critical functional rRNA element within the large ribosomal subunit (60S), thereby abolishing translation. Whether α-sarcin targets the SRL only in mature 60S subunits remains unresolved. Here, we show that, in yeast, α-sarcin can cleave SRLs within late 60S pre-ribosomes containing mature 25S rRNA but not nucleolar/nuclear 60S pre-ribosomes containing 27S pre-rRNA in vivo. Conditional expression of α-sarcin is lethal, but does not impede early pre-rRNA processing, nuclear export and the cytoplasmic maturation of 60S pre-ribosomes. Thus, SRL-cleaved containing late 60S pre-ribosomes seem to escape cytoplasmic proofreading steps. Polysome analyses revealed that SRL-cleaved 60S ribosomal subunits form 80S initiation complexes, but fail to progress to the step of translation elongation. We suggest that the functional integrity of a α-sarcin cleaved SRL might be assessed only during translation.
Collapse
Affiliation(s)
- Miriam Olombrada
- Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense de Madrid, Spain.,Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, CH-8093 Zürich, Switzerland
| | - Cohue Peña
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, CH-8093 Zürich, Switzerland.,Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, CH-8006 Zürich, Switzerland
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Purnima Klingauf-Nerurkar
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, CH-8093 Zürich, Switzerland.,Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, CH-8006 Zürich, Switzerland
| | - Daniela Portugal-Calisto
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, CH-8006 Zürich, Switzerland
| | - Michaela Oborská-Oplová
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, CH-8093 Zürich, Switzerland.,Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, CH-8006 Zürich, Switzerland
| | - Martin Altvater
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, CH-8093 Zürich, Switzerland
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense de Madrid, Spain
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense de Madrid, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Lucía García-Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense de Madrid, Spain
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, CH-8006 Zürich, Switzerland
| |
Collapse
|
9
|
Wei D, Tao Z, Shi Q, Wang L, Liu L, She T, Yi Q, Wen X, Liu L, Li S, Yang H, Jiang X. Selective Photokilling of Colorectal Tumors by Near-Infrared Photoimmunotherapy with a GPA33-Targeted Single-Chain Antibody Variable Fragment Conjugate. Mol Pharm 2020; 17:2508-2517. [PMID: 32396000 DOI: 10.1021/acs.molpharmaceut.0c00210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antibody-based near-infrared photoimmunotherapy (NIR-PIT) is an attractive strategy for cancer treatment. Tumor cells can be selectively and efficiently killed by the targeted delivery of an antibody-photoabsorber complex followed by exposure to NIR light. Glycoprotein A33 antigen (GPA33) is highly expressed in most human colorectal cancers (CRCs) and is an ideal diagnostic and therapeutic target. We previously produced a single-chain fragment of a variable antibody against GPA33 (A33scFv antibody). Here, we investigate the efficacy of NIR-PIT by combining A33scFv with the NIR photoabsorber IR700 (A33scFv-IR700). In vitro, recombinant A33scFv displayed specific binding and delivery of an NIR dye to GPA33-positive tumor cells. Furthermore, A33scFv-IR700-mediated NIR-PIT was successful in rapidly and specifically killing GPA33-positive colorectal tumor cells. NIR-PIT treatment induced the release of lactate dehydrogenase from tumor cells, followed by cell necrosis, rather than apoptosis, through the promotion of reactive oxygen species accumulation in tumor cells. In mice bearing LS174T tumor grafts, A33scFv selectively accumulated in GPA33-positive tumors. Following only a single injection of the conjugate and subsequent illumination, A33scFv-IR700-mediated NIR-PIT induced a significant increase in therapeutic response in LS174T-tumor mice compared with that in the non-NIR-PIT groups (p < 0.001). Because the GPA33 antigen is specifically expressed in CRC tumors, A33scFv-IR700 might be a promising antibody fragment-photoabsorber conjugate for NIR-PIT of CRC.
Collapse
Affiliation(s)
- Danfeng Wei
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China.,Medical Research Center, The Third People's Hospital of Chengdu, The Second Affiliated Chengdu Clinical College of Chongqing Medical University, Chengdu 610031, China.,Key Laboratory of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ze Tao
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiuxiao Shi
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lijun Wang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Second Affiliated Chengdu Clinical College of Chongqing Medical University, Chengdu 610031, China
| | - Lei Liu
- Medical Research Center, The Third People's Hospital of Chengdu, The Second Affiliated Chengdu Clinical College of Chongqing Medical University, Chengdu 610031, China
| | - Tianshan She
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qin Yi
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Liu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengfu Li
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Rezaie E, Amani J, Bidmeshki Pour A, Mahmoodzadeh Hosseini H. A new scfv-based recombinant immunotoxin against EPHA2-overexpressing breast cancer cells; High in vitro anti-cancer potency. Eur J Pharmacol 2020; 870:172912. [PMID: 31926992 DOI: 10.1016/j.ejphar.2020.172912] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/12/2019] [Accepted: 01/07/2020] [Indexed: 11/25/2022]
Abstract
Immunotoxin therapy is one of the immunotherapy strategies providing a new, effective and high potency treatment against various cancers. Breast cancer is the most common cancer among women in many countries. The EPH receptors are a large part of tyrosine kinase receptors family and play an effective role in tumor development and angiogenesis. Among EPH receptors, EPHA2 is more commonly well-known and widely expressed in many cancers like breast cancer. In this study, we evaluated the specification of a designed immunotoxin formed by EPHA2-specific scfv linked with PE38KDEL on EPHA2-overexpressing breast cancer cell line. This new scfv-based recombinant immunotoxin was studied in terms of features such as binding potency, cytotoxicity effects, apoptosis induction ability, and internalization. The flow cytometry results showed that the immunotoxin can significantly (approximately 99%) bind to EPHA2-overexpressing breast cancer cell line (MDA-MB-231) in a low concentration (2.5 ng/ul) while cannot significantly bind to the normal cell line (HEK-293) or even EPHA2-very low expressing cell line (MCF-7). Using the MTT assay and Annexin V/Propidium iodide (PI) double staining method by flow cytometry, we observed significant killing and apoptosis induction of the MDA-MB-231 cells at different concentrations. Immunotoxin tracking by confocal microscopy at 2 h and 6 h revealed a massive presence of immunotoxin in the cytoplasm. Finally, given the in vitro results, it seems that this immunotoxin is competent enough to serve as a good candidate for in vivo studies to further explore the possibility of breast cancer treatment.
Collapse
Affiliation(s)
- Ehsan Rezaie
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran; Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Science, Tehran, Iran.
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ali Bidmeshki Pour
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Ruiz-de-la-Herrán J, Tomé-Amat J, Lázaro-Gorines R, Gavilanes JG, Lacadena J. Inclusion of a Furin Cleavage Site Enhances Antitumor Efficacy against Colorectal Cancer Cells of Ribotoxin α-Sarcin- or RNase T1-Based Immunotoxins. Toxins (Basel) 2019; 11:E593. [PMID: 31614771 PMCID: PMC6832446 DOI: 10.3390/toxins11100593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Immunotoxins are chimeric molecules that combine the specificity of an antibody to recognize and bind tumor antigens with the potency of the enzymatic activity of a toxin, thus, promoting the death of target cells. Among them, RNases-based immunotoxins have arisen as promising antitumor therapeutic agents. In this work, we describe the production and purification of two new immunoconjugates, based on RNase T1 and the fungal ribotoxin α-sarcin, with optimized properties for tumor treatment due to the inclusion of a furin cleavage site. Circular dichroism spectroscopy, ribonucleolytic activity studies, flow cytometry, fluorescence microscopy, and cell viability assays were carried out for structural and in vitro functional characterization. Our results confirm the enhanced antitumor efficiency showed by these furin-immunotoxin variants as a result of an improved release of their toxic domain to the cytosol, favoring the accessibility of both ribonucleases to their substrates. Overall, these results represent a step forward in the design of immunotoxins with optimized properties for potential therapeutic application in vivo.
Collapse
Affiliation(s)
- Javier Ruiz-de-la-Herrán
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Jaime Tomé-Amat
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
- Centre for Plant Biotechnology and Genomics (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain.
| | - Rodrigo Lázaro-Gorines
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Javier Lacadena
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| |
Collapse
|
12
|
A novel Carcinoembryonic Antigen (CEA)-Targeted Trimeric Immunotoxin shows significantly enhanced Antitumor Activity in Human Colorectal Cancer Xenografts. Sci Rep 2019; 9:11680. [PMID: 31406218 PMCID: PMC6690998 DOI: 10.1038/s41598-019-48285-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Immunotoxins are chimeric molecules, which combine antibody specificity to recognize and bind with high-affinity tumor-associated antigens (TAA) with the potency of the enzymatic activity of a toxin, in order to induce the death of target cells. Current immunotoxins present some limitations for cancer therapy, driving the need to develop new prototypes with optimized properties. Herein we describe the production, purification and characterization of two new immunotoxins based on the gene fusion of the anti-carcinoembryonic antigen (CEA) single-chain variable fragment (scFv) antibody MFE23 to α-sarcin, a potent fungal ribotoxin. One construct corresponds to a conventional monomeric single-chain immunotoxin design (IMTXCEAαS), while the other one takes advantage of the trimerbody technology and exhibits a novel trimeric format (IMTXTRICEAαS) with enhanced properties compared with their monomeric counterparts, including size, functional affinity and biodistribution, which endow them with an improved tumor targeting capacity. Our results show the highly specific cytotoxic activity of both immunotoxins in vitro, which was enhanced in the trimeric format compared to the monomeric version. Moreover, the trimeric immunotoxin also exhibited superior antitumor activity in vivo in mice bearing human colorectal cancer xenografts. Therefore, trimeric immunotoxins represent a further step in the development of next-generation therapeutic immunotoxins.
Collapse
|
13
|
Oroz J, Laurents DV. RNA binding proteins: Diversity from microsurgeons to cowboys. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194398. [PMID: 31271896 DOI: 10.1016/j.bbagrm.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 01/21/2023]
Abstract
The conformation and mechanism of proteins that degrade and bind RNA, which has provided key insights into post-transcriptional gene regulation, is explored here. During the twentieth century's last decades, the characterization of ribonucleases and RNA binding domains revealed the diversity of their reaction mechanisms and modes of RNA recognition, and the bases of protein folding, substrate specificity and binding affinity. More recent research showed how these domains combine through oligomerization or genetic recombination to create larger proteins with highly specific and readily programmable ribonucleolytic activity. In the last 15 years, the study of the capacity of proteins, usually disordered, to pool RNAs into discrete, non-aqueous microdroplets to facilitate their transport, modification and degradation - analogous to cowboys herding cattle - has advanced our comprehension of gene expression. Finally, the current uses of RNA binding proteins and the future applications of protein/RNA microdroplets are highlighted.
Collapse
Affiliation(s)
- Javier Oroz
- "Rocasolano" Institute of Physical Chemistry, Spanish National Research Council, Serrano 119, Madrid 28006, Spain
| | - Douglas V Laurents
- "Rocasolano" Institute of Physical Chemistry, Spanish National Research Council, Serrano 119, Madrid 28006, Spain.
| |
Collapse
|
14
|
Pore-Forming Proteins from Cnidarians and Arachnids as Potential Biotechnological Tools. Toxins (Basel) 2019; 11:toxins11060370. [PMID: 31242582 PMCID: PMC6628452 DOI: 10.3390/toxins11060370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Animal venoms are complex mixtures of highly specialized toxic molecules. Cnidarians and arachnids produce pore-forming proteins (PFPs) directed against the plasma membrane of their target cells. Among PFPs from cnidarians, actinoporins stand out for their small size and molecular simplicity. While native actinoporins require only sphingomyelin for membrane binding, engineered chimeras containing a recognition antibody-derived domain fused to an actinoporin isoform can nonetheless serve as highly specific immunotoxins. Examples of such constructs targeted against malignant cells have been already reported. However, PFPs from arachnid venoms are less well-studied from a structural and functional point of view. Spiders from the Latrodectus genus are professional insect hunters that, as part of their toxic arsenal, produce large PFPs known as latrotoxins. Interestingly, some latrotoxins have been identified as potent and highly-specific insecticides. Given the proteinaceous nature of these toxins, their promising future use as efficient bioinsecticides is discussed throughout this Perspective. Protein engineering and large-scale recombinant production are critical steps for the use of these PFPs as tools to control agriculturally important insect pests. In summary, both families of PFPs, from Cnidaria and Arachnida, appear to be molecules with promising biotechnological applications.
Collapse
|
15
|
Fungal Ribotoxins: A Review of Potential Biotechnological Applications. Toxins (Basel) 2017; 9:toxins9020071. [PMID: 28230789 PMCID: PMC5331450 DOI: 10.3390/toxins9020071] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/20/2022] Open
Abstract
Fungi establish a complex network of biological interactions with other organisms in nature. In many cases, these involve the production of toxins for survival or colonization purposes. Among these toxins, ribotoxins stand out as promising candidates for their use in biotechnological applications. They constitute a group of highly specific extracellular ribonucleases that target a universally conserved sequence of RNA in the ribosome, the sarcin-ricin loop. The detailed molecular study of this family of toxic proteins over the past decades has highlighted their potential in applied research. Remarkable examples would be the recent studies in the field of cancer research with promising results involving ribotoxin-based immunotoxins. On the other hand, some ribotoxin-producer fungi have already been studied in the control of insect pests. The recent role of ribotoxins as insecticides could allow their employment in formulas and even as baculovirus-based biopesticides. Moreover, considering the important role of their target in the ribosome, they can be used as tools to study how ribosome biogenesis is regulated and, eventually, may contribute to a better understanding of some ribosomopathies.
Collapse
|
16
|
Jones TD, Hearn AR, Holgate RGE, Kozub D, Fogg MH, Carr FJ, Baker MP, Lacadena J, Gehlsen KR. A deimmunised form of the ribotoxin, α-sarcin, lacking CD4+ T cell epitopes and its use as an immunotoxin warhead. Protein Eng Des Sel 2016; 29:531-540. [PMID: 27578884 PMCID: PMC5081043 DOI: 10.1093/protein/gzw045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/30/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin–ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids. Various mutations were tested individually within each epitope and then in combination to isolate deimmunised α-sarcin variants that had the desired properties of silencing T cell epitopes and retention of the ability to inhibit protein synthesis (equivalent to wild-type, WT α-sarcin). A deimmunised variant (D9T/Q142T) demonstrated a complete lack of T cell activation in in vitro whole protein human T cell assays using peripheral blood mononuclear cells from donors with diverse HLA allotypes. Generation of an immunotoxin by fusion of the D9T/Q142T variant to a single-chain Fv targeting Her2 demonstrated potent cell killing equivalent to a fusion protein comprising the WT α-sarcin. These results represent the first fungal ribotoxin to be deimmunised with the potential to construct a new generation of deimmunised immunotoxin therapeutics.
Collapse
Affiliation(s)
- Tim D Jones
- Abzena plc., Babraham Research Campus, Babraham, CambridgeCB22 3AT, UK
| | - Arron R Hearn
- Abzena plc., Babraham Research Campus, Babraham, CambridgeCB22 3AT, UK
| | | | - Dorota Kozub
- Abzena plc., Babraham Research Campus, Babraham, CambridgeCB22 3AT, UK
| | - Mark H Fogg
- Abzena plc., Babraham Research Campus, Babraham, CambridgeCB22 3AT, UK
| | - Francis J Carr
- Abtelum Biomedical, Inc. 175 Briar Lane, Westwood, MA 02090, USA
| | - Matthew P Baker
- Abzena plc., Babraham Research Campus, Babraham, CambridgeCB22 3AT, UK
| | - Javier Lacadena
- Departamento de Bioquimica y Biologia Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid 28040, Spain
| | - Kurt R Gehlsen
- Research Corporation Technologies Inc., 5210 E. Williams Circle #240, Tucson, AZ 85711, USA
| |
Collapse
|
17
|
Rama AR, Aguilera A, Melguizo C, Caba O, Prados J. Tissue Specific Promoters in Colorectal Cancer. DISEASE MARKERS 2015; 2015:390161. [PMID: 26648599 PMCID: PMC4662999 DOI: 10.1155/2015/390161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/26/2015] [Indexed: 01/29/2023]
Abstract
Colorectal carcinoma is the third most prevalent cancer in the world. In the most advanced stages, the use of chemotherapy induces a poor response and is usually accompanied by other tissue damage. Significant progress based on suicide gene therapy has demonstrated that it may potentiate the classical cytotoxic effects in colorectal cancer. The inconvenience still rests with the targeting and the specificity efficiency. The main target of gene therapy is to achieve an effective vehicle to hand over therapeutic genes safely into specific cells. One possibility is the use of tumor-specific promoters overexpressed in cancers. They could induce a specific expression of therapeutic genes in a given tumor, increasing their localized activity. Several promoters have been assayed into direct suicide genes to cancer cells. This review discusses the current status of specific tumor-promoters and their great potential in colorectal carcinoma treatment.
Collapse
Affiliation(s)
- A. R. Rama
- Department of Health Science, University of Jaen, Jaen, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Armilla, 18100 Granada, Spain
| | - A. Aguilera
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Armilla, 18100 Granada, Spain
| | - C. Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Armilla, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs GRANADA), SAS-Universidad de Granada, Granada, Spain
| | - O. Caba
- Department of Health Science, University of Jaen, Jaen, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Armilla, 18100 Granada, Spain
| | - J. Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Armilla, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs GRANADA), SAS-Universidad de Granada, Granada, Spain
| |
Collapse
|