1
|
Xu T, Wang S, Ma T, Dong Y, Ashby CR, Hao GF. The identification of essential cellular genes is critical for validating drug targets. Drug Discov Today 2024; 29:104215. [PMID: 39428084 DOI: 10.1016/j.drudis.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Accurately identifying biological targets is crucial for advancing treatment options. Essential genes, vital for cell or organism survival, hold promise as potential drug targets in disease treatment. Although many studies have sought to identify essential genes as therapeutic targets in medicine and bioinformatics, systematic reviews on their relationship with drug targets are relatively rare. This work presents a comprehensive analysis to aid in identifying essential genes as potential targets for drug discovery, encompassing their relevance, identification methods, successful case studies, and challenges. This work will facilitate the identification of essential genes as therapeutic targets, thereby boosting new drug development.
Collapse
Affiliation(s)
- Ting Xu
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Shuang Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Tingting Ma
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Yawen Dong
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China.
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, USA.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Gray J, Torres VVL, Goodall E, McKeand SA, Scales D, Collins C, Wetherall L, Lian ZJ, Bryant JA, Milner MT, Dunne KA, Icke C, Rooke JL, Schneiders T, Lund PA, Cunningham AF, Cole JA, Henderson IR. Transposon mutagenesis screen in Klebsiella pneumoniae identifies genetic determinants required for growth in human urine and serum. eLife 2024; 12:RP88971. [PMID: 39189918 PMCID: PMC11349299 DOI: 10.7554/elife.88971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Klebsiella pneumoniae is a global public health concern due to the rising myriad of hypervirulent and multidrug-resistant clones both alarmingly associated with high mortality. The molecular mechanisms underpinning these recalcitrant K. pneumoniae infection, and how virulence is coupled with the emergence of lineages resistant to nearly all present-day clinically important antimicrobials, are unclear. In this study, we performed a genome-wide screen in K. pneumoniae ECL8, a member of the endemic K2-ST375 pathotype most often reported in Asia, to define genes essential for growth in a nutrient-rich laboratory medium (Luria-Bertani [LB] medium), human urine, and serum. Through transposon directed insertion-site sequencing (TraDIS), a total of 427 genes were identified as essential for growth on LB agar, whereas transposon insertions in 11 and 144 genes decreased fitness for growth in either urine or serum, respectively. These studies not only provide further knowledge on the genetics of this pathogen but also provide a strong impetus for discovering new antimicrobial targets to improve current therapeutic options for K. pneumoniae infections.
Collapse
Affiliation(s)
- Jessica Gray
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Von Vergel L Torres
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Emily Goodall
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Samantha A McKeand
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Danielle Scales
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Christy Collins
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Laura Wetherall
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Zheng Jie Lian
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Jack A Bryant
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Matthew T Milner
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Karl A Dunne
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Christopher Icke
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Jessica L Rooke
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Thamarai Schneiders
- Division of Infection Medicine, University of EdinburghEdinburghUnited Kingdom
| | - Peter A Lund
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Jeff A Cole
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| |
Collapse
|
3
|
Jouan R, Lextrait G, Lachat J, Yokota A, Cossard R, Naquin D, Timchenko T, Kikuchi Y, Ohbayashi T, Mergaert P. Transposon sequencing reveals the essential gene set and genes enabling gut symbiosis in the insect symbiont Caballeronia insecticola. ISME COMMUNICATIONS 2024; 4:ycad001. [PMID: 38282642 PMCID: PMC10809759 DOI: 10.1093/ismeco/ycad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 01/30/2024]
Abstract
Caballeronia insecticola is a bacterium belonging to the Burkholderia genus sensu lato, which is able to colonize multiple environments like soils and the gut of the bean bug Riptortus pedestris. We constructed a saturated Himar1 mariner transposon library and revealed by transposon-sequencing that 498 protein-coding genes constitute the essential genome of Caballeronia insecticola for growth in free-living conditions. By comparing essential gene sets of Caballeronia insecticola and seven related Burkholderia s.l. strains, only 120 common genes were identified, indicating that a large part of the essential genome is strain-specific. In order to reproduce specific nutritional conditions that are present in the gut of Riptortus pedestris, we grew the mutant library in minimal media supplemented with candidate gut nutrients and identified several condition-dependent fitness-defect genes by transposon-sequencing. To validate the robustness of the approach, insertion mutants in six fitness genes were constructed and their growth deficiency in media supplemented with the corresponding nutrient was confirmed. The mutants were further tested for their efficiency in Riptortus pedestris gut colonization, confirming that gluconeogenic carbon sources, taurine and inositol, are nutrients consumed by the symbiont in the gut. Thus, our study provides insights about specific contributions provided by the insect host to the bacterial symbiont.
Collapse
Grants
- JSPS Research Fellowship for Young Scientists, Japan
- Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan
- Ministry of Higher Education, Research, and Innovation, France
- CNRS International Research Project, France
- JSPS-CNRS Bilateral Open Partnership Joint Research Project, France-Japan
- Agence Nationale de la Recherche, France
- Saclay Plant Sciences-SPS
Collapse
Affiliation(s)
- Romain Jouan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Gaëlle Lextrait
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Joy Lachat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Aya Yokota
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Raynald Cossard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Tatiana Timchenko
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo 062-8517, Japan
| | - Tsubasa Ohbayashi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8604, Japan
| | - Peter Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| |
Collapse
|
4
|
Ishaq Z, Zaheer T, Waseem M, Shahwar Awan H, Ullah N, AlAsmari AF, AlAsmari F, Ali A. Immunoinformatics aided designing of a next generation poly-epitope vaccine against uropathogenic Escherichia coli to combat urinary tract infections. J Biomol Struct Dyn 2023; 42:11976-11996. [PMID: 37811774 DOI: 10.1080/07391102.2023.2266018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Urinary tract infections (UTIs) are the second most prevalent bacterial infections and uropathogenic Escherichia coli (UPEC) stands among the primary causative agents of UTIs. The usage of antibiotics is the routine therapy being used in various countries to treat UTIs but becoming ineffective because of increasing antibiotic resistance among UPEC strains. Thus, there must be the development of some alternative treatment strategies such as vaccine development against UPEC. In the following study, pan-genomics along with reverse vaccinology approaches is used under the framework of bioinformatics for the identification of core putative vaccine candidates, employing 307 UPEC genomes (complete and draft), available publicly. A total of nine T-cell epitopes (derived from B-cells) of both MHC classes (I and II), were prioritized among three potential protein candidates. These epitopes were then docked together by using linkers (GPGPG and AAY) and an adjuvant (Cholera Toxin B) to form a poly-valent vaccine construct. The chimeric vaccine construct was undergone by molecular modelling, further refinement and energy minimization. We predicted positive results of the vaccine construct in immune simulations with significantly high levels of immune cells. The protein-protein docking analysis of vaccine construct with toll-like receptors predicted efficient binding, which was further validated by molecular dynamics simulation of vaccine construct with TLR-2 and TLR-4 at 120 ns, resulting in stable complexes' conformation throughout the simulation run. Overall, the vaccine construct demonstrated positive antigenic response. In future, this chimeric vaccine construct or the identified epitopes could be experimentally validated for the development of UPEC vaccines against UTIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zaara Ishaq
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tahreem Zaheer
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Maaz Waseem
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Hayeqa Shahwar Awan
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- Shifa International Hospitals Ltd, Islamabad, Pakistan
| | - Nimat Ullah
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- NYU Langone Health, New York, United States
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
5
|
Ma C, Li M, Peng H, Lan M, Tao L, Li C, Wu C, Bai H, Zhong Y, Zhong S, Qin R, Li F, Li J, He J. Mesomycoplasma ovipneumoniae from goats with respiratory infection: pathogenic characteristics, population structure, and genomic features. BMC Microbiol 2023; 23:220. [PMID: 37580659 PMCID: PMC10424369 DOI: 10.1186/s12866-023-02964-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Mycoplasma ovipneumoniae is a critical pathogen that causes respiratory diseases that threaten Caprini health and cause economic damage. A genome-wide study of M. ovipneumoniae will help understand the pathogenic characteristics of this microorganism. RESULTS Toxicological pathology and whole-genome sequencing of nine M. ovipneumoniae strains isolated from goats were performed using an epidemiological survey. These strains exhibited anterior ventral lung consolidation, typical of bronchopneumonia in goats. Average nucleotide identity and phylogenetic analysis based on whole-genome sequences showed that all M. ovipneumoniae strains clustered into two clades, largely in accordance with their geographical origins. The pan-genome of the 23 M. ovipneumoniae strains contained 5,596 genes, including 385 core, 210 soft core, and 5,001 accessory genes. Among these genes, two protein-coding genes were annotated as cilium adhesion and eight as paralog surface adhesins when annotated to VFDB, and no antibiotic resistance-related genes were predicted. Additionally, 23 strains carried glucosidase-related genes (ycjT and group_1595) and glucosidase-related genes (atpD_2), indicating that M. ovipneumoniae possesses a wide range of glycoside hydrolase activities. CONCLUSIONS The population structure and genomic features identified in this study will facilitate further investigations into the pathogenesis of M. ovipneumoniae and lay the foundation for the development of preventive and therapeutic methods.
Collapse
Affiliation(s)
- Chunxia Ma
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Nanning, 530001, Guangxi, China
| | - Ming Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, Guangxi, China
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Nanning, 530001, Guangxi, China
| | - Meiyi Lan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Nanning, 530001, Guangxi, China
| | - Li Tao
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Nanning, 530001, Guangxi, China
| | - Changting Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Nanning, 530001, Guangxi, China
| | - Cuilan Wu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Nanning, 530001, Guangxi, China
| | - Huili Bai
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Nanning, 530001, Guangxi, China
| | - Yawen Zhong
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Shuhong Zhong
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Nanning, 530001, Guangxi, China
| | - Ruofu Qin
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Nanning, 530001, Guangxi, China
| | - Fengsheng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Nanning, 530001, Guangxi, China
| | - Jun Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, Guangxi, China.
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Nanning, 530001, Guangxi, China.
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
6
|
Fong WY, Canals R, Predeus AV, Perez-Sepulveda B, Wenner N, Lacharme-Lora L, Feasey N, Wigley P, Hinton JCD. Genome-wide fitness analysis identifies genes required for in vitro growth and macrophage infection by African and global epidemic pathovariants of Salmonella enterica Enteritidis. Microb Genom 2023; 9:mgen001017. [PMID: 37219927 PMCID: PMC10272866 DOI: 10.1099/mgen.0.001017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/17/2023] [Indexed: 05/24/2023] Open
Abstract
Salmonella enterica Enteritidis is the second most common serovar associated with invasive non-typhoidal Salmonella (iNTS) disease in sub-Saharan Africa. Previously, genomic and phylogenetic characterization of S . enterica Enteritidis isolates from the human bloodstream led to the discovery of the Central/Eastern African clade (CEAC) and West African clade, which were distinct from the gastroenteritis-associated global epidemic clade (GEC). The African S . enterica Enteritidis clades have unique genetic signatures that include genomic degradation, novel prophage repertoires and multi-drug resistance, but the molecular basis for the enhanced propensity of African S . enterica Enteritidis to cause bloodstream infection is poorly understood. We used transposon insertion sequencing (TIS) to identify the genetic determinants of the GEC representative strain P125109 and the CEAC representative strain D7795 for growth in three in vitro conditions (LB or minimal NonSPI2 and InSPI2 growth media), and for survival and replication in RAW 264.7 murine macrophages. We identified 207 in vitro -required genes that were common to both S . enterica Enteritidis strains and also required by S . enterica Typhimurium, S . enterica Typhi and Escherichia coli , and 63 genes that were only required by individual S . enterica Enteritidis strains. Similar types of genes were required by both P125109 and D7795 for optimal growth in particular media. Screening the transposon libraries during macrophage infection identified 177 P125109 and 201 D7795 genes that contribute to bacterial survival and replication in mammalian cells. The majority of these genes have proven roles in Salmonella virulence. Our analysis uncovered candidate strain-specific macrophage fitness genes that could encode novel Salmonella virulence factors.
Collapse
Affiliation(s)
- Wai Yee Fong
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Present address: Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, USA
| | - Rocío Canals
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Present address: GSK Vaccines Institute for Global Health S.R.L., Siena, Italy
| | - Alexander V. Predeus
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Present address: Wellcome Trust Sanger Institute, Cambridge, UK
| | - Blanca Perez-Sepulveda
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nicolas Wenner
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Present address: Biozentrum, University of Basel, Basel, Switzerland
| | - Lizeth Lacharme-Lora
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nicholas Feasey
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Malawi-Liverpool-Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Paul Wigley
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
- Present address: Bristol Veterinary School,University of Bristol, Langford Campus, UK
| | - Jay C. D. Hinton
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Stoakes E, Turner K, Baker DJ, Suau Sans M, Yasir M, Kalmar L, Costigan R, Lott M, Grant AJ. Application of TraDIS to define the core essential genome of Campylobacter jejuni and Campylobacter coli. BMC Microbiol 2023; 23:97. [PMID: 37024800 PMCID: PMC10077673 DOI: 10.1186/s12866-023-02835-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Campylobacter species are the major cause of bacterial gastroenteritis. As there is no effective vaccine, combined with the rapid increase in antimicrobial resistant strains, there is a need to identify new targets for intervention. Essential genes are those that are necessary for growth and/or survival, making these attractive targets. In this study, comprehensive transposon mutant libraries were created in six C. jejuni strains, four C. coli strains and one C. lari and C. hyointestinalis strain, allowing for those genes that cannot tolerate a transposon insertion being called as essential. Comparison of essential gene lists using core genome analysis can highlight those genes which are common across multiple strains and/or species. Comparison of C. jejuni and C. coli, the two species that cause the most disease, identified 316 essential genes. Genes of interest highlighted members of the purine pathway being essential for C. jejuni whilst also finding that a functional potassium uptake system is essential. Protein-protein interaction networks using these essential gene lists also highlighted proteins in the purine pathway being major 'hub' proteins which have a large number of interactors across the network. When adding in two more species (C. lari and C. hyointestinalis) the essential gene list reduces to 261. Within these 261 essential genes, there are many genes that have been found to be essential in other bacteria. These include htrB and PEB4, which have previously been found as core virulence genes across Campylobacter species in other studies. There were 21 genes which have no known function with eight of these being associated with the membrane. These surface-associated essential genes may provide attractive targets. The essential gene lists presented will help to prioritise targets for the development of novel therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Emily Stoakes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Keith Turner
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Dave J Baker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Maria Suau Sans
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Muhammad Yasir
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Lajos Kalmar
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Ruby Costigan
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Martin Lott
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK.
| |
Collapse
|
8
|
Metters G, Hemsley C, Norville I, Titball R. Identification of essential genes in Coxiella burnetii. Microb Genom 2023; 9:mgen000944. [PMID: 36723494 PMCID: PMC9997736 DOI: 10.1099/mgen.0.000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Coxiella burnetii is an intracellular pathogen responsible for causing Q fever in humans, a disease with varied presentations ranging from a mild flu-like sickness to a debilitating illness that can result in endocarditis. The intracellular lifestyle of C. burnetii is unique, residing in an acidic phagolysosome-like compartment within host cells. An understanding of the core molecular biology of C. burnetii will greatly increase our understanding of C. burnetii growth, survival and pathogenesis. We used transposon-directed insertion site sequencing (TraDIS) to reveal C. burnetii Nine Mile Phase II genes fundamental for growth and in vitro survival. Screening a transposon library containing >10 000 unique transposon mutants revealed 512 predicted essential genes. Essential routes of synthesis were identified for the mevalonate pathway, as well as peptidoglycan and biotin synthesis. Some essential genes identified (e.g. predicted type IV secretion system effector genes) are typically considered to be associated with C. burnetii virulence, a caveat concerning the axenic media used in the study. Investigation into the conservation of the essential genes identified revealed that 78 % are conserved across all C. burnetii strains sequenced to date, which probably play critical functions. This is the first report of a whole genome transposon screen in C. burnetii that has been undertaken for the identification of essential genes.
Collapse
Affiliation(s)
- Georgie Metters
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Defence Science and Technology Laboratories, CBR Division, Porton Down, Salisbury SP4 0JQ, UK
| | - Claudia Hemsley
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Present address: Molecular Microbiology Division, School of Life Sciences, University of Dundee, Dundee, DD1 5AA, UK
| | - Isobel Norville
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Defence Science and Technology Laboratories, CBR Division, Porton Down, Salisbury SP4 0JQ, UK
| | - Richard Titball
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
9
|
Martínez-Álvaro M, Mattock J, Auffret M, Weng Z, Duthie CA, Dewhurst RJ, Cleveland MA, Watson M, Roehe R. Microbiome-driven breeding strategy potentially improves beef fatty acid profile benefiting human health and reduces methane emissions. MICROBIOME 2022; 10:166. [PMID: 36199148 PMCID: PMC9533493 DOI: 10.1186/s40168-022-01352-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Healthier ruminant products can be achieved by adequate manipulation of the rumen microbiota to increase the flux of beneficial fatty acids reaching host tissues. Genomic selection to modify the microbiome function provides a permanent and accumulative solution, which may have also favourable consequences in other traits of interest (e.g. methane emissions). Possibly due to a lack of data, this strategy has never been explored. RESULTS This study provides a comprehensive identification of ruminal microbial mechanisms under host genomic influence that directly or indirectly affect the content of unsaturated fatty acids in beef associated with human dietary health benefits C18:3n-3, C20:5n-3, C22:5n-3, C22:6n-3 or cis-9, trans-11 C18:2 and trans-11 C18:1 in relation to hypercholesterolemic saturated fatty acids C12:0, C14:0 and C16:0, referred to as N3 and CLA indices. We first identified that ~27.6% (1002/3633) of the functional core additive log-ratio transformed microbial gene abundances (alr-MG) in the rumen were at least moderately host-genomically influenced (HGFC). Of these, 372 alr-MG were host-genomically correlated with the N3 index (n=290), CLA index (n=66) or with both (n=16), indicating that the HGFC influence on beef fatty acid composition is much more complex than the direct regulation of microbial lipolysis and biohydrogenation of dietary lipids and that N3 index variation is more strongly subjected to variations in the HGFC than CLA. Of these 372 alr-MG, 110 were correlated with the N3 and/or CLA index in the same direction, suggesting the opportunity for enhancement of both indices simultaneously through a microbiome-driven breeding strategy. These microbial genes were involved in microbial protein synthesis (aroF and serA), carbohydrate metabolism and transport (galT, msmX), lipopolysaccharide biosynthesis (kdsA, lpxD, lpxB), or flagellar synthesis (flgB, fliN) in certain genera within the Proteobacteria phyla (e.g. Serratia, Aeromonas). A microbiome-driven breeding strategy based on these microbial mechanisms as sole information criteria resulted in a positive selection response for both indices (1.36±0.24 and 0.79±0.21 sd of N3 and CLA indices, at 2.06 selection intensity). When evaluating the impact of our microbiome-driven breeding strategy to increase N3 and CLA indices on the environmental trait methane emissions (g/kg of dry matter intake), we obtained a correlated mitigation response of -0.41±0.12 sd. CONCLUSION This research provides insight on the possibility of using the ruminal functional microbiome as information for host genomic selection, which could simultaneously improve several microbiome-driven traits of interest, in this study exemplified with meat quality traits and methane emissions. Video Abstract.
Collapse
Affiliation(s)
| | - Jennifer Mattock
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | - Mick Watson
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
10
|
Differential Genetic Strategies of Burkholderia vietnamiensis and Paraburkholderia kururiensis for Root Colonization of Oryza sativa subsp.
japonica
and O. sativa subsp.
indica
, as Revealed by Transposon Mutagenesis Sequencing. Appl Environ Microbiol 2022; 88:e0064222. [DOI: 10.1128/aem.00642-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Burkholderiaceae
are frequent and abundant colonizers of the rice rhizosphere and interesting candidates to investigate for growth promotion. Species of
Paraburkholderia
have repeatedly been described to stimulate plant growth.
Collapse
|
11
|
Hogan AM, Cardona ST. Gradients in gene essentiality reshape antibacterial research. FEMS Microbiol Rev 2022; 46:fuac005. [PMID: 35104846 PMCID: PMC9075587 DOI: 10.1093/femsre/fuac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543 - 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
12
|
Guo Y, Ju Y, Chen D, Wang L. Research on the Computational Prediction of Essential Genes. Front Cell Dev Biol 2021; 9:803608. [PMID: 34938741 PMCID: PMC8685449 DOI: 10.3389/fcell.2021.803608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/19/2022] Open
Abstract
Genes, the nucleotide sequences that encode a polypeptide chain or functional RNA, are the basic genetic unit controlling biological traits. They are the guarantee of the basic structures and functions in organisms, and they store information related to biological factors and processes such as blood type, gestation, growth, and apoptosis. The environment and genetics jointly affect important physiological processes such as reproduction, cell division, and protein synthesis. Genes are related to a wide range of phenomena including growth, decline, illness, aging, and death. During the evolution of organisms, there is a class of genes that exist in a conserved form in multiple species. These genes are often located on the dominant strand of DNA and tend to have higher expression levels. The protein encoded by it usually either performs very important functions or is responsible for maintaining and repairing these essential functions. Such genes are called persistent genes. Among them, the irreplaceable part of the body’s life activities is the essential gene. For example, when starch is the only source of energy, the genes related to starch digestion are essential genes. Without them, the organism will die because it cannot obtain enough energy to maintain basic functions. The function of the proteins encoded by these genes is thought to be fundamental to life. Nowadays, DNA can be extracted from blood, saliva, or tissue cells for genetic testing, and detailed genetic information can be obtained using the most advanced scientific instruments and technologies. The information gained from genetic testing is useful to assess the potential risks of disease, and to help determine the prognosis and development of diseases. Such information is also useful for developing personalized medication and providing targeted health guidance to improve the quality of life. Therefore, it is of great theoretical and practical significance to identify important and essential genes. In this paper, the research status of essential genes and the essential genome database of bacteria are reviewed, the computational prediction method of essential genes based on communication coding theory is expounded, and the significance and practical application value of essential genes are discussed.
Collapse
Affiliation(s)
- Yuxin Guo
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.,School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Dong Chen
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| | - Lihong Wang
- Beidahuang Industry Group General Hospital, Harbin, China
| |
Collapse
|
13
|
Prediction of Genes That Function in Methanogenesis and CO 2 Pathways in Extremophiles. Microorganisms 2021; 9:microorganisms9112211. [PMID: 34835337 PMCID: PMC8621995 DOI: 10.3390/microorganisms9112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/04/2022] Open
Abstract
Gaet’ale (GAL) and Mud’ara (MUP) are two hypersaline ponds located in the Danakil Depression recharged by underground water from the surrounding highlands. These two ponds have different pH, salinity, and show variation in the concentration of many ionic components. Metagenomic analysis concludes that GAL is dominated by bacteria as in the case of the other hypersaline and acidic ponds in the Danakil Depression. However, Archaea dominated the ponds of MUP. In the current study, the application of SEED and KEGG helped to map the ordered steps of specific enzyme catalyzed reaction in converting CO2 into cell products. We predict that highly efficient and light-independent carbon fixation involving phosphoenolpyruvate carboxylase takes place in MUP. On the contrary, genes encoding enzymes involved in hydrogenotrophic and acetoclastic methanogenesis appeared solely in ponds of GAL, implying the biological source of the hazardous methane gas in that environment. Based on the investigation of the sources of the genes of interest, it is clear that cooperative interactions between members of the two communities and syntrophic metabolism is the main strategy adapted to utilize inorganic carbon as a carbon source in both MUP and GAL. This insight can be used to design biotechnological applications of microbial communities in production of methane biogas or to minimize CO2 emissions.
Collapse
|
14
|
Campos TL, Korhonen PK, Hofmann A, Gasser RB, Young ND. Harnessing model organism genomics to underpin the machine learning-based prediction of essential genes in eukaryotes - Biotechnological implications. Biotechnol Adv 2021; 54:107822. [PMID: 34461202 DOI: 10.1016/j.biotechadv.2021.107822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022]
Abstract
The availability of high-quality genomes and advances in functional genomics have enabled large-scale studies of essential genes in model eukaryotes, including the 'elegant worm' (Caenorhabditis elegans; Nematoda) and the 'vinegar fly' (Drosophila melanogaster; Arthropoda). However, this is not the case for other, much less-studied organisms, such as socioeconomically important parasites, for which functional genomic platforms usually do not exist. Thus, there is a need to develop innovative techniques or approaches for the prediction, identification and investigation of essential genes. A key approach that could enable the prediction of such genes is machine learning (ML). Here, we undertake an historical review of experimental and computational approaches employed for the characterisation of essential genes in eukaryotes, with a particular focus on model ecdysozoans (C. elegans and D. melanogaster), and discuss the possible applicability of ML-approaches to organisms such as socioeconomically important parasites. We highlight some recent results showing that high-performance ML, combined with feature engineering, allows a reliable prediction of essential genes from extensive, publicly available 'omic data sets, with major potential to prioritise such genes (with statistical confidence) for subsequent functional genomic validation. These findings could 'open the door' to fundamental and applied research areas. Evidence of some commonality in the essential gene-complement between these two organisms indicates that an ML-engineering approach could find broader applicability to ecdysozoans such as parasitic nematodes or arthropods, provided that suitably large and informative data sets become/are available for proper feature engineering, and for the robust training and validation of algorithms. This area warrants detailed exploration to, for example, facilitate the identification and characterisation of essential molecules as novel targets for drugs and vaccines against parasitic diseases. This focus is particularly important, given the substantial impact that such diseases have worldwide, and the current challenges associated with their prevention and control and with drug resistance in parasite populations.
Collapse
Affiliation(s)
- Tulio L Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia; Bioinformatics Core Facility, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (IAM-Fiocruz), Recife, Pernambuco, Brazil
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
15
|
Lewis K. At the Crossroads of Bioenergetics and Antibiotic Discovery. BIOCHEMISTRY (MOSCOW) 2021; 85:1469-1483. [PMID: 33705287 DOI: 10.1134/s0006297920120019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dr. Vladimir Skulachev was my mentor, and his pioneering work in the field of bioenergetics inspired the discoveries described in this review, written in the form of a personal account of events. Examining basic mechanisms of chemiosmotic coupling unexpectedly led us to transenvelope multidrug resistance pumps (MDR pumps) that severely limit development of novel antibiotics. One of the major advances of Skulachev and his group was the discovery of the mitochondrial membrane potential with the use of permeant cations such as TPP+, which served as electric probes. We describe our finding of their natural counterparts in plants, where they act as antimicrobials. The most challenging problems in antimicrobial drug discovery are antibiotic tolerance of chronic infections caused by dormant persister cells; antibiotic resistance, responsible for the current antimicrobial resistance crisis (AMR); and finding novel compounds acting against Gram-negative bacteria, protected by their powerful multidrug resistance pumps. Our study of persisters shows that these are rare cells formed by stochastic fluctuation in expression of Krebs cycle enzymes, leading to a drop in ATP, target shutdown, and antibiotic tolerance. Searching for compounds that can corrupt targets in the absence of ATP, we identified acyldepsipeptide (ADEP) that activates the ClpP protease, forcing cells to self-digest. Growing previously uncultured bacteria led us to teixobactin, a novel cell wall acting antibiotic. Teixobactin avoids efflux by targeting lipid II and lipid III, precursors of peptidoglycan and wall teichoic acid, located on the surface. The targets are immutable, and teixobactin is the first antibiotic with no detectable resistance. Our search for compounds acting against Gram-negative bacteria led to the discovery of darobactins, which also hit a surface target, the essential chaperone BamA.
Collapse
Affiliation(s)
- K Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Liu T, Luo H, Gao F. Position preference of essential genes in prokaryotic operons. PLoS One 2021; 16:e0250380. [PMID: 33886641 PMCID: PMC8061932 DOI: 10.1371/journal.pone.0250380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022] Open
Abstract
Essential genes, which form the basis of life activities, are crucial for the survival of organisms. Essential genes tend to be located in operons, but how they are distributed in operons is still unclear for most prokaryotes. In order to clarify the general rule of position preference of essential genes in operons, an index of the average position of genes in an operon was proposed, and the distributions of essential and non-essential genes in operons in 51 bacterial genomes and two archaeal genomes were analyzed based on this new index. Consequently, essential genes were found to preferentially occupy the front positions of the operons, which tend to be expressed at higher levels.
Collapse
Affiliation(s)
- Tao Liu
- Department of Physics, School of Science, Tianjin University, Tianjin, China
| | - Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin, China
- * E-mail: (FG); (HL)
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
- * E-mail: (FG); (HL)
| |
Collapse
|
17
|
Elucidating Essential Genes in Plant-Associated Pseudomonas protegens Pf-5 Using Transposon Insertion Sequencing. J Bacteriol 2021; 203:JB.00432-20. [PMID: 33257523 DOI: 10.1128/jb.00432-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
Gene essentiality studies have been performed on numerous bacterial pathogens, but essential gene sets have been determined for only a few plant-associated bacteria. Pseudomonas protegens Pf-5 is a plant-commensal, biocontrol bacterium that can control disease-causing pathogens on a wide range of crops. Work on Pf-5 has mostly focused on secondary metabolism and biocontrol genes, but genome-wide approaches such as high-throughput transposon mutagenesis have not yet been used for this species. In this study, we generated a dense P. protegens Pf-5 transposon mutant library and used transposon-directed insertion site sequencing (TraDIS) to identify 446 genes essential for growth on rich media. Genes required for fundamental cellular machinery were enriched in the essential gene set, while genes related to nutrient biosynthesis, stress responses, and transport were underrepresented. The majority of Pf-5 essential genes were part of the P. protegens core genome. Comparison of the essential gene set of Pf-5 with those of two plant-associated pseudomonads, P. simiae and P. syringae, and the well-studied opportunistic human pathogen P. aeruginosa PA14 showed that the four species share a large number of essential genes, but each species also had uniquely essential genes. Comparison of the Pf-5 in silico-predicted and in vitro-determined essential gene sets highlighted the essential cellular functions that are over- and underestimated by each method. Expanding essentiality studies into bacteria with a range of lifestyles may improve our understanding of the biological processes important for bacterial survival and growth.IMPORTANCE Essential genes are those crucial for survival or normal growth rates in an organism. Essential gene sets have been identified in numerous bacterial pathogens but only a few plant-associated bacteria. Employing genome-wide approaches, such as transposon insertion sequencing, allows for the concurrent analyses of all genes of a bacterial species and rapid determination of essential gene sets. We have used transposon insertion sequencing to systematically analyze thousands of Pseudomonas protegens Pf-5 genes and gain insights into gene functions and interactions that are not readily available using traditional methods. Comparing Pf-5 essential genes with those of three other pseudomonads highlights how gene essentiality varies between closely related species.
Collapse
|
18
|
Le NQK, Do DT, Hung TNK, Lam LHT, Huynh TT, Nguyen NTK. A Computational Framework Based on Ensemble Deep Neural Networks for Essential Genes Identification. Int J Mol Sci 2020; 21:E9070. [PMID: 33260643 PMCID: PMC7730808 DOI: 10.3390/ijms21239070] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/13/2023] Open
Abstract
Essential genes contain key information of genomes that could be the key to a comprehensive understanding of life and evolution. Because of their importance, studies of essential genes have been considered a crucial problem in computational biology. Computational methods for identifying essential genes have become increasingly popular to reduce the cost and time-consumption of traditional experiments. A few models have addressed this problem, but performance is still not satisfactory because of high dimensional features and the use of traditional machine learning algorithms. Thus, there is a need to create a novel model to improve the predictive performance of this problem from DNA sequence features. This study took advantage of a natural language processing (NLP) model in learning biological sequences by treating them as natural language words. To learn the NLP features, a supervised learning model was consequentially employed by an ensemble deep neural network. Our proposed method could identify essential genes with sensitivity, specificity, accuracy, Matthews correlation coefficient (MCC), and area under the receiver operating characteristic curve (AUC) values of 60.2%, 84.6%, 76.3%, 0.449, and 0.814, respectively. The overall performance outperformed the single models without ensemble, as well as the state-of-the-art predictors on the same benchmark dataset. This indicated the effectiveness of the proposed method in determining essential genes, in particular, and other sequencing problems, in general.
Collapse
Affiliation(s)
- Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Duyen Thi Do
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 106, Taiwan;
| | - Truong Nguyen Khanh Hung
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.N.K.H.); (L.H.T.L.)
- Department of Orthopedic and Trauma, Cho Ray Hospital, Ho Chi Minh 70000, Vietnam
| | - Luu Ho Thanh Lam
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.N.K.H.); (L.H.T.L.)
- Intensive Care Unit, Children’s Hospital 2, Ho Chi Minh 70000, Vietnam
| | - Tuan-Tu Huynh
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 320, Taiwan;
- Department of Electrical Electronic and Mechanical Engineering, Lac Hong University, Dong Nai 76120, Vietnam
| | - Ngan Thi Kim Nguyen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan;
| |
Collapse
|
19
|
Patil S, Palande A, Lodhiya T, Pandit A, Mukherjee R. Redefining genetic essentiality in Mycobacterium tuberculosis. Gene 2020; 765:145091. [PMID: 32898604 DOI: 10.1016/j.gene.2020.145091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 11/15/2022]
Abstract
Sequencing transposon mutant libraries have been pivotal in annotating essential and non-essential genes in bacteria. This is particularly very helpful in the case of Mycobacterium tuberculosis with a large part of its genome without known function. It is not known whether there are any variations in the essentiality states as a function of optimal growth in the absence of any selection pressure. We here grow a high-density mutant library of M. tuberculosis through serial cultures and monitor the temporal fluctuations in insertion frequencies across all TA dinucleotides in the genome. Genes that cause morphological and physiological heterogeneity or enable metabolic bypass were found to gradually lose insertions, while genes comprising the toxin-antitoxin systems were found to get enriched with insertions during growth in nutrient replete conditions. High levels of fluctuations were observed in genes involved in cell wall and cell processes, intermediary metabolism, and genes involved in virulence, suggesting new modes of adaptation undertaken by the mutants. We also report the essentiality status of several newly annotated genetic features.
Collapse
Affiliation(s)
- Saniya Patil
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Aseem Palande
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Tejan Lodhiya
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Awadhesh Pandit
- National Center for Biological Sciences, Bengaluru 560065, India
| | - Raju Mukherjee
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India.
| |
Collapse
|
20
|
Prathiviraj R, Chellapandi P. Comparative genomic analysis reveals starvation survival systems in Methanothermobacter thermautotrophicus ΔH. Anaerobe 2020; 64:102216. [PMID: 32504807 DOI: 10.1016/j.anaerobe.2020.102216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022]
Abstract
Methanothermobacter thermautotrophicus ΔH (MTH) is a thermophilic hydrogenotrophic methanogenic archaeon capable of reducing CO2 with H2 to produce methane gas. It is the potential candidate in the biomethanation of CO2 and CO in anaerobic reactors and biogas upgrading process. However, systematic studies addressing its genome conservation and function remain scant in this genome. In this study, we have evaluated its evolutionary resemblance and metabolic discrepancy, particularly in starvation survival systems by comparing the genomic contexts with Methanothermobacter marburgensis str. Marburg (MMG) and Methanobacterium formicicum DSM 1535 (MFO). The phylogenomic analysis of this study indicated that there was a strong phylogenomic signal among MTH, MMG, and MFO in the whole-genome tree. DNA replication machinery was conserved in the MTH genome and might have evolved at different evolution rates. Genome synteny analysis observed collinearity of either gene orders or gene families has to be maintained with syntenic blocks located in the syntenic out-paralogs. A genome-wide metabolic analysis identified some unique putative metabolic subsystems in MTH, which are proposed to determine its growth characteristics in diverse environments. MTH genome comprised of 93 unique genes-coding for starvation survival and stress-response proteins. These proteins confer its adaptation to nutritional deprivation and other abiotic stresses. MTH has a typical system to withstand its growth and cell viability during stable operation and recovery after prolonged starvation. Thus, the present work will provide an insight to improve the genome refinement and metabolic reconstruction in parallel to other closely related species.
Collapse
Affiliation(s)
- R Prathiviraj
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
21
|
Lewis K. The Science of Antibiotic Discovery. Cell 2020; 181:29-45. [DOI: 10.1016/j.cell.2020.02.056] [Citation(s) in RCA: 465] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
|
22
|
Josi C, Bürki S, Vidal S, Dordet-Frisoni E, Citti C, Falquet L, Pilo P. Large-Scale Analysis of the Mycoplasma bovis Genome Identified Non-essential, Adhesion- and Virulence-Related Genes. Front Microbiol 2019; 10:2085. [PMID: 31572317 PMCID: PMC6753880 DOI: 10.3389/fmicb.2019.02085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma bovis is an important pathogen of cattle causing bovine mycoplasmosis. Clinical manifestations are numerous, but pneumonia, mastitis, and arthritis cases are mainly reported. Currently, no efficient vaccine is available and antibiotic treatments are not always satisfactory. The design of new, efficient prophylactic and therapeutic approaches requires a better understanding of the molecular mechanisms responsible for M. bovis pathogenicity. Random transposon mutagenesis has been widely used in Mycoplasma species to identify potential gene functions. Such an approach can also be used to screen genomes and search for essential and non-essential genes for growth. Here, we generated a random transposon mutant library of M. bovis strain JF4278 containing approximately 4000 independent insertion sites. We then coupled high-throughput screening of this mutant library to transposon sequencing and bioinformatic analysis to identify M. bovis non-essential, adhesion- and virulence-related genes. Three hundred and fifty-two genes of M. bovis were assigned as essential for growth in rich medium. Among the remaining non-essential genes, putative virulence-related factors were subsequently identified. The complete mutant library was screened for adhesion using primary bovine mammary gland epithelial cells. Data from this assay resulted in a list of conditional-essential genes with putative adhesion-related functions by identifying non-essential genes for growth that are essential for host cell-adhesion. By individually assessing the adhesion capacity of six selected mutants, two previously unknown factors and the adhesin TrmFO were associated with a reduced adhesion phenotype. Overall, our study (i) uncovers new, putative virulence-related genes; (ii) offers a list of putative adhesion-related factors; and (iii) provides valuable information for vaccine design and for exploring M. bovis biology, pathogenesis, and host-interaction.
Collapse
Affiliation(s)
- Christoph Josi
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sibylle Bürki
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Sara Vidal
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | | | - Christine Citti
- UMR 1225, IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Laurent Falquet
- Department of Biology, Faculty of Science and Medicine, Swiss Institute of Bioinformatics, University of Fribourg, Fribourg, Switzerland
| | - Paola Pilo
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Dar HA, Zaheer T, Shehroz M, Ullah N, Naz K, Muhammad SA, Zhang T, Ali A. Immunoinformatics-Aided Design and Evaluation of a Potential Multi-Epitope Vaccine against Klebsiella Pneumoniae. Vaccines (Basel) 2019; 7:E88. [PMID: 31409021 PMCID: PMC6789656 DOI: 10.3390/vaccines7030088] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic gram-negative bacterium that causes nosocomial infection in healthcare settings. Despite the high morbidity and mortality rate associated with these bacterial infections, no effective vaccine is available to counter the pathogen. In this study, the pangenome of a total of 222 available complete genomes of K. pneumoniae was explored to obtain the core proteome. A reverse vaccinology strategy was applied to the core proteins to identify four antigenic proteins. These proteins were then subjected to epitope mapping and prioritization steps to shortlist nine B-cell derived T-cell epitopes which were linked together using GPGPG linkers. An adjuvant (Cholera Toxin B) was also added at the N-terminal of the vaccine construct to improve its immunogenicity and a stabilized multi-epitope protein structure was obtained using molecular dynamics simulation. The designed vaccine exhibited sustainable and strong bonding interactions with Toll-like receptor 2 and Toll-like receptor 4. In silico reverse translation and codon optimization also confirmed its high expression in E. coli K12 strain. The computer-aided analyses performed in this study imply that the designed multi-epitope vaccine can elicit specific immune responses against K. pneumoniae. However, wet lab validation is necessary to further verify the effectiveness of this proposed vaccine candidate.
Collapse
Affiliation(s)
- Hamza Arshad Dar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Tahreem Zaheer
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Muhammad Shehroz
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Nimat Ullah
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Kanwal Naz
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
| |
Collapse
|
24
|
Passarelli-Araujo H, Palmeiro JK, Moharana KC, Pedrosa-Silva F, Dalla-Costa LM, Venancio TM. Genomic analysis unveils important aspects of population structure, virulence, and antimicrobial resistance in Klebsiella aerogenes. FEBS J 2019; 286:3797-3810. [PMID: 31319017 DOI: 10.1111/febs.15005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/03/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
Abstract
Klebsiella aerogenes is an important pathogen in healthcare-associated infections. Nevertheless, in comparison to other clinically important pathogens, K. aerogenes population structure, genetic diversity, and pathogenicity remain poorly understood. Here, we elucidate K. aerogenes clonal complexes (CCs) and genomic features associated with resistance and virulence. We present a detailed description of the population structure of K. aerogenes based on 97 publicly available genomes by using both multilocus sequence typing and single-nucleotide polymorphisms extracted from the core genome. We also assessed virulence and resistance profiles using Virulence Finder Database and Comprehensive Antibiotic Resistance Database, respectively. We show that K. aerogenes has an open pangenome and a large effective population size, which account for its high genomic diversity and support that negative selection prevents fixation of most deleterious alleles. The population is structured in at least 10 CCs, including two novel ones identified here, CC9 and CC10. The repertoires of resistance genes comprise a high number of antibiotic efflux proteins as well as narrow- and extended-spectrum β-lactamases. Regarding the population structure, we identified two clusters based on virulence profiles because of the presence of the toxin-encoding clb operon and the siderophore production genes, irp and ybt. Notably, CC3 comprises the majority of K. aerogenes isolates associated with hospital outbreaks, emphasizing the importance of constant monitoring of this pathogen. Collectively, our results may provide a foundation for the development of new therapeutic and surveillance strategies worldwide.
Collapse
Affiliation(s)
- Hemanoel Passarelli-Araujo
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jussara K Palmeiro
- Laboratório de Microbiologia Clínica, Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Faculdade Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Kanhu C Moharana
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Francisnei Pedrosa-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Libera M Dalla-Costa
- Faculdade Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
25
|
Shields RC, Jensen PA. The bare necessities: Uncovering essential and condition-critical genes with transposon sequencing. Mol Oral Microbiol 2019; 34:39-50. [PMID: 30739386 DOI: 10.1111/omi.12256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
Querying gene function in bacteria has been greatly accelerated by the advent of transposon sequencing (Tn-seq) technologies (related Tn-seq strategies are known as TraDIS, INSeq, RB-TnSeq, and HITS). Pooled populations of transposon mutants are cultured in an environment and next-generation sequencing tools are used to determine areas of the genome that are important for bacterial fitness. In this review we provide an overview of Tn-seq methodologies and discuss how Tn-seq has been applied, or could be applied, to the study of oral microbiology. These applications include studying the essential genome as a means to rationally design therapeutic agents. Tn-seq has also contributed to our understanding of well-studied biological processes in oral bacteria. Other important applications include in vivo pathogenesis studies and use of Tn-seq to probe the molecular basis of microbial interactions. We also highlight recent advancements in techniques that act in synergy with Tn-seq such as clustered regularly interspaced short palindromic repeats (CRISPR) interference and microfluidic chip platforms.
Collapse
Affiliation(s)
- Robert C Shields
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| | - Paul A Jensen
- Department of Bioengineering and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
26
|
Martínez-Carranza E, Barajas H, Alcaraz LD, Servín-González L, Ponce-Soto GY, Soberón-Chávez G. Variability of Bacterial Essential Genes Among Closely Related Bacteria: The Case of Escherichia coli. Front Microbiol 2018; 9:1059. [PMID: 29910775 PMCID: PMC5992433 DOI: 10.3389/fmicb.2018.01059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/04/2018] [Indexed: 11/23/2022] Open
Abstract
The definition of bacterial essential genes has been widely pursued using different approaches. Their study has impacted several fields of research such as synthetic biology, the construction of bacteria with minimal chromosomes, the search for new antibiotic targets, or the design of strains with biotechnological applications. Bacterial genomes are mosaics that only share a small subset of gene-sequences (core genome) even among members of the same species. It has been reported that the presence of essential genes is highly variable between closely related bacteria and even among members of the same species, due to the phenomenon known as “non-orthologous gene displacement” that refers to the coding for an essential function by genes with no sequence homology due to horizontal gene transfer (HGT). The existence of dormant forms among bacteria and the high incidence of HGT have been proposed to be driving forces of bacterial evolution, and they might have a role in the low level of conservation of essential genes among related bacteria by non-orthologous gene displacement, but this correlation has not been recognized. The aim of this mini-review is to give a brief overview of the approaches that have been taken to define and study essential genes, and the implications of non-orthologous gene displacement in bacterial evolution, focusing mainly in the case of Escherichia coli. To this end, we reviewed the available literature, and we searched for the presence of the essential genes defined by mutagenesis in the genomes of the 63 best-sequenced E. coli genomes that are available in NCBI database. We could not document specific cases of non-orthologous gene displacement among the E. coli strains analyzed, but we found that the quality of the genome-sequences in the database is not enough to make accurate predictions about the conservation of essential-genes among members of this bacterial species.
Collapse
Affiliation(s)
- Enrique Martínez-Carranza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hugo Barajas
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis-David Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Servín-González
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriel-Yaxal Ponce-Soto
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
27
|
Chen L, Zhang YH, Wang S, Zhang Y, Huang T, Cai YD. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS One 2017; 12:e0184129. [PMID: 28873455 PMCID: PMC5584762 DOI: 10.1371/journal.pone.0184129] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/18/2017] [Indexed: 12/20/2022] Open
Abstract
Identifying essential genes in a given organism is important for research on their fundamental roles in organism survival. Furthermore, if possible, uncovering the links between core functions or pathways with these essential genes will further help us obtain deep insight into the key roles of these genes. In this study, we investigated the essential and non-essential genes reported in a previous study and extracted gene ontology (GO) terms and biological pathways that are important for the determination of essential genes. Through the enrichment theory of GO and KEGG pathways, we encoded each essential/non-essential gene into a vector in which each component represented the relationship between the gene and one GO term or KEGG pathway. To analyze these relationships, the maximum relevance minimum redundancy (mRMR) was adopted. Then, the incremental feature selection (IFS) and support vector machine (SVM) were employed to extract important GO terms and KEGG pathways. A prediction model was built simultaneously using the extracted GO terms and KEGG pathways, which yielded nearly perfect performance, with a Matthews correlation coefficient of 0.951, for distinguishing essential and non-essential genes. To fully investigate the key factors influencing the fundamental roles of essential genes, the 21 most important GO terms and three KEGG pathways were analyzed in detail. In addition, several genes was provided in this study, which were predicted to be essential genes by our prediction model. We suggest that this study provides more functional and pathway information on the essential genes and provides a new way to investigate related problems.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai, People’s Republic of China
- College of Information Engineering, Shanghai Maritime University, Shanghai, People’s Republic of China
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - ShaoPeng Wang
- School of Life Sciences, Shanghai University, Shanghai, People’s Republic of China
| | - YunHua Zhang
- Anhui province key lab of farmland ecological conversation and pollution prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, People’s Republic of China
| |
Collapse
|
28
|
Koo BM, Kritikos G, Farelli JD, Todor H, Tong K, Kimsey H, Wapinski I, Galardini M, Cabal A, Peters JM, Hachmann AB, Rudner DZ, Allen KN, Typas A, Gross CA. Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. Cell Syst 2017; 4:291-305.e7. [PMID: 28189581 DOI: 10.1016/j.cels.2016.12.013] [Citation(s) in RCA: 405] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/19/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022]
Abstract
A systems-level understanding of Gram-positive bacteria is important from both an environmental and health perspective and is most easily obtained when high-quality, validated genomic resources are available. To this end, we constructed two ordered, barcoded, erythromycin-resistance- and kanamycin-resistance-marked single-gene deletion libraries of the Gram-positive model organism, Bacillus subtilis. The libraries comprise 3,968 and 3,970 genes, respectively, and overlap in all but four genes. Using these libraries, we update the set of essential genes known for this organism, provide a comprehensive compendium of B. subtilis auxotrophic genes, and identify genes required for utilizing specific carbon and nitrogen sources, as well as those required for growth at low temperature. We report the identification of enzymes catalyzing several missing steps in amino acid biosynthesis. Finally, we describe a suite of high-throughput phenotyping methodologies and apply them to provide a genome-wide analysis of competence and sporulation. Altogether, we provide versatile resources for studying gene function and pathway and network architecture in Gram-positive bacteria.
Collapse
Affiliation(s)
- Byoung-Mo Koo
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - George Kritikos
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Horia Todor
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kenneth Tong
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Harvey Kimsey
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ilan Wapinski
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Galardini
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Angelo Cabal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason M Peters
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna-Barbara Hachmann
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Karen N Allen
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute of Quantitative Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
29
|
Nandi S, Subramanian A, Sarkar RR. An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features. MOLECULAR BIOSYSTEMS 2017; 13:1584-1596. [DOI: 10.1039/c7mb00234c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We propose an integrated machine learning process to predict gene essentiality in Escherichia coli K-12 MG1655 metabolism that outperforms known methods.
Collapse
Affiliation(s)
- Sutanu Nandi
- Chemical Engineering and Process Development
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific & Innovative Research (AcSIR)
| | - Abhishek Subramanian
- Chemical Engineering and Process Development
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific & Innovative Research (AcSIR)
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific & Innovative Research (AcSIR)
| |
Collapse
|
30
|
Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol Rev 2016; 40:520-53. [PMID: 27279642 DOI: 10.1093/femsre/fuw011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/24/2022] Open
Abstract
Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
31
|
Yang X, Li Y, Zang J, Li Y, Bie P, Lu Y, Wu Q. Analysis of pan-genome to identify the core genes and essential genes of Brucella spp. Mol Genet Genomics 2016; 291:905-12. [DOI: 10.1007/s00438-015-1154-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/01/2015] [Indexed: 01/11/2023]
|