1
|
de Armiño DJA, Di Lella S, Montepietra D, Delcanale P, Bruno S, Giordano D, Verde C, Estrin DA, Viappiani C, Abbruzzetti S. Kinetic and dynamical properties of truncated hemoglobins of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Protein Sci 2024; 33:e5064. [PMID: 38864722 PMCID: PMC11168075 DOI: 10.1002/pro.5064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
Due to the low temperature, the Antarctic marine environment is challenging for protein functioning. Cold-adapted organisms have evolved proteins endowed with higher flexibility and lower stability in comparison to their thermophilic homologs, resulting in enhanced reaction rates at low temperatures. The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) genome is one of the few examples of coexistence of multiple hemoglobin genes encoding, among others, two constitutively transcribed 2/2 hemoglobins (2/2Hbs), also named truncated Hbs (TrHbs), belonging to the Group II (or O), annotated as PSHAa0030 and PSHAa2217. In this work, we describe the ligand binding kinetics and their interrelationship with the dynamical properties of globin Ph-2/2HbO-2217 by combining experimental and computational approaches and implementing a new computational method to retrieve information from molecular dynamic trajectories. We show that our approach allows us to identify docking sites within the protein matrix that are potentially able to transiently accommodate ligands and migration pathways connecting them. Consistently with ligand rebinding studies, our modeling suggests that the distal heme pocket is connected to the solvent through a low energy barrier, while inner cavities play only a minor role in modulating rebinding kinetics.
Collapse
Affiliation(s)
- Diego Javier Alonso de Armiño
- Departamento de Química Inorgánica, Analítica y Química Física, and INQUIMAE‐CONICET, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
| | - Santiago Di Lella
- Departamento de Química Biológica and IQUIBICEN‐CONICET, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
| | - Daniele Montepietra
- Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Nanoscience Institute—CNR‐NANOModenaItaly
| | - Pietro Delcanale
- Department of Mathematical, Physical and Computer SciencesUniversity of ParmaParmaItaly
| | - Stefano Bruno
- Department of Food and Drug SciencesUniversity of ParmaParmaItaly
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNRNaplesItaly
- Department of Ecosustainable Marine BiotechnologyStazione Zoologica Anton DohrnNaplesItaly
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNRNaplesItaly
- Department of Ecosustainable Marine BiotechnologyStazione Zoologica Anton DohrnNaplesItaly
| | - Dario A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, and INQUIMAE‐CONICET, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
| | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer SciencesUniversity of ParmaParmaItaly
| | - Stefania Abbruzzetti
- Department of Mathematical, Physical and Computer SciencesUniversity of ParmaParmaItaly
| |
Collapse
|
2
|
Dali A, Gabler T, Sebastiani F, Destinger A, Furtmüller PG, Pfanzagl V, Becucci M, Smulevich G, Hofbauer S. Active site architecture of coproporphyrin ferrochelatase with its physiological substrate coproporphyrin III: Propionate interactions and porphyrin core deformation. Protein Sci 2023; 32:e4534. [PMID: 36479958 PMCID: PMC9794026 DOI: 10.1002/pro.4534] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Coproporphyrin ferrochelatases (CpfCs) are enzymes catalyzing the penultimate step in the coproporphyrin-dependent (CPD) heme biosynthesis pathway, which is mainly utilized by monoderm bacteria. Ferrochelatases insert ferrous iron into a porphyrin macrocycle and have been studied for many decades, nevertheless many mechanistic questions remain unanswered to date. Especially CpfCs, which are found in the CPD pathway, are currently in the spotlight of research. This pathway was identified in 2015 and revealed that the correct substrate for these ferrochelatases is coproporphyrin III (cpIII) instead of protoporphyrin IX, as believed prior the discovery of the CPD pathway. The chemistry of cpIII, which has four propionates, differs significantly from protoporphyrin IX, which features two propionate and two vinyl groups. These findings let us to thoroughly describe the physiological cpIII-ferrochelatase complex in solution and in the crystal phase. Here, we present the first crystallographic structure of the CpfC from the representative monoderm pathogen Listeria monocytogenes bound to its physiological substrate, cpIII, together with the in-solution data obtained by resonance Raman and UV-vis spectroscopy, for wild-type ferrochelatase and variants, analyzing propionate interactions. The results allow us to evaluate the porphyrin distortion and provide an in-depth characterization of the catalytically-relevant binding mode of cpIII prior to iron insertion. Our findings are discussed in the light of the observed structural restraints and necessities for this porphyrin-enzyme complex to catalyze the iron insertion process. Knowledge about this initial situation is essential for understanding the preconditions for iron insertion in CpfCs and builds the basis for future studies.
Collapse
Affiliation(s)
- Andrea Dali
- Dipartimento di Chimica “Ugo Schiff” – DICUSUniversità di FirenzeSesto Fiorentino (FI)Italy
| | - Thomas Gabler
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Federico Sebastiani
- Dipartimento di Chimica “Ugo Schiff” – DICUSUniversità di FirenzeSesto Fiorentino (FI)Italy
| | - Alina Destinger
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Paul Georg Furtmüller
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Vera Pfanzagl
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Maurizio Becucci
- Dipartimento di Chimica “Ugo Schiff” – DICUSUniversità di FirenzeSesto Fiorentino (FI)Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff” – DICUSUniversità di FirenzeSesto Fiorentino (FI)Italy,INSTM Research Unit of FirenzeSesto Fiorentino (Fi)Italy
| | - Stefan Hofbauer
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
3
|
Balasco N, Paladino A, Graziano G, D'Abramo M, Vitagliano L. Atomic-Level View of the Functional Transition in Vertebrate Hemoglobins: The Case of Antarctic Fish Hbs. J Chem Inf Model 2022; 62:3874-3884. [PMID: 35930673 PMCID: PMC9400108 DOI: 10.1021/acs.jcim.2c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrameric hemoglobins (Hbs) are prototypal systems for studies aimed at unveiling basic structure-function relationships as well as investigating the molecular/structural basis of adaptation of living organisms to extreme conditions. However, a chronological analysis of decade-long studies conducted on Hbs is illuminating on the difficulties associated with the attempts of gaining functional insights from static structures. Here, we applied molecular dynamics (MD) simulations to explore the functional transition from the T to the R state of the hemoglobin of the Antarctic fish Trematomus bernacchii (HbTb). Our study clearly demonstrates the ability of the MD technique to accurately describe the transition of HbTb from the T to R-like states, as shown by a number of global and local structural indicators. A comparative analysis of the structural states that HbTb assumes in the simulations with those detected in previous MD analyses conducted on HbA (human Hb) highlights interesting analogies (similarity of the transition pathway) and differences (distinct population of intermediate states). In particular, the ability of HbTb to significantly populate intermediate states along the functional pathway explains the observed propensity of this protein to assume these structures in the crystalline state. It also explains some functional data reported on the protein that indicate the occurrence of other functional states in addition to the canonical R and T ones. These findings are in line with the emerging idea that the classical two-state view underlying tetrameric Hb functionality is probably an oversimplification and that other structural states play important roles in these proteins. The ability of MD simulations to accurately describe the functional pathway in tetrameric Hbs suggests that this approach may be effectively applied to unravel the molecular and structural basis of Hbs exhibiting peculiar functional properties as a consequence of the environmental adaptation of the host organism.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Dep. Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonella Paladino
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuseppe Graziano
- Department of Science and Technology, University of Sannio, via Francesco de Sanctis snc, Benevento 82100, Italy
| | - Marco D'Abramo
- Department of Chemistry, University of Rome Sapienza, P.le A.Moro 5, 00185 Rome, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
4
|
Giordano D, Verde C. Expression of Recombinant Cold-Adapted (Hemo)Globins from Marine Bacteria. Methods Mol Biol 2022; 2498:283-292. [PMID: 35727550 DOI: 10.1007/978-1-0716-2313-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The production of recombinant proteins in bacteria made possible to obtain large quantities of proteins essential for basic and applied research. Escherichia coli remains one of the organisms of choice for recombinant proteins because of its ability to grow at high density and availability of a vast catalog of cloning vectors and mutant host strains. Here, we describe the protocols for the expression of cold-adapted (hemo)globins in Escherichia coli.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy.
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, Naples, Italy.
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, Naples, Italy
| |
Collapse
|
5
|
Gabler T, Sebastiani F, Helm J, Dali A, Obinger C, Furtmüller PG, Smulevich G, Hofbauer S. Substrate specificity and complex stability of coproporphyrin ferrochelatase is governed by hydrogen-bonding interactions of the four propionate groups. FEBS J 2021; 289:1680-1699. [PMID: 34719106 DOI: 10.1111/febs.16257] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022]
Abstract
Coproporpyhrin III is the substrate of coproporphyrin ferrochelatases (CpfCs). These enzymes catalyse the insertion of ferrous iron into the porphyrin ring. This is the penultimate step within the coproporphyrin-dependent haeme biosynthesis pathway. This pathway was discovered in 2015 and is mainly utilised by monoderm bacteria. Prior to this discovery, monoderm bacteria were believed to utilise the protoporphyrin-dependent pathway, analogously to diderm bacteria, where the substrate for the respective ferrochelatase is protoporphyrin IX, which has two propionate groups at positions 6 and 7 and two vinyl groups at positions 2 and 4. In this work, we describe for the first time the interactions of the four-propionate substrate, coproporphyrin III, and the four-propionate product, iron coproporphyrin III (coproheme), with the CpfC from Listeria monocytogenes and pin down differences with respect to the protoporphyrin IX and haeme b complexes in the wild-type (WT) enzyme. We further created seven LmCpfC variants aiming at altering substrate and product coordination. The WT enzyme and all the variants were comparatively studied by spectroscopic, thermodynamic and kinetic means to investigate in detail the H-bonding interactions, which govern complex stability and substrate specificity. We identified a tyrosine residue (Y124 in LmCpfC), coordinating the propionate at position 2, which is conserved in monoderm CpfCs, to be highly important for binding and stabilisation. Importantly, we also describe a tyrosine-serine-threonine triad, which coordinates the propionate at position 4. The study of the triad variants indicates structural differences between the coproporphyrin III and the coproheme complexes. ENZYME: EC 4.99.1.9.
Collapse
Affiliation(s)
- Thomas Gabler
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Federico Sebastiani
- Dipartimento di Chimica 'Ugo Schiff' (DICUS), Università di Firenze, Sesto Fiorentino, Italy
| | - Johannes Helm
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andrea Dali
- Dipartimento di Chimica 'Ugo Schiff' (DICUS), Università di Firenze, Sesto Fiorentino, Italy
| | - Christian Obinger
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Giulietta Smulevich
- Dipartimento di Chimica 'Ugo Schiff' (DICUS), Università di Firenze, Sesto Fiorentino, Italy.,INSTM Research Unit of Firenze, Sesto Fiorentino, Italy
| | - Stefan Hofbauer
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
6
|
Giordano D, Boubeta FM, di Prisco G, Estrin DA, Smulevich G, Viappiani C, Verde C. Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins. Antioxid Redox Signal 2020; 32:396-411. [PMID: 31578873 DOI: 10.1089/ars.2019.7887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Significance: Temperature is one of the most important drivers in shaping protein adaptations. Many biochemical and physiological processes are influenced by temperature. Proteins and enzymes from organisms living at low temperature are less stable in comparison to high-temperature adapted proteins. The lower stability is generally due to greater conformational flexibility. Recent Advances: Adaptive changes in the structure of cold-adapted proteins may occur at subunit interfaces, distant from the active site, thus producing energy changes associated with conformational transitions transmitted to the active site by allosteric modulation, valid also for monomeric proteins in which tertiary structural changes may play an essential role. Critical Issues: Despite efforts, the current experimental and computational methods still fail to produce general principles on protein evolution, since many changes are protein and species dependent. Environmental constraints or other biological cellular signals may override the ancestral information included in the structure of the protein, thus introducing inaccuracy in estimates and predictions on the evolutionary adaptations of proteins in response to cold adaptation. Future Directions: In this review, we describe the studies and approaches used to investigate stability and flexibility in the cold-adapted globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. In fact, future research directions will be prescient on more detailed investigation of cold-adapted proteins and the role of fluctuations between different conformational states.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Fernando Martín Boubeta
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy
| | - Dario A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
7
|
Balasco N, Vitagliano L, Merlino A, Verde C, Mazzarella L, Vergara A. The unique structural features of carbonmonoxy hemoglobin from the sub-Antarctic fish Eleginops maclovinus. Sci Rep 2019; 9:18987. [PMID: 31831781 PMCID: PMC6908587 DOI: 10.1038/s41598-019-55331-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/11/2019] [Indexed: 01/14/2023] Open
Abstract
Tetrameric hemoglobins (Hbs) are prototypical systems for the investigations of fundamental properties of proteins. Although the structure of these proteins has been known for nearly sixty years, there are many aspects related to their function/structure that are still obscure. Here, we report the crystal structure of a carbonmonoxy form of the Hb isolated from the sub-Antarctic notothenioid fish Eleginops maclovinus characterised by either rare or unique features. In particular, the distal site of the α chain results to be very unusual since the distal His is displaced from its canonical position. This displacement is coupled with a shortening of the highly conserved E helix and the formation of novel interactions at tertiary structure level. Interestingly, the quaternary structure is closer to the T-deoxy state of Hbs than to the R-state despite the full coordination of all chains. Notably, these peculiar structural features provide a rationale for some spectroscopic properties exhibited by the protein in solution. Finally, this unexpected structural plasticity of the heme distal side has been associated with specific sequence signatures of various Hbs.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Naples, Italy.
| | - Antonello Merlino
- Dept. Chemical Sciences, University of Napoli "Federico II", Via Cinthia, 80126, Naples, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Lelio Mazzarella
- Dept. Chemical Sciences, University of Napoli "Federico II", Via Cinthia, 80126, Naples, Italy
| | - Alessandro Vergara
- Dept. Chemical Sciences, University of Napoli "Federico II", Via Cinthia, 80126, Naples, Italy.
| |
Collapse
|
8
|
Smulevich G. Solution and crystal phase resonance Raman spectroscopy: Valuable tools to unveil the structure and function of heme proteins. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present review, examples are provided illustrating the application of resonance Raman microscopy to heme protein single crystals to highlight the artifacts induced by the crystallization process or the conformational alteration induced by cooling. Moreover, the structural information determined from the RR spectra of heme proteins in solution and crystals is compared to that obtained from their X-ray structures to show how the combined spectroscopic/crystallographic approach is a powerful weapon in the structural biologist’s armamentarium.
Collapse
Affiliation(s)
- Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff,” Università di Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino(Fi), Italy
| |
Collapse
|
9
|
Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA, Ferrari R. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinform 2019; 19:286-302. [PMID: 27881428 PMCID: PMC6018996 DOI: 10.1093/bib/bbw114] [Citation(s) in RCA: 427] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 02/07/2023] Open
Abstract
Advances in the technologies and informatics used to generate and process large biological data sets (omics data) are promoting a critical shift in the study of biomedical sciences. While genomics, transcriptomics and proteinomics, coupled with bioinformatics and biostatistics, are gaining momentum, they are still, for the most part, assessed individually with distinct approaches generating monothematic rather than integrated knowledge. As other areas of biomedical sciences, including metabolomics, epigenomics and pharmacogenomics, are moving towards the omics scale, we are witnessing the rise of inter-disciplinary data integration strategies to support a better understanding of biological systems and eventually the development of successful precision medicine. This review cuts across the boundaries between genomics, transcriptomics and proteomics, summarizing how omics data are generated, analysed and shared, and provides an overview of the current strengths and weaknesses of this global approach. This work intends to target students and researchers seeking knowledge outside of their field of expertise and fosters a leap from the reductionist to the global-integrative analytical approach in research.
Collapse
Affiliation(s)
- Claudia Manzoni
- School of Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom.,Department Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Demis A Kia
- Department Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Jana Vandrovcova
- Department Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - John Hardy
- Department Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Nicholas W Wood
- Department Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom.,Department Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Raffaele Ferrari
- Department Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
10
|
De Simone G, di Masi A, Polticelli F, Ascenzi P. Human nitrobindin: the first example of an all-β-barrel ferric heme-protein that catalyzes peroxynitrite detoxification. FEBS Open Bio 2018; 8:2002-2010. [PMID: 30524950 PMCID: PMC6275384 DOI: 10.1002/2211-5463.12534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/29/2018] [Accepted: 09/26/2018] [Indexed: 11/12/2022] Open
Abstract
Nitrobindins (Nbs), constituting a heme‐protein family spanning from bacteria to Homo sapiens, display an all‐β‐barrel structural organization. Human Nb has been described as a domain of the nuclear protein named THAP4, whose physiological function is still unknown. We report the first evidence of the heme‐Fe(III)‐based detoxification of peroxynitrite by the all‐β‐barrel C‐terminal Nb‐like domain of THAP4. Ferric human Nb (Nb(III)) catalyzes the conversion of peroxynitrite to NO3− and impairs the nitration of free l‐tyrosine. The rate of human Nb(III)‐mediated scavenging of peroxynitrite is similar to those of all‐α‐helical horse heart and sperm whale myoglobin and human hemoglobin, generally taken as the prototypes of all‐α‐helical heme‐proteins. The heme‐Fe(III) reactivity of all‐β‐barrel human Nb(III) and all‐α‐helical prototypical heme‐proteins possibly reflects the out‐to‐in‐plane transition of the heme‐Fe(III)‐atom preceding peroxynitrite binding. Human Nb(III) not only catalyzes the detoxification of peroxynitrite but also binds NO, possibly representing a target of reactive nitrogen species.
Collapse
Affiliation(s)
| | | | - Fabio Polticelli
- Department of Sciences Roma Tre University Italy.,National Institute of Nuclear Physics Roma Tre Section Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy Roma Tre University Italy
| |
Collapse
|
11
|
Boubeta FM, Boechi L, Estrin D, Patrizi B, Di Donato M, Iagatti A, Giordano D, Verde C, Bruno S, Abbruzzetti S, Viappiani C. Cold-Adaptation Signatures in the Ligand Rebinding Kinetics to the Truncated Hemoglobin of the Antarctic Bacterium Pseudoalteromonas haloplanktis TAC125. J Phys Chem B 2018; 122:11649-11661. [PMID: 30230844 DOI: 10.1021/acs.jpcb.8b07682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cold-adapted organisms have evolved proteins endowed with higher flexibility and lower stability in comparison to their thermophilic homologues, resulting in enhanced reaction rates at low temperatures. In this context, protein-bound water molecules were suggested to play a major role, and their weaker interactions at protein active sites have been associated with cold adaptation. In this work, we tested this hypothesis on truncated hemoglobins (a family of microbial heme-proteins of yet-unclear function) applying molecular dynamics simulations and ligand-rebinding kinetics on a protein from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 in comparison with its thermophilic Thermobifida fusca homologue. The CO rebinding kinetics of the former highlight several geminate phases, with an unusually long-lived geminate intermediate. An articulated tunnel with at least two distinct docking sites was identified by analysis of molecular dynamics simulations and was suggested to be at the origin of the unusual geminate rebinding phase. Water molecules are present in the distal pocket, but their stabilization by TrpG8, TyrB10, and HisCD1 is much weaker than in thermophilic Thermobifida fusca truncated hemoglobin, resulting in a faster geminate rebinding. Our results support the hypothesis that weaker water-molecule interactions at the reaction site are associated with cold adaptation.
Collapse
Affiliation(s)
- Fernando M Boubeta
- Instituto de Quimica Fisica de los Materiales, Medio Ambiente y Energia (INQUIMAE), CONICET, and Universidad de Buenos Aires , C1428EHA Buenos Aires , Argentina
| | - Leonardo Boechi
- Instituto de Calculo, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , C1428EGA Buenos Aires , Argentina
| | - Dario Estrin
- Instituto de Quimica Fisica de los Materiales, Medio Ambiente y Energia (INQUIMAE), CONICET, and Universidad de Buenos Aires , C1428EHA Buenos Aires , Argentina
| | - Barbara Patrizi
- European Laboratory for Non Linear Spectroscopy (LENS), Università di Firenze , Via Nello Carrara 1 , 50019 Sesto Fiorentino, Florence , Italy.,INO-CNR, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche , Largo Fermi 6 , 50125 Florence , Italy
| | - Mariangela Di Donato
- European Laboratory for Non Linear Spectroscopy (LENS), Università di Firenze , Via Nello Carrara 1 , 50019 Sesto Fiorentino, Florence , Italy.,INO-CNR, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche , Largo Fermi 6 , 50125 Florence , Italy
| | - Alessandro Iagatti
- European Laboratory for Non Linear Spectroscopy (LENS), Università di Firenze , Via Nello Carrara 1 , 50019 Sesto Fiorentino, Florence , Italy
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR , Via Pietro Castellino 111 , I-80131 Naples , Italy.,Stazione Zoologica Anton Dohrn , Villa Comunale , 80121 Naples , Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR , Via Pietro Castellino 111 , I-80131 Naples , Italy.,Stazione Zoologica Anton Dohrn , Villa Comunale , 80121 Naples , Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università di Parma , Parco Area delle Scienze 23A , 43124 , Parma , Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche , Università di Parma , Parco Area delle Scienze 7A , 43124 , Parma , Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche , Università di Parma , Parco Area delle Scienze 7A , 43124 , Parma , Italy
| |
Collapse
|
12
|
Johnson EA, Russo MM, Nye DB, Schlessman JL, Lecomte JTJ. Lysine as a heme iron ligand: A property common to three truncated hemoglobins from Chlamydomonas reinhardtii. Biochim Biophys Acta Gen Subj 2018; 1862:2660-2673. [PMID: 30251657 DOI: 10.1016/j.bbagen.2018.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND The nuclear genome of Chlamydomonas reinhardtii encodes a dozen hemoglobins of the truncated lineage. Four of these, named THB1-4, contain a single ~130-residue globin unit. THB1, which is cytoplasmic and capable of nitric oxide dioxygenation activity, uses a histidine and a lysine as axial ligands to the heme iron. In the present report, we compared THB2, THB3, and THB4 to THB1 to gain structural and functional insights into algal globins. METHODS We inspected properties of the globin domains prepared by recombinant means through site-directed mutagenesis, electronic absorption, CD, and NMR spectroscopies, and X-ray crystallography. RESULTS Recombinant THB3, which lacks the proximal histidine but has a distal histidine, binds heme weakly. NMR data demonstrate that the recombinant domains of THB2 and THB4 coordinate the ferrous heme iron with the proximal histidine and a lysine from the distal helix. An X-ray structure of ferric THB4 confirms lysine coordination. THB1, THB2, and THB4 have reduction potentials between -65 and -100 mV, are capable of nitric oxide dioxygenation, are reduced at different rates by the diaphorase domain of C. reinhardtii nitrate reductase, and show different response to peroxide treatment. CONCLUSIONS Three single-domain C. reinhardtii hemoglobins use lysine as a distal heme ligand in both Fe(III) and Fe(II) oxidation states. This common feature is likely related to enzymatic activity in the management of reactive oxygen species. GENERAL SIGNIFICANCE Primary structure analysis of hemoglobins has limited power in the prediction of heme ligation. Experimental determination reveals variations in this essential property across the superfamily.
Collapse
Affiliation(s)
- Eric A Johnson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Miranda M Russo
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Dillon B Nye
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Jamie L Schlessman
- Chemistry Department, U.S. Naval Academy, Annapolis, MD 21402, United States
| | - Juliette T J Lecomte
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
13
|
Feis A, Howes BD, Milazzo L, Coppola D, Smulevich G. Structural determinants of ligand binding in truncated hemoglobins: Resonance Raman spectroscopy of the native states and their carbon monoxide and hydroxide complexes. Biopolymers 2018; 109:e23114. [DOI: 10.1002/bip.23114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Alessandro Feis
- Dipartimento di Chimica “Ugo Schiff,”; Università di Firenze, Via della Lastruccia 3-13; Sesto Fiorentino 50019 Italy
| | - Barry D. Howes
- Dipartimento di Chimica “Ugo Schiff,”; Università di Firenze, Via della Lastruccia 3-13; Sesto Fiorentino 50019 Italy
| | - Lisa Milazzo
- Dipartimento di Chimica “Ugo Schiff,”; Università di Firenze, Via della Lastruccia 3-13; Sesto Fiorentino 50019 Italy
| | - Daniela Coppola
- Dipartimento di Scienze bio-agroalimentari del CNR (DiSBA-CNR), CNR, Via Pietro Castellino 111; Naples I-80131 Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff,”; Università di Firenze, Via della Lastruccia 3-13; Sesto Fiorentino 50019 Italy
| |
Collapse
|
14
|
Coexistence of multiple globin genes conferring protection against nitrosative stress to the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Nitric Oxide 2018; 73:39-51. [DOI: 10.1016/j.niox.2017.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/07/2017] [Accepted: 12/18/2017] [Indexed: 11/20/2022]
|
15
|
Van Doorslaer S, Cuypers B. Electron paramagnetic resonance of globin proteins – a successful match between spectroscopic development and protein research. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1392629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Bert Cuypers
- Department of Physics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
16
|
Ascenzi P, Pesce A. Peroxynitrite scavenging by Campylobacter jejuni truncated hemoglobin P. J Biol Inorg Chem 2017; 22:1141-1150. [DOI: 10.1007/s00775-017-1490-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023]
|
17
|
Colloc'h N, Sacquin-Mora S, Avella G, Dhaussy AC, Prangé T, Vallone B, Girard E. Determinants of neuroglobin plasticity highlighted by joint coarse-grained simulations and high pressure crystallography. Sci Rep 2017; 7:1858. [PMID: 28500341 PMCID: PMC5431840 DOI: 10.1038/s41598-017-02097-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/20/2017] [Indexed: 11/09/2022] Open
Abstract
Investigating the effect of pressure sheds light on the dynamics and plasticity of proteins, intrinsically correlated to functional efficiency. Here we detail the structural response to pressure of neuroglobin (Ngb), a hexacoordinate globin likely to be involved in neuroprotection. In murine Ngb, reversible coordination is achieved by repositioning the heme more deeply into a large internal cavity, the “heme sliding mechanism”. Combining high pressure crystallography and coarse-grain simulations on wild type Ngb as well as two mutants, one (V101F) with unaffected and another (F106W) with decreased affinity for CO, we show that Ngb hinges around a rigid mechanical nucleus of five hydrophobic residues (V68, I72, V109, L113, Y137) during its conformational transition induced by gaseous ligand, that the intrinsic flexibility of the F-G loop appears essential to drive the heme sliding mechanism, and that residue Val 101 may act as a sensor of the interaction disruption between the heme and the distal histidine.
Collapse
Affiliation(s)
- Nathalie Colloc'h
- ISTCT CNRS UNICAEN CEA Normandie Univ., CERVOxy team, centre Cyceron, 14000, Caen, France.
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Giovanna Avella
- Instituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, 5 piazzale Aldo Moro, 00185, Roma, Italy.,BIOGEM Research Institute, Ariano Irpino, Italy
| | - Anne-Claire Dhaussy
- CRISTMAT UMR 6508 CNRS ENSICAEN UNICAEN Normandie Univ., 6 bd du Maréchal Juin, 14050, Caen, France
| | - Thierry Prangé
- LCRB, UMR 8015 CNRS Université Paris Descartes, 4 avenue de l'Observatoire, 75270, Paris, France
| | - Beatrice Vallone
- Instituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, 5 piazzale Aldo Moro, 00185, Roma, Italy
| | - Eric Girard
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044, Grenoble, France.
| |
Collapse
|
18
|
Abstract
The large diversity of marine microorganisms harboured by oceans plays an important role in planet sustainability by driving globally important biogeochemical cycles; all primary and most secondary production in the oceans is performed by microorganisms. The largest part of the planet is covered by cold environments; consequently, cold-adapted microorganisms have crucial functional roles in globally important environmental processes and biogeochemical cycles cold-adapted extremophiles are a remarkable model to shed light on the molecular basis of survival at low temperature. The indigenous populations of Antarctic and Arctic microorganisms are endowed with genetic and physiological traits that allow them to live and effectively compete at the temperatures prevailing in polar regions. Some genes, e.g. glycosyltransferases and glycosylsynthetases involved in the architecture of the cell wall, may have been acquired/retained during evolution of polar strains or lost in tropical strains. This present work focusses on temperature and its role in shaping microbial adaptations; however, in assessing the impacts of climate changes on microbial diversity and biogeochemical cycles in polar oceans, it should not be forgotten that physiological studies need to include the interaction of temperature with other abiotic and biotic factors.
Collapse
|
19
|
Bustamante JP, Szretter ME, Sued M, Martí MA, Estrin DA, Boechi L. A quantitative model for oxygen uptake and release in a family of hemeproteins. Bioinformatics 2016; 32:1805-13. [PMID: 27153569 DOI: 10.1093/bioinformatics/btw083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/30/2016] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Hemeproteins have many diverse functions that largely depend on the rate at which they uptake or release small ligands, like oxygen. These proteins have been extensively studied using either simulations or experiments, albeit only qualitatively and one or two proteins at a time. RESULTS We present a physical-chemical model, which uses data obtained exclusively from computer simulations, to describe the uptake and release of oxygen in a family of hemeproteins, called truncated hemoglobins (trHbs). Through a rigorous statistical analysis we demonstrate that our model successfully recaptures all the reported experimental oxygen association and dissociation kinetic rate constants, thus allowing us to establish the key factors that determine the rates at which these hemeproteins uptake and release oxygen. We found that internal tunnels as well as the distal site water molecules control ligand uptake, whereas oxygen stabilization by distal site residues controls ligand release. Because these rates largely determine the functions of these hemeproteins, these approaches will also be important tools in characterizing the trHbs members with unknown functions. CONTACT lboechi@ic.fcen.uba.ar SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Juan P Bustamante
- Departamento de Química Inorgánica, Analítica Y Química Física, INQUIMAE-CONICET, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires
| | - María E Szretter
- Instituto De Cálculo, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires Departamento De Matemática, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires
| | - Mariela Sued
- Instituto De Cálculo, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires
| | - Marcelo A Martí
- Departamento De Química Biológica E Instituto De Química Biológica De La Facultad De Ciencias Exactas Y Naturales (IQUIBICEN), Universidad De Buenos Aires, Buenos Aires, Argentina
| | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica Y Química Física, INQUIMAE-CONICET, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires
| | - Leonardo Boechi
- Instituto De Cálculo, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires
| |
Collapse
|
20
|
Bustamante JP, Radusky L, Boechi L, Estrin DA, ten Have A, Martí MA. Evolutionary and Functional Relationships in the Truncated Hemoglobin Family. PLoS Comput Biol 2016; 12:e1004701. [PMID: 26788940 PMCID: PMC4720485 DOI: 10.1371/journal.pcbi.1004701] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022] Open
Abstract
Predicting function from sequence is an important goal in current biological research, and although, broad functional assignment is possible when a protein is assigned to a family, predicting functional specificity with accuracy is not straightforward. If function is provided by key structural properties and the relevant properties can be computed using the sequence as the starting point, it should in principle be possible to predict function in detail. The truncated hemoglobin family presents an interesting benchmark study due to their ubiquity, sequence diversity in the context of a conserved fold and the number of characterized members. Their functions are tightly related to O2 affinity and reactivity, as determined by the association and dissociation rate constants, both of which can be predicted and analyzed using in-silico based tools. In the present work we have applied a strategy, which combines homology modeling with molecular based energy calculations, to predict and analyze function of all known truncated hemoglobins in an evolutionary context. Our results show that truncated hemoglobins present conserved family features, but that its structure is flexible enough to allow the switch from high to low affinity in a few evolutionary steps. Most proteins display moderate to high oxygen affinities and multiple ligand migration paths, which, besides some minor trends, show heterogeneous distributions throughout the phylogenetic tree, again suggesting fast functional adaptation. Our data not only deepens our comprehension of the structural basis governing ligand affinity, but they also highlight some interesting functional evolutionary trends.
Collapse
Affiliation(s)
- Juan P. Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leandro Radusky
- Departamento de Química Biológica e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leonardo Boechi
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Darío A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Arjen ten Have
- Instituto de Investigación Biológica, CONICET, Universidad Nacional de Mar del Plata. Buenos Aires, Argentina
| | - Marcelo A. Martí
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Howes BD, Boechi L, Boffi A, Estrin DE, Smulevich G. Bridging Theory and Experiment to Address Structural Properties of Truncated Haemoglobins: Insights from Thermobifida fusca HbO. Adv Microb Physiol 2015; 67:85-126. [PMID: 26616516 DOI: 10.1016/bs.ampbs.2015.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this chapter, we will discuss the paradigmatic case of Thermobifida fusca (Tf-trHb) HbO in its ferrous and ferric states and its behaviour towards a battery of possible ligands. This choice was dictated by the fact that it has been one of the most extensively studied truncated haemoglobins, both in terms of spectroscopic and molecular dynamics studies. Tf-trHb typifies the structural properties of group II trHbs, as the active site is characterized by a highly polar distal environment in which TrpG8, TyrCD1, and TyrB10 provide three potential H-bond donors in the distal cavity capable of stabilizing the incoming ligands. The role of these residues in key topological positions, and their interplay with the iron-bound ligands, has been addressed in studies carried out on the CO, F(-), OH(-), CN(-), and HS(-) adducts formed with the wild-type protein and a combinatorial set of mutants, in which the distal polar residues, TrpG8, TyrCD1, and TyrB10, have been singly, doubly, or triply replaced by a Phe residue. In this context, such a complete analysis provides an excellent benchmark for the investigation of the relationship between protein structure and function, allowing one to translate physicochemical properties of the active site into the observed functional behaviour. Tf-trHb will be compared with other members of the group II trHbs and, more generally, with members of the other trHb subgroups.
Collapse
Affiliation(s)
- Barry D Howes
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentino, Italy
| | - Leonardo Boechi
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Alberto Boffi
- Dipartimento di Scienze Biochimiche, Università "Sapienza", Rome, Italy
| | - Dario E Estrin
- Departamento de Química Inorgánica, Analítica y Química Física and Inquimae-Conicet, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentino, Italy.
| |
Collapse
|
22
|
Abstract
In the last few years, advances in algal research have identified the participation of haemoglobins in nitrogen metabolism and the management of reactive nitrogen and oxygen species. This chapter summarises the state of knowledge concerning algal haemoglobins with a focus on the most widely used model system, namely, Chlamydomonas reinhardtii. Genetic, physiologic, structural, and chemical information is compiled to provide a framework for further studies.
Collapse
Affiliation(s)
- Eric A Johnson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|