1
|
Melkonian TR, Vuksanovic N, Person MD, Chen TY, Chang WC, Allen KN, Whitman CP. Beyond the β-α-β Fold: Characterization of a SnoaL Domain in the Tautomerase Superfamily. Biochemistry 2025; 64:1950-1962. [PMID: 40231412 DOI: 10.1021/acs.biochem.5c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Tautomerase superfamily (TSF) members are constructed from a single β-α-β unit or two consecutively joined β-α-β units, and most have a catalytic Pro1. This pattern prevails throughout the superfamily consisting of more than 11,000 members where homo- or heterohexamers are localized in the 4-oxalocrotonate tautomerase (4OT)-like subgroup and trimers are found in the other four subgroups except for a small subset of 4OT trimers, symmetric and asymmetric, that are found in the 4OT-like subgroup. During a sequence similarity network (SSN) update, a small cluster of sequences (117 sequences) was discovered in the 4OT-like subgroup that begins with Pro1. These sequences consist of a 4OT-like domain fused to a SnoaL domain at the C-terminus (except for one), as annotated in the UniProt database. The Pseudooceanicola atlanticus one (designated "4OT-SnoaL") was chosen for kinetic, mechanistic, and crystallographic analysis. 4OT-SnoaL did not display detectable activity with known TSF substrates, suggesting a new activity. A genome neighborhood diagram (GND) places 4OT-SnoaL in an operon for a hydantoin degradation/utilization pathway. Treatment of 4OT-SnoaL with 3-bromopropiolate results in covalent modification of Pro1 by a 3-oxopropanoate adduct. Crystallographic analysis of the apo and modified enzymes shows that the 4OT domain is a hexamer of six identical subunits (a trimer of dimers), where each dimer consists of two β-α-β building blocks. Each C-terminus is attached to a SnoaL-like domain that displays a distorted α + β-barrel. The motif is a new one in the TSF and adds structural diversity to the TSF by using a SnoaL-like domain.
Collapse
Affiliation(s)
- Trevor R Melkonian
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nemanja Vuksanovic
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Maria D Person
- Center for Biomedical Research Support, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tzu-Yu Chen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Karen N Allen
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Christian P Whitman
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Hogg BN, Schnepel C, Finnigan JD, Charnock SJ, Hayes MA, Turner NJ. The Impact of Metagenomics on Biocatalysis. Angew Chem Int Ed Engl 2024; 63:e202402316. [PMID: 38494442 PMCID: PMC11497237 DOI: 10.1002/anie.202402316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
In the ever-growing demand for sustainable ways to produce high-value small molecules, biocatalysis has come to the forefront of greener routes to these chemicals. As such, the need to constantly find and optimise suitable biocatalysts for specific transformations has never been greater. Metagenome mining has been shown to rapidly expand the toolkit of promiscuous enzymes needed for new transformations, without requiring protein engineering steps. If protein engineering is needed, the metagenomic candidate can often provide a better starting point for engineering than a previously discovered enzyme on the open database or from literature, for instance. In this review, we highlight where metagenomics has made substantial impact on the area of biocatalysis in recent years. We review the discovery of enzymes in previously unexplored or 'hidden' sequence space, leading to the characterisation of enzymes with enhanced properties that originate from natural selection pressures in native environments.
Collapse
Affiliation(s)
- Bethany N. Hogg
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUK
| | - Christian Schnepel
- School of Engineering Sciences in Chemistry, Biotechnology and HealthDepartment of Industrial BiotechnologyKTH Royal Institute of TechnologyAlbaNova University Center11421StockholmSE
| | | | | | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery SciencesBiopharmaceuticals R&D AstraZenecaMölndal 431 50GothenburgSE
| | - Nicholas J. Turner
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
3
|
Cowan DA, Albers SV, Antranikian G, Atomi H, Averhoff B, Basen M, Driessen AJM, Jebbar M, Kelman Z, Kerou M, Littlechild J, Müller V, Schönheit P, Siebers B, Vorgias K. Extremophiles in a changing world. Extremophiles 2024; 28:26. [PMID: 38683238 PMCID: PMC11058618 DOI: 10.1007/s00792-024-01341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Extremophiles and their products have been a major focus of research interest for over 40 years. Through this period, studies of these organisms have contributed hugely to many aspects of the fundamental and applied sciences, and to wider and more philosophical issues such as the origins of life and astrobiology. Our understanding of the cellular adaptations to extreme conditions (such as acid, temperature, pressure and more), of the mechanisms underpinning the stability of macromolecules, and of the subtleties, complexities and limits of fundamental biochemical processes has been informed by research on extremophiles. Extremophiles have also contributed numerous products and processes to the many fields of biotechnology, from diagnostics to bioremediation. Yet, after 40 years of dedicated research, there remains much to be discovered in this field. Fortunately, extremophiles remain an active and vibrant area of research. In the third decade of the twenty-first century, with decreasing global resources and a steadily increasing human population, the world's attention has turned with increasing urgency to issues of sustainability. These global concerns were encapsulated and formalized by the United Nations with the adoption of the 2030 Agenda for Sustainable Development and the presentation of the seventeen Sustainable Development Goals (SDGs) in 2015. In the run-up to 2030, we consider the contributions that extremophiles have made, and will in the future make, to the SDGs.
Collapse
Affiliation(s)
- D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa.
| | - S V Albers
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - G Antranikian
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073, Hamburg, Germany
| | - H Atomi
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - B Averhoff
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - M Basen
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - A J M Driessen
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - M Jebbar
- Univ. Brest, CNRS, Ifremer, Laboratoire de Biologie Et d'Écologie Des Écosystèmes Marins Profonds (BEEP), IUEM, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Z Kelman
- Institute for Bioscience and Biotechnology Research and the National Institute of Standards and Technology, Rockville, MD, USA
| | - M Kerou
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - J Littlechild
- Henry Wellcome Building for Biocatalysis, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - V Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - P Schönheit
- Institute of General Microbiology, Christian Albrechts University, Kiel, Germany
| | - B Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, 45117, Essen, Germany
| | - K Vorgias
- Biology Department and RI-Bio3, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Bučko M, Kaniaková K, Hronská H, Gemeiner P, Rosenberg M. Epoxide Hydrolases: Multipotential Biocatalysts. Int J Mol Sci 2023; 24:7334. [PMID: 37108499 PMCID: PMC10138715 DOI: 10.3390/ijms24087334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Epoxide hydrolases are attractive and industrially important biocatalysts. They can catalyze the enantioselective hydrolysis of epoxides to the corresponding diols as chiral building blocks for bioactive compounds and drugs. In this review article, we discuss the state of the art and development potential of epoxide hydrolases as biocatalysts based on the most recent approaches and techniques. The review covers new approaches to discover epoxide hydrolases using genome mining and enzyme metagenomics, as well as improving enzyme activity, enantioselectivity, enantioconvergence, and thermostability by directed evolution and a rational design. Further improvements in operational and storage stabilization, reusability, pH stabilization, and thermal stabilization by immobilization techniques are discussed in this study. New possibilities for expanding the synthetic capabilities of epoxide hydrolases by their involvement in non-natural enzyme cascade reactions are described.
Collapse
Affiliation(s)
- Marek Bučko
- Department of Glycobiotechnology, Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia;
| | - Katarína Kaniaková
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (K.K.); (H.H.); (M.R.)
| | - Helena Hronská
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (K.K.); (H.H.); (M.R.)
| | - Peter Gemeiner
- Department of Glycobiotechnology, Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia;
| | - Michal Rosenberg
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (K.K.); (H.H.); (M.R.)
| |
Collapse
|
5
|
Functional Characterization and Synthetic Application of Is2-SDR, a Novel Thermostable and Promiscuous Ketoreductase from a Hot Spring Metagenome. Int J Mol Sci 2022; 23:ijms232012153. [PMID: 36293010 PMCID: PMC9603792 DOI: 10.3390/ijms232012153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
In a metagenome mining-based search of novel thermostable hydroxysteroid dehydrogenases (HSDHs), enzymes that are able to selectively oxidize/reduce steroidal compounds, a novel short-chain dehydrogenase/reductase (SDR), named Is2-SDR, was recently discovered. This enzyme, found in an Icelandic hot spring metagenome, shared a high sequence similarity with HSDHs, but, unexpectedly, showed no activity in the oxidation of the tested steroid substrates, e.g., cholic acid. Despite that, Is2-SDR proved to be a very active and versatile ketoreductase, being able to regio- and stereoselectively reduce a diversified panel of carbonylic substrates, including bulky ketones, α- and β-ketoesters, and α-diketones of pharmaceutical relevance. Further investigations showed that Is2-SDR was indeed active in the regio- and stereoselective reduction of oxidized steroid derivatives, and this outcome was rationalized by docking analysis in the active site model. Moreover, Is2-SDR showed remarkable thermostability, with an apparent melting temperature (TM) around 75 °C, as determined by circular dichroism analysis, and no significant decrease in catalytic activity, even after 5 h at 80 °C. A broad tolerance to both water-miscible and water-immiscible organic solvents was demonstrated as well, thus, confirming the potential of this new biocatalyst for its synthetic application.
Collapse
|
6
|
Sanfilippo C, Patti A. Epoxide hydrolase activity in the aqueous extracts of vegetable flours and application to the stereoselective hydrolysis of limonene oxide. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Wohlgemuth R, Littlechild J. Complexity reduction and opportunities in the design, integration and intensification of biocatalytic processes for metabolite synthesis. Front Bioeng Biotechnol 2022; 10:958606. [PMID: 35935499 PMCID: PMC9355135 DOI: 10.3389/fbioe.2022.958606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The biosynthesis of metabolites from available starting materials is becoming an ever important area due to the increasing demands within the life science research area. Access to metabolites is making essential contributions to analytical, diagnostic, therapeutic and different industrial applications. These molecules can be synthesized by the enzymes of biological systems under sustainable process conditions. The facile synthetic access to the metabolite and metabolite-like molecular space is of fundamental importance. The increasing knowledge within molecular biology, enzyme discovery and production together with their biochemical and structural properties offers excellent opportunities for using modular cell-free biocatalytic systems. This reduces the complexity of synthesizing metabolites using biological whole-cell approaches or by classical chemical synthesis. A systems biocatalysis approach can provide a wealth of optimized enzymes for the biosynthesis of already identified and new metabolite molecules.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
- Swiss Coordination Committee for Biotechnology, Zurich, Switzerland
| | - Jennifer Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
8
|
Zhang Y, Pedersen JN, Eser BE, Guo Z. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnol Adv 2022; 60:107991. [PMID: 35654281 DOI: 10.1016/j.biotechadv.2022.107991] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
The global production of plastics has continuously been soaring over the last decades due to their extensive use in our daily life and in industries. Although synthetic plastics offer great advantages from packaging to construction and electronics, their low biodegradability induce serious plastic pollution that damage the environment, human health and make irreversible changes in the ecological cycle. In particular, plastics containing only carbon-carbon (C-C) backbone are less susceptible to degradation due to the lack of hydrolysable groups. The representative polyethylene (PE) and polystyrene (PS) account for about 40% of the total plastic production. Various chemical and biological processes with great potential have been developed for plastic recycle and reuse, but biodegradation seems to be the most attractive and eco-friendly method to combat this growing environmental problem. In this review, we first summarize the current advances in PE and PS biodegradation, including isolation of microbes and potential degrading enzymes from different sources. Next, the state-of-the-art techniques used for evaluating and monitoring PE and PS degradation, the scientific toolboxes for enzyme discovery as well as the challenges and strategies for plastic biodegradation are intensively discussed. In return, it inspires a further technological exploration in expanding the diversity of species and enzymes, disclosing the essential pathways and developing new approaches to utilize plastic waste as feedstock for recycling and upcycling.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | | | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
9
|
Mesbah NM. Industrial Biotechnology Based on Enzymes From Extreme Environments. Front Bioeng Biotechnol 2022; 10:870083. [PMID: 35480975 PMCID: PMC9036996 DOI: 10.3389/fbioe.2022.870083] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
Biocatalysis is crucial for a green, sustainable, biobased economy, and this has driven major advances in biotechnology and biocatalysis over the past 2 decades. There are numerous benefits to biocatalysis, including increased selectivity and specificity, reduced operating costs and lower toxicity, all of which result in lower environmental impact of industrial processes. Most enzymes available commercially are active and stable under a narrow range of conditions, and quickly lose activity at extremes of ion concentration, temperature, pH, pressure, and solvent concentrations. Extremophilic microorganisms thrive under extreme conditions and produce robust enzymes with higher activity and stability under unconventional circumstances. The number of extremophilic enzymes, or extremozymes, currently available are insufficient to meet growing industrial demand. This is in part due to difficulty in cultivation of extremophiles in a laboratory setting. This review will present an overview of extremozymes and their biotechnological applications. Culture-independent and genomic-based methods for study of extremozymes will be presented.
Collapse
Affiliation(s)
- Noha M Mesbah
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
10
|
Yang J, Mori T, Wei X, Matsuda Y, Abe I. Structural Basis for Isomerization Reactions in Fungal Tetrahydroxanthone Biosynthesis and Diversification. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jiali Yang
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- PRESTO Japan Science and Technology Agency Kawaguchi Saitama 332-0012 Japan
| | - Xingxing Wei
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong SAR China
| | - Yudai Matsuda
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong SAR China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
11
|
Yang J, Mori T, Wei X, Matsuda Y, Abe I. Structural Basis for Isomerization Reactions in Fungal Tetrahydroxanthone Biosynthesis and Diversification. Angew Chem Int Ed Engl 2021; 60:19458-19465. [PMID: 34180120 DOI: 10.1002/anie.202107884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/08/2022]
Abstract
The novel isomerase NsrQ, from Aspergillus novofumigatus, is a key enzyme in the biosynthesis of fungal tetrahydroxanthones and is responsible for dearomatizing cyclization to provide a tetrahydroxanthone scaffold. NsrQ catalyzes a two-step isomerization reaction, involving the isomerization of allylic alcohol and subsequent inversion of configuration at the methyl group. We report on the biochemical and structural characterizations of NsrQ, and its homologue Dcr3, from Diaporthe longicolla. The crystal structures of NsrQ and Dcr3 revealed their similar overall structures, with a cone-shaped α+β barrel fold, to those of the nuclear transport factor 2-like superfamily enzymes. Furthermore, the structures of Dcr3 and NsrQ variants complexed with substrate analogues and the site-directed mutagenesis studies identified the catalytic residues and the important hydrophobic residues in shaping the active site pocket for substrate binding. These enzymes thus utilize Glu and His residues as acid-base catalysts. Based on these observations, we proposed a detailed reaction mechanism for NsrQ-catalyzed isomerization reactions.
Collapse
Affiliation(s)
- Jiali Yang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,PRESTO Japan, Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Xingxing Wei
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
12
|
Sysoev M, Grötzinger SW, Renn D, Eppinger J, Rueping M, Karan R. Bioprospecting of Novel Extremozymes From Prokaryotes-The Advent of Culture-Independent Methods. Front Microbiol 2021; 12:630013. [PMID: 33643258 PMCID: PMC7902512 DOI: 10.3389/fmicb.2021.630013] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Extremophiles are remarkable organisms that thrive in the harshest environments on Earth, such as hydrothermal vents, hypersaline lakes and pools, alkaline soda lakes, deserts, cold oceans, and volcanic areas. These organisms have developed several strategies to overcome environmental stress and nutrient limitations. Thus, they are among the best model organisms to study adaptive mechanisms that lead to stress tolerance. Genetic and structural information derived from extremophiles and extremozymes can be used for bioengineering other nontolerant enzymes. Furthermore, extremophiles can be a valuable resource for novel biotechnological and biomedical products due to their biosynthetic properties. However, understanding life under extreme conditions is challenging due to the difficulties of in vitro cultivation and observation since > 99% of organisms cannot be cultivated. Consequently, only a minor percentage of the potential extremophiles on Earth have been discovered and characterized. Herein, we present a review of culture-independent methods, sequence-based metagenomics (SBM), and single amplified genomes (SAGs) for studying enzymes from extremophiles, with a focus on prokaryotic (archaea and bacteria) microorganisms. Additionally, we provide a comprehensive list of extremozymes discovered via metagenomics and SAGs.
Collapse
Affiliation(s)
- Maksim Sysoev
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stefan W. Grötzinger
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dominik Renn
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jörg Eppinger
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany
| | - Ram Karan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
13
|
Qin L, Wu L, Nie Y, Xu Y. Biosynthesis of chiral cyclic and heterocyclic alcohols via CO/C–H/C–O asymmetric reactions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00113b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers the recent progress in various biological approaches applied to the synthesis of enantiomerically pure cyclic and heterocyclic alcohols through CO/C–H/C–O asymmetric reactions.
Collapse
Affiliation(s)
- Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| |
Collapse
|
14
|
Stojanovski G, Dobrijevic D, Hailes HC, Ward JM. Identification and catalytic properties of new epoxide hydrolases from the genomic data of soil bacteria. Enzyme Microb Technol 2020; 139:109592. [PMID: 32732040 PMCID: PMC7429986 DOI: 10.1016/j.enzmictec.2020.109592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 05/07/2020] [Indexed: 11/25/2022]
Abstract
Epoxide hydrolases (EHs) catalyse the conversion of epoxides into vicinal diols. These enzymes have extensive value in biocatalysis as they can generate enantiopure epoxides and diols which are important and versatile synthetic intermediates for the fine chemical and pharmaceutical industries. Despite these benefits, they have seen limited use in the bioindustry and novel EHs continue to be reported in the literature. We identified twenty-nine putative EHs within the genomes of soil bacteria. Eight of these EHs were explored in terms of their activity. Two limonene epoxide hydrolases (LEHs) and one ⍺/β EH were active on a model compound styrene oxide and its ring-substituted derivatives, with low to good percentage conversions of 18-86%. Further exploration of the substrate scope with enantiopure (R)-styrene oxide and (S)-styrene oxide, showed different epoxide ring opening regioselectivities. Two enzymes, expressed from plasmids pQR1984 and pQR1990 de-symmetrised the meso-epoxide cyclohexene oxide, forming the (R,R)-diol with high enantioselectivity. Two LEHs, from plasmids pQR1980 and pQR1982 catalysed the hydrolysis of (+) and (-) limonene oxide, with diastereomeric preference for the (1S,2S,4R)- and (1R,2R,4S)-diol products, respectively. The enzyme from plasmid pQR1982 had a good substrate scope for a LEH, being active towards styrene oxide, its analogues, cyclohexene oxide and 1,2-epoxyhexane in addition to (±)-limonene oxide. The enzymes from plasmids pQR1982 and pQR1984 had good substrate scopes and their enzymatic properties were characterised with respect to styrene oxide. They had comparable temperature optima and pQR1984 had 70% activity in the presence of 40% of the green solvent MeOH, a useful property for bio-industrial applications. Overall, this study has provided novel EHs with potential value in industrial biocatalysis.
Collapse
Affiliation(s)
- Gorjan Stojanovski
- Department of Biochemical Engineering, University College London, Bernard Katz, London WC1E 6BT, UK.
| | - Dragana Dobrijevic
- Department of Biochemical Engineering, University College London, Bernard Katz, London WC1E 6BT, UK.
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - John M Ward
- Department of Biochemical Engineering, University College London, Bernard Katz, London WC1E 6BT, UK.
| |
Collapse
|
15
|
Bertuletti S, Ferrandi EE, Marzorati S, Vanoni M, Riva S, Monti D. Insights into the Substrate Promiscuity of Novel Hydroxysteroid Dehydrogenases. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Susanna Bertuletti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
- Università degli Studi di Milano Via Giuseppe Colombo 60 20133 Milano Italy
| | - Erica Elisa Ferrandi
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| | - Stefano Marzorati
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| | - Marta Vanoni
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| | - Daniela Monti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| |
Collapse
|
16
|
Bassanini I, Ferrandi EE, Monti D, Riva S. Studies on the Catalytic Promiscuity of Limonene Epoxide Hydrolases in the Non‐hydrolytic Ring Opening of 1,2‐Epoxides. Chembiochem 2020; 21:1868-1874. [DOI: 10.1002/cbic.201900694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/11/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Ivan Bassanini
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) – CNR Via Mario Bianco, 9 20131 Milano Italy
- Università degli Studi di MilanoDipartimento di Scienze Farmaceutiche via Mangiagalli 25 20133 Milano Italy
| | - Erica Elisa Ferrandi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) – CNR Via Mario Bianco, 9 20131 Milano Italy
| | - Daniela Monti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) – CNR Via Mario Bianco, 9 20131 Milano Italy
| | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) – CNR Via Mario Bianco, 9 20131 Milano Italy
| |
Collapse
|
17
|
Significant improvement in catalytic activity and enantioselectivity of a Phaseolus vulgaris epoxide hydrolase, PvEH3, towards ortho-cresyl glycidyl ether based on the semi-rational design. Sci Rep 2020; 10:1680. [PMID: 32015448 PMCID: PMC6997370 DOI: 10.1038/s41598-020-58693-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
The investigation of substrate spectrum towards five racemic (rac-) aryl glycidyl ethers (1a-5a) indicated that E. coli/pveh3, an E. coli BL21(DE3) transformant harboring a PvEH3-encoding gene pveh3, showed the highest EH activity and enantiomeric ratio (E) towards rac-3a. For efficiently catalyzing the kinetic resolution of rac-3a, the activity and E value of PvEH3 were further improved by site-directed mutagenesis of selected residues. Based on the semi-rational design of an NC-loop in PvEH3, four single-site variants of pveh3 were amplified by PCR, and intracellularly expressed in E. coli BL21(DE3), respectively. E. coli/pveh3E134K and /pveh3T137P had the enhanced EH activities of 15.3 ± 0.4 and 16.1 ± 0.5 U/g wet cell as well as E values of 21.7 ± 1.0 and 21.2 ± 1.1 towards rac-3a. Subsequently, E. coli/pveh3E134K/T137P harboring a double-site variant gene was also constructed, having the highest EH activity of 22.4 ± 0.6 U/g wet cell and E value of 24.1 ± 1.2. The specific activity of the purified PvEH3E134K/T137P (14.5 ± 0.5 U/mg protein) towards rac-3a and its catalytic efficiency (kcat/Km of 5.67 mM-1 s-1) for (S)-3a were 1.7- and 3.54-fold those (8.4 ± 0.3 U/mg and 1.60 mM-1 s-1) of PvEH3. The gram-scale kinetic resolution of rac-3a using whole wet cells of E. coli/pveh3E134K/T137P was performed at 20 °C for 7.0 h, producing (R)-3a with 99.4% ees and 38.5 ± 1.2% yield. Additionally, the mechanism of PvEH3E134K/T137P with remarkably improved E value was analyzed by molecular docking simulation.
Collapse
|
18
|
Devine PN, Howard RM, Kumar R, Thompson MP, Truppo MD, Turner NJ. Extending the application of biocatalysis to meet the challenges of drug development. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0055-1] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Ferrandi EE, Sayer C, De Rose SA, Guazzelli E, Marchesi C, Saneei V, Isupov MN, Littlechild JA, Monti D. New Thermophilic α/β Class Epoxide Hydrolases Found in Metagenomes From Hot Environments. Front Bioeng Biotechnol 2018; 6:144. [PMID: 30386778 PMCID: PMC6198070 DOI: 10.3389/fbioe.2018.00144] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
Two novel epoxide hydrolases (EHs), Sibe-EH and CH65-EH, were identified in the metagenomes of samples collected in hot springs in Russia and China, respectively. The two α/β hydrolase superfamily fold enzymes were cloned, over-expressed in Escherichia coli, purified and characterized. The new EHs were active toward a broad range of substrates, and in particular, Sibe-EH was excellent in the desymmetrization of cis-2,3-epoxybutane producing the (2R,3R)-diol product with ee exceeding 99%. Interestingly these enzymes also hydrolyse (4R)-limonene-1,2-epoxide with Sibe-EH being specific for the trans isomer. The Sibe-EH is a monomer in solution whereas the CH65-EH is a dimer. Both enzymes showed high melting temperatures with the CH65-EH being the highest at 85°C retaining 80% of its initial activity after 3 h thermal treatment at 70°C making it the most thermal tolerant wild type epoxide hydrolase described. The Sibe-EH and CH65-EH have been crystallized and their structures determined to high resolution, 1.6 and 1.4 Å, respectively. The CH65-EH enzyme forms a dimer via its cap domains with different relative orientation of the monomers compared to previously described EHs. The entrance to the active site cavity is located in a different position in CH65-EH and Sibe-EH in relation to other known bacterial and mammalian EHs.
Collapse
Affiliation(s)
| | - Christopher Sayer
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Simone Antonio De Rose
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Elisa Guazzelli
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Milan, Italy
| | - Carlotta Marchesi
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Milan, Italy
| | - Vahid Saneei
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Michail N Isupov
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Jennifer A Littlechild
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Milan, Italy
| |
Collapse
|
20
|
Discovering novel hydrolases from hot environments. Biotechnol Adv 2018; 36:2077-2100. [PMID: 30266344 DOI: 10.1016/j.biotechadv.2018.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Novel hydrolases from hot and other extreme environments showing appropriate performance and/or novel functionalities and new approaches for their systematic screening are of great interest for developing new processes, for improving safety, health and environment issues. Existing processes could benefit as well from their properties. The workflow, based on the HotZyme project, describes a multitude of technologies and their integration from discovery to application, providing new tools for discovering, identifying and characterizing more novel thermostable hydrolases with desired functions from hot terrestrial and marine environments. To this end, hot springs worldwide were mined, resulting in hundreds of environmental samples and thousands of enrichment cultures growing on polymeric substrates of industrial interest. Using high-throughput sequencing and bioinformatics, 15 hot spring metagenomes, as well as several sequenced isolate genomes and transcriptomes were obtained. To facilitate the discovery of novel hydrolases, the annotation platform Anastasia and a whole-cell bioreporter-based functional screening method were developed. Sequence-based screening and functional screening together resulted in about 100 potentially new hydrolases of which more than a dozen have been characterized comprehensively from a biochemical and structural perspective. The characterized hydrolases include thermostable carboxylesterases, enol lactonases, quorum sensing lactonases, gluconolactonases, epoxide hydrolases, and cellulases. Apart from these novel thermostable hydrolases, the project generated an enormous amount of samples and data, thereby allowing the future discovery of even more novel enzymes.
Collapse
|
21
|
Rinaldi S, Van der Kamp MW, Ranaghan KE, Mulholland AJ, Colombo G. Understanding Complex Mechanisms of Enzyme Reactivity: The Case of Limonene-1,2-Epoxide Hydrolases. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00863] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Silvia Rinaldi
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| | - Marc W. Van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Kara E. Ranaghan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
- Dipartimento di Chimica, Università degli Studi di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
22
|
Berini F, Casciello C, Marcone GL, Marinelli F. Metagenomics: novel enzymes from non-culturable microbes. FEMS Microbiol Lett 2017; 364:4329276. [DOI: 10.1093/femsle/fnx211] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/02/2017] [Indexed: 01/02/2023] Open
|
23
|
Wilson C, De Oliveira GS, Adriani PP, Chambergo FS, Dias MV. Structure of a soluble epoxide hydrolase identified in Trichoderma reesei. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1039-1045. [DOI: 10.1016/j.bbapap.2017.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/14/2017] [Accepted: 05/08/2017] [Indexed: 01/01/2023]
|
24
|
Littlechild JA. Improving the 'tool box' for robust industrial enzymes. J Ind Microbiol Biotechnol 2017; 44:711-720. [PMID: 28401315 PMCID: PMC5408032 DOI: 10.1007/s10295-017-1920-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/05/2017] [Indexed: 01/31/2023]
Abstract
The speed of sequencing of microbial genomes and metagenomes is providing an ever increasing resource for the identification of new robust biocatalysts with industrial applications for many different aspects of industrial biotechnology. Using 'natures catalysts' provides a sustainable approach to chemical synthesis of fine chemicals, general chemicals such as surfactants and new consumer-based materials such as biodegradable plastics. This provides a sustainable and 'green chemistry' route to chemical synthesis which generates no toxic waste and is environmentally friendly. In addition, enzymes can play important roles in other applications such as carbon dioxide capture, breakdown of food and other waste streams to provide a route to the concept of a 'circular economy' where nothing is wasted. The use of improved bioinformatic approaches and the development of new rapid enzyme activity screening methodology can provide an endless resource for new robust industrial biocatalysts.This mini-review will discuss several recent case studies where industrial enzymes of 'high priority' have been identified and characterised. It will highlight specific hydrolase enzymes and recent case studies which have been carried out within our group in Exeter.
Collapse
Affiliation(s)
- J A Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
25
|
Rinaldi S, Gori A, Annovazzi C, Ferrandi EE, Monti D, Colombo G. Unraveling Energy and Dynamics Determinants to Interpret Protein Functional Plasticity: The Limonene-1,2-epoxide-hydrolase Case Study. J Chem Inf Model 2017; 57:717-725. [DOI: 10.1021/acs.jcim.6b00504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Silvia Rinaldi
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| | - Celeste Annovazzi
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| | - Erica E. Ferrandi
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| | - Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131 Milano, Italy
| |
Collapse
|
26
|
Ferrandi EE, Previdi A, Bassanini I, Riva S, Peng X, Monti D. Novel thermostable amine transferases from hot spring metagenomes. Appl Microbiol Biotechnol 2017; 101:4963-4979. [PMID: 28357542 DOI: 10.1007/s00253-017-8228-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/21/2017] [Accepted: 03/05/2017] [Indexed: 01/09/2023]
Abstract
Hot spring metagenomes, prepared from samples collected at temperatures ranging from 55 to 95 °C, were submitted to an in silico screening aimed at the identification of novel amine transaminases (ATAs), valuable biocatalysts for the preparation of optically pure amines. Three novel (S)-selective ATAs, namely Is3-TA, It6-TA, and B3-TA, were discovered in the metagenome of samples collected from hot springs in Iceland and in Italy, cloned from the corresponding metagenomic DNAs and overexpressed in recombinant form in E. coli. Functional characterization of the novel ATAs demonstrated that they all possess a thermophilic character and are capable of performing amine transfer reactions using a broad range of donor and acceptor substrates, thus suggesting a good potential for practical synthetic applications. In particular, the enzyme B3-TA revealed to be exceptionally thermostable, retaining 85% of activity after 5 days of incubation at 80 °C and more than 40% after 2 weeks under the same condition. These results, which were in agreement with the estimation of an apparent melting temperature around 88 °C, make B3-TA, to the best of our knowledge, the most thermostable natural ATA described to date. This biocatalyst showed also a good tolerance toward different water-miscible and water-immiscible organic solvents. A detailed inspection of the homology-based structural model of B3-TA showed that the overall active site architecture of mesophilic (S)-selective ATAs was mainly conserved in this hyperthermophilic homolog. Additionally, a subfamily of B3-TA-like transaminases, mostly uncharacterized and all from thermophilic microorganisms, was identified and analyzed in terms of phylogenetic relationships and sequence conservation.
Collapse
Affiliation(s)
- Erica Elisa Ferrandi
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R, Via Mario Bianco 9, 20131, Milan, Italy. .,University of Copenhagen, Ole Maaløesvej 5, 2200, Copenhagen N, Denmark.
| | - Alessandra Previdi
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R, Via Mario Bianco 9, 20131, Milan, Italy
| | - Ivan Bassanini
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R, Via Mario Bianco 9, 20131, Milan, Italy.,Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Sergio Riva
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R, Via Mario Bianco 9, 20131, Milan, Italy
| | - Xu Peng
- University of Copenhagen, Ole Maaløesvej 5, 2200, Copenhagen N, Denmark
| | - Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R, Via Mario Bianco 9, 20131, Milan, Italy.
| |
Collapse
|
27
|
Saxena R, Dhakan DB, Mittal P, Waiker P, Chowdhury A, Ghatak A, Sharma VK. Metagenomic Analysis of Hot Springs in Central India Reveals Hydrocarbon Degrading Thermophiles and Pathways Essential for Survival in Extreme Environments. Front Microbiol 2017; 7:2123. [PMID: 28105025 PMCID: PMC5214690 DOI: 10.3389/fmicb.2016.02123] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/15/2016] [Indexed: 12/28/2022] Open
Abstract
Extreme ecosystems such as hot springs are of great interest as a source of novel extremophilic species, enzymes, metabolic functions for survival and biotechnological products. India harbors hundreds of hot springs, the majority of which are not yet explored and require comprehensive studies to unravel their unknown and untapped phylogenetic and functional diversity. The aim of this study was to perform a large-scale metagenomic analysis of three major hot springs located in central India namely, Badi Anhoni, Chhoti Anhoni, and Tattapani at two geographically distinct regions (Anhoni and Tattapani), to uncover the resident microbial community and their metabolic traits. Samples were collected from seven distinct sites of the three hot spring locations with temperature ranging from 43.5 to 98°C. The 16S rRNA gene amplicon sequencing of V3 hypervariable region and shotgun metagenome sequencing uncovered a unique taxonomic and metabolic diversity of the resident thermophilic microbial community in these hot springs. Genes associated with hydrocarbon degradation pathways, such as benzoate, xylene, toluene, and benzene were observed to be abundant in the Anhoni hot springs (43.5–55°C), dominated by Pseudomonas stutzeri and Acidovorax sp., suggesting the presence of chemoorganotrophic thermophilic community with the ability to utilize complex hydrocarbons as a source of energy. A high abundance of genes belonging to methane metabolism pathway was observed at Chhoti Anhoni hot spring, where methane is reported to constitute >80% of all the emitted gases, which was marked by the high abundance of Methylococcus capsulatus. The Tattapani hot spring, with a high-temperature range (61.5–98°C), displayed a lower microbial diversity and was primarily dominated by a nitrate-reducing archaeal species Pyrobaculum aerophilum. A higher abundance of cell metabolism pathways essential for the microbial survival in extreme conditions was observed at Tattapani. Taken together, the results of this study reveal a novel consortium of microbes, genes, and pathways associated with the hot spring environment.
Collapse
Affiliation(s)
- Rituja Saxena
- Metagenomics and Systems Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Darshan B Dhakan
- Metagenomics and Systems Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Parul Mittal
- Metagenomics and Systems Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Prashant Waiker
- Metagenomics and Systems Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Anirban Chowdhury
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Arundhuti Ghatak
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Vineet K Sharma
- Metagenomics and Systems Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| |
Collapse
|
28
|
DeCastro ME, Rodríguez-Belmonte E, González-Siso MI. Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes. Front Microbiol 2016; 7:1521. [PMID: 27729905 PMCID: PMC5037290 DOI: 10.3389/fmicb.2016.01521] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022] Open
Abstract
Microbial populations living in environments with temperatures above 50°C (thermophiles) have been widely studied, increasing our knowledge in the composition and function of these ecological communities. Since these populations express a broad number of heat-resistant enzymes (thermozymes), they also represent an important source for novel biocatalysts that can be potentially used in industrial processes. The integrated study of the whole-community DNA from an environment, known as metagenomics, coupled with the development of next generation sequencing (NGS) technologies, has allowed the generation of large amounts of data from thermophiles. In this review, we summarize the main approaches commonly utilized for assessing the taxonomic and functional diversity of thermophiles through metagenomics, including several bioinformatics tools and some metagenome-derived methods to isolate their thermozymes.
Collapse
Affiliation(s)
- María-Eugenia DeCastro
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| |
Collapse
|
29
|
Novel enzymes from metagenomics. N Biotechnol 2016. [DOI: 10.1016/j.nbt.2016.06.936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Monti D, Ferrandi EE, Marchesi C, Annovazzi C, Riva S, Wohlgemuth R. Exploitation of novel epoxide hydrolases from metagenomic libraries in the solvent-free preparative resolutions of limonene oxides mixtures. N Biotechnol 2016. [DOI: 10.1016/j.nbt.2016.06.1061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Palumbo C, Ferrandi EE, Marchesi C, Monti D, Riva S, Psaro R, Guidotti M. One-pot Selective Dihydroxylation of Limonene Combining Metal and Enzyme Catalysis. ChemistrySelect 2016. [DOI: 10.1002/slct.201600529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chiara Palumbo
- CNR - Institute of Molecular Sciences and Technologies; via Golgi 19 20133 Milano Italy
| | - Erica E. Ferrandi
- CNR - Istituto di Chimica del Riconoscimento Molecolare; Via Mario Bianco, 9 20131 Milano Italy
| | - Carlotta Marchesi
- CNR - Istituto di Chimica del Riconoscimento Molecolare; Via Mario Bianco, 9 20131 Milano Italy
| | - Daniela Monti
- CNR - Istituto di Chimica del Riconoscimento Molecolare; Via Mario Bianco, 9 20131 Milano Italy
| | - Sergio Riva
- CNR - Istituto di Chimica del Riconoscimento Molecolare; Via Mario Bianco, 9 20131 Milano Italy
| | - Rinaldo Psaro
- CNR - Institute of Molecular Sciences and Technologies; via Golgi 19 20133 Milano Italy
| | - Matteo Guidotti
- CNR - Institute of Molecular Sciences and Technologies; via Golgi 19 20133 Milano Italy
| |
Collapse
|
32
|
Sayer C, Szabo Z, Isupov MN, Ingham C, Littlechild JA. The Structure of a Novel Thermophilic Esterase from the Planctomycetes Species, Thermogutta terrifontis Reveals an Open Active Site Due to a Minimal 'Cap' Domain. Front Microbiol 2015; 6:1294. [PMID: 26635762 PMCID: PMC4655241 DOI: 10.3389/fmicb.2015.01294] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/06/2015] [Indexed: 11/29/2022] Open
Abstract
A carboxyl esterase (TtEst2) has been identified in a novel thermophilic bacterium, Thermogutta terrifontis from the phylum Planctomycetes and has been cloned and over-expressed in Escherichia coli. The enzyme has been characterized biochemically and shown to have activity toward small p-nitrophenyl (pNP) carboxylic esters with optimal activity for pNP-acetate. The enzyme shows moderate thermostability retaining 75% activity after incubation for 30 min at 70°C. The crystal structures have been determined for the native TtEst2 and its complexes with the carboxylic acid products propionate, butyrate, and valerate. TtEst2 differs from most enzymes of the α/β-hydrolase family 3 as it lacks the majority of the ‘cap’ domain and its active site cavity is exposed to the solvent. The bound ligands have allowed the identification of the carboxyl pocket in the enzyme active site. Comparison of TtEst2 with structurally related enzymes has given insight into how differences in their substrate preference can be rationalized based upon the properties of their active site pockets.
Collapse
Affiliation(s)
- Christopher Sayer
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | | | - Michail N Isupov
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | | | - Jennifer A Littlechild
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
33
|
Littlechild JA. Enzymes from Extreme Environments and Their Industrial Applications. Front Bioeng Biotechnol 2015; 3:161. [PMID: 26528475 PMCID: PMC4602302 DOI: 10.3389/fbioe.2015.00161] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/28/2015] [Indexed: 11/26/2022] Open
Abstract
This article will discuss the importance of specific extremophilic enzymes for applications in industrial biotechnology. It will specifically address those enzymes that have applications in the area of biocatalysis. Such enzymes now play an important role in catalyzing a variety of chemical conversions that were previously carried out by traditional chemistry. The biocatalytic process is carried out under mild conditions and with greater specificity. The enzyme process does not result in the toxic waste that is usually produced in a chemical process that would require careful disposal. In this sense, the biocatalytic process is referred to as carrying out “green chemistry” which is considered to be environmentally friendly. Some of the extremophilic enzymes to be discussed have already been developed for industrial processes such as an l-aminoacylase and a γ-lactamase. The industrial applications of other extremophilic enzymes, including transaminases, carbonic anhydrases, dehalogenases, specific esterases, and epoxide hydrolases, are currently being assessed. Specific examples of these industrially important enzymes that have been studied in the authors group will be presented in this review.
Collapse
Affiliation(s)
- Jennifer A Littlechild
- Exeter Biocatalysis Centre, Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter , UK
| |
Collapse
|
34
|
Ferrandi EE, Marchesi C, Annovazzi C, Riva S, Monti D, Wohlgemuth R. Efficient Epoxide Hydrolase Catalyzed Resolutions of (+)- and (−)-cis/trans-Limonene Oxides. ChemCatChem 2015. [DOI: 10.1002/cctc.201500608] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Erica Elisa Ferrandi
- Istituto di Chimica del Riconoscimento Molecolare-CNR; Via Mario Bianco 9 20131 Milano Italy
| | - Carlotta Marchesi
- Istituto di Chimica del Riconoscimento Molecolare-CNR; Via Mario Bianco 9 20131 Milano Italy
| | - Celeste Annovazzi
- Istituto di Chimica del Riconoscimento Molecolare-CNR; Via Mario Bianco 9 20131 Milano Italy
| | - Sergio Riva
- Istituto di Chimica del Riconoscimento Molecolare-CNR; Via Mario Bianco 9 20131 Milano Italy
| | - Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare-CNR; Via Mario Bianco 9 20131 Milano Italy
| | | |
Collapse
|