1
|
Forsberg Z, Tuveng TR, Eijsink VGH. A modular enzyme with combined hemicellulose-removing and LPMO activity increases cellulose accessibility in softwood. FEBS J 2025; 292:75-93. [PMID: 39190632 PMCID: PMC11705215 DOI: 10.1111/febs.17250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/05/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Because of the association with other complex polysaccharides, extracting and utilizing cellulose from lignocellulosic materials requires the combined action of a broad range of carbohydrate-active enzymes, including multiple glycoside hydrolases (GHs) and lytic polysaccharide monooxygenases (LPMOs). The interplay between these enzymes and the way in which Nature orchestrates their co-existence and combined action are topics of great scientific and industrial interest. To gain more insight into these issues, we have studied the lignocellulose-degrading abilities of an enzyme from Caldibacillus cellulovorans (CcLPMO10-Man5), comprising an LPMO domain, a GH5 mannanase domain and two family 3 carbohydrate-binding modules (CBM3). Using a natural softwood substrate, we show that this enzyme promotes cellulase activity, i.e., saccharification of cellulose, both by removing mannan covering the cellulose and by oxidatively breaking up the cellulose structure. Synergy with CcLPMO10-Man5 was most pronounced for two tested cellobiohydrolases, whereas effects were smaller for a tested endoglucanase, which is in line with the notion that cellobiohydrolases and LPMOs attack the same crystalline regions of the cellulose, whereas endoglucanases attack semi-crystalline and amorphous regions. Importantly, the LPMO domain of CcLPMO10-Man5 is incapable of accessing the softwood cellulose in absence of the mannanase domain. Considering that LPMOs not bound to a substrate are sensitive to autocatalytic inactivation, this intramolecular synergy provides a perfect rationale for the evolution of modular enzymes such as CcLPMO10-Man5. The intramolecular coupling of the LPMO with a mannanase and two CBMs ensures that the LPMO is directed to areas where mannans are removed and cellulose thus becomes available.
Collapse
Affiliation(s)
- Zarah Forsberg
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Tina R. Tuveng
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| |
Collapse
|
2
|
Kim DG, Lee CM, Lee YS, Yoon SH, Kim SY. Isolation of a Novel Low-Temperature-Active and Organic-Solvent-Stable Mannanase from the Intestinal Metagenome of Hermetia illucens. Int J Mol Sci 2024; 26:216. [PMID: 39796082 PMCID: PMC11720594 DOI: 10.3390/ijms26010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
The black soldier fly, Hermetia illucens, is a voracious scavenger of various organic materials; therefore, it could be exploited as a biological system for processing daily food waste. In order to survey novel hydrolytic enzymes, we constructed a fosmid metagenome library using unculturable intestinal microorganisms from H. illucens. Through functional screening of the library on carboxymethyl cellulose plates, we identified a fosmid clone, the product of which displayed hydrolytic activity. Sequence analysis of the fosmid revealed a novel mannan-degrading gene, ManEM6, composed of 1185 base pairs encoding 394 amino acids, with a deduced 20-amino-acid N-terminal signal peptide sequence. The conceptual translation of ManEM6 exhibited the highest identity (78%) to endo-1,4-β-mannosidase from Dysgonomonas mossii. Phylogenetic and domain analyses indicated that ManEM6 encodes a novel mannanase with a glycoside hydrolase family 26 domain. The recombinant protein rManEM6 showed its highest activity at 40 °C and pH 7.0, and it remained stable in the range of pH 5-10.0. rManEM6 hydrolyzed substrates with β-1,4-glycosidic mannoses, showing maximum enzymatic activity toward locust bean gum galactomannan, while it did not hydrolyze p-nitrophenyl-β-pyranosides, demonstrating endo-form mannosidase activity. rManEM6 was highly stable under stringent conditions, including those of polar organic solvents, as well as reducing and denaturing reagents. Therefore, ManEM6 may be an attractive candidate for the degradation of mannan under high-organic-solvent and protein-denaturing processes in the food and feed industries.
Collapse
Affiliation(s)
- Dong-Gwan Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Republic of Korea
- Plant Engineering Research Institute, Sejong University, Seoul 05006, Republic of Korea
| | - Chang-Muk Lee
- Technology Services Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Young-Seok Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (Y.-S.L.); (S.-H.Y.); (S.-Y.K.)
| | - Sang-Hong Yoon
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (Y.-S.L.); (S.-H.Y.); (S.-Y.K.)
| | - Su-Yeon Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (Y.-S.L.); (S.-H.Y.); (S.-Y.K.)
| |
Collapse
|
3
|
Wu X, Zhao S, Tian Z, Han C, Jiang X, Wang L. Dynamics of loops surrounding the active site architecture in GH5_2 subfamily TfCel5A for cellulose degradation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:154. [PMID: 37853500 PMCID: PMC10583438 DOI: 10.1186/s13068-023-02411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Lignocellulose is the most abundant natural biomass resource for the production of biofuels and other chemicals. The efficient degradation of cellulose by cellulases is a critical step for the lignocellulose bioconversion. Understanding the structure-catalysis relationship is vital for rational design of more stable and highly active enzymes. Glycoside hydrolase (GH) family 5 is the largest and most functionally diverse group of cellulases, with a conserved TIM barrel structure. The important roles of the various loop regions of GH5 enzymes in catalysis, however, remain poorly understood. RESULTS In the present study, we investigated the relationship between the loops surrounding active site architecture and its catalytic efficiency, taking TfCel5A, an enzyme from GH5_2 subfamily of Thermobifida fusca, as an example. Large-scale computational simulations and site-directed mutagenesis experiments revealed that three loops (loop 8, 3, and 7) around active cleft played diverse roles in substrate binding, intermediate formation, and product release, respectively. The highly flexible and charged residue triad of loop 8 was responsible for capturing the ligand into the active cleft. Severe fluctuation of loop 3 led to the distortion of sugar conformation at the - 1 subsite. The wobble of loop 7 might facilitate product release, and the enzyme activity of the mutant Y361W in loop 7 was increased by approximately 40%. CONCLUSION This study unraveled the vital roles of loops in active site architecture and provided new insights into the catalytic mechanism of the GH5_2 cellulases.
Collapse
Affiliation(s)
- Xiuyun Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sha Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhennan Tian
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Chao Han
- Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong University, Qingdao, 266237, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
4
|
Garg P, Manoj N. Structure of an iminosugar complex of a glycoside hydrolase family 5 lichenase provides insights into the active site. Biochimie 2023; 204:69-77. [PMID: 36084911 DOI: 10.1016/j.biochi.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/23/2022] [Accepted: 09/01/2022] [Indexed: 01/12/2023]
Abstract
TmCel5B is a lichenase belonging to glycoside hydrolase family 5 subfamily 36 (GH5_36). To gain insights into the active site of this subfamily which contains multifunctional endoglycanases, we determined the crystal structure of TmCel5B in complex with an iminosugar, 1-deoxynojiromycin (DNJ). DNJ is bound to the -1 subsite, making a network of non-covalent interactions with the acid/base residue Glu139, the nucleophile Glu259, and with other residues that are conserved across the GH5 family. The catalytic site displayed a Glu-Arg-Glu triad of the catalytic glutamates that is unique to the GH5_36 subfamily. Structural comparison of active sites of GH5_36 homologs revealed divergent residues and loop regions that are likely molecular determinants of homolog-specific properties. Furthermore, a comparative analysis of the binding modes of iminocyclitol complexes of GH5 homologs revealed the structural basis of their binding to GH5 glycosidases, in which the subsite binding location, the interactions of the ligand with specific conserved residues, and the electrostatic interactions of the catalytic glutamates with the ring nitrogen, are crucial.
Collapse
Affiliation(s)
- Puneet Garg
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
5
|
Peng J, Liu W, Tang S, Zou S, Zhu Y, Cheng H, Wang Y, Streit WR, Chen Z, Zhou H. Identification and biochemical characterization of a novel GH113 β-mannanase from acid mine drainage metagenome. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Martins MP, Morais MAB, Persinoti GF, Galinari RH, Yu L, Yoshimi Y, Passos Nunes FB, Lima TB, Barbieri SF, Silveira JLM, Lombard V, Terrapon N, Dupree P, Henrissat B, Murakami MT. Glycoside hydrolase subfamily GH5_57 features a highly redesigned catalytic interface to process complex hetero-β-mannans. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:1358-1372. [DOI: 10.1107/s2059798322009561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Glycoside hydrolase family 5 (GH5) harbors diverse substrate specificities and modes of action, exhibiting notable molecular adaptations to cope with the stereochemical complexity imposed by glycosides and carbohydrates such as cellulose, xyloglucan, mixed-linkage β-glucan, laminarin, (hetero)xylan, (hetero)mannan, galactan, chitosan, N-glycan, rutin and hesperidin. GH5 has been divided into subfamilies, many with higher functional specificity, several of which have not been characterized to date and some that have yet to be discovered with the exploration of sequence/taxonomic diversity. In this work, the current GH5 subfamily inventory is expanded with the discovery of the GH5_57 subfamily by describing an endo-β-mannanase (CapGH5_57) from an uncultured Bacteroidales bacterium recovered from the capybara gut microbiota. Biochemical characterization showed that CapGH5_57 is active on glucomannan, releasing oligosaccharides with a degree of polymerization from 2 to 6, indicating it to be an endo-β-mannanase. The crystal structure, which was solved using single-wavelength anomalous diffraction, revealed a massively redesigned catalytic interface compared with GH5 mannanases. The typical aromatic platforms and the characteristic α-helix-containing β6–α6 loop in the positive-subsite region of GH5_7 mannanases are absent in CapGH5_57, generating a large and open catalytic interface that might favor the binding of branched substrates. Supporting this, CapGH5_57 contains a tryptophan residue adjacent and perpendicular to the cleavage site, indicative of an anchoring site for a substrate with a substitution at the −1 glycosyl moiety. Taken together, these results suggest that despite presenting endo activity on glucomannan, CapGH5_57 may have a new type of substituted heteromannan as its natural substrate. This work demonstrates the still great potential for discoveries regarding the mechanistic and functional diversity of this large and polyspecific GH family by unveiling a novel catalytic interface sculpted to recognize complex heteromannans, which led to the establishment of the GH5_57 subfamily.
Collapse
|
7
|
Møller MS. Impact of Modular Architecture on Activity of Glycoside Hydrolase Family 5 Subfamily 8 Mannanases. Molecules 2022; 27:1915. [PMID: 35335278 PMCID: PMC8952944 DOI: 10.3390/molecules27061915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Glycoside hydrolase family 5 subfamily 8 (GH5_8) mannanases belong to Firmicutes, Actinomycetia, and Proteobacteria. The presence or absence of carbohydrate-binding modules (CBMs) present a striking difference. While various GH5_8 mannanases need a CBM for binding galactomannans, removal of the CBM did not affect activity of some, whereas it in other cases reduced the catalytic efficiency due to increased KM. Here, monomodular GH5_8 mannanases from Eubacterium siraeum (EsGH5_8) and Xanthomonas citri pv. aurantifolii (XcGH5_8) were produced and characterized to clarify if GH5_8 mannanases from Firmicutes and Proteobacteria without CBM(s) possess distinct properties. EsGH5_8 showed a remarkably high temperature optimum of 55 °C, while XcGH5_8 had an optimum at 30 °C. Both enzymes were highly active on carob galactomannan and konjac glucomannan. Notably, EsGH5_8 was equally active on both substrates, whereas XcGH5_8 preferred galactomannan. The KM values were comparable with those of catalytic domains of truncated GH5_8s, while the turn-over numbers (kcat) were in the higher end. Notably, XcGH5_8 bound to but did not degrade insoluble ivory nut mannan. The findings support the hypothesis that GH5_8 mannanases with CBMs target insoluble mannans found in plant cell walls and seeds, while monomodular GH5_8 members have soluble mannans and mannooligosaccharides as primary substrates.
Collapse
Affiliation(s)
- Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Sun D, Li C, Cui P, Zhang J, Zhou Y, Wu M, Li X, Wang TF, Zeng Z, Qin HM. Reshaping the binding channel of a novel GH113 family β-mannanase from Paenibacillus cineris (PcMan113) for enhanced activity. BIORESOUR BIOPROCESS 2022; 9:17. [PMID: 38647808 PMCID: PMC10992819 DOI: 10.1186/s40643-022-00505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/13/2022] [Indexed: 11/10/2022] Open
Abstract
Endo-β-mannanases are important enzymes for degrading lignocellulosic biomass to generate mannan, which has significant health effects as a prebiotic that promotes the development of gut microbiota. Here, a novel endo-β-mannanase belonging to glycoside hydrolase (GH) family 113 from Paenibacillus cineris (PcMan113) was cloned, expressed and characterized, as one of only a few reported GH113 family β-mannanases. Compared to other functionally and structurally characterized GH113 mannanases, recombinant PcMan113 showed a broader substrate spectrum and a better performance. Based on a structural homology model, the highly active mutant PcMT3 (F110E/N246Y) was obtained, with 4.60- and 5.53-fold increases of enzyme activity (towards KG) and catalytic efficiency (kcat/Km, against M5) compared with the WT enzyme, respectively. Furthermore, molecular dynamics (MD) simulations were conducted to precisely explore the differences of catalytic activity between WT and PcMT3, which revealed that PcMT3 has a less flexible conformation, as well as an enlarged substrate-binding channel with decreased steric hindrance and increased binding energy in substrate recognition. In conclusion, we obtained a highly active variant of PcMan113 with potential for commercial application in the manufacture of manno-oligosaccharides.
Collapse
Affiliation(s)
- Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250100, People's Republic of China
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Chao Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Pengpeng Cui
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Jie Zhang
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Yaolin Zhou
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Mian Wu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xia Li
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Teng-Fei Wang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250100, People's Republic of China
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China
| | - Zhixiong Zeng
- School of Bioengineering, Qilu University of Technology, Shandong Province, Jinan, 250353, People's Republic of China.
| | - Hui-Min Qin
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250100, People's Republic of China.
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
9
|
Xu J, Xu R, Jia M, Su Y, Zhu W. Metatranscriptomic analysis of colonic microbiota's functional response to different dietary fibers in growing pigs. Anim Microbiome 2021; 3:45. [PMID: 34217374 PMCID: PMC8254964 DOI: 10.1186/s42523-021-00108-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/23/2021] [Indexed: 01/30/2023] Open
Abstract
Background Dietary fibers are widely considered to be beneficial to health as they produce nutrients through gut microbial fermentation while facilitating weight management and boosting gut health. To date, the gene expression profiles of the carbohydrate active enzymes (CAZymes) that respond to different types of fibers (raw potato starch, RPS; inulin, INU; pectin, PEC) in the gut microbes of pigs are not well understood. Therefore, we investigated the functional response of colonic microbiota to different dietary fibers in pigs through metatranscriptomic analysis. Results The results showed that the microbial composition and CAZyme structure of the three experimental groups changed significantly compared with the control group (CON). Based on a comparative analysis with the control diet, RPS increased the abundance of Parabacteroides, Ruminococcus, Faecalibacterium and Alloprevotella but decreased Sutterella; INU increased the relative abundance of Fusobacterium and Rhodococcus but decreased Bacillus; and PEC increased the relative abundance of the Streptococcus and Bacteroidetes groups but decreased Clostridium, Clostridioides, Intestinibacter, Gemmiger, Muribaculum and Vibrio. The gene expression of CAZymes GH8, GH14, GH24, GH38, GT14, GT31, GT77 and GT91 downregulated but that of GH77, GH97, GT3, GT10 and GT27 upregulated in the RPS diet group; the gene expression of AA4, AA7, GH14, GH15, GH24, GH26, GH27, GH38, GH101, GT26, GT27 and GT38 downregulated in the INU group; and the gene expression of PL4, AA1, GT32, GH18, GH37, GH101 and GH112 downregulated but that of CE14, AA3, AA12, GH5, GH102 and GH103 upregulated in the PEC group. Compared with the RPS and INU groups, the composition of colonic microbiota in the PEC group exhibited more diverse changes with the variation of CAZymes and Streptococcus as the main contributor to CBM61, which greatly promoted the digestion of pectin. Conclusion The results of this exploratory study provided a comprehensive overview of the effects of different fibers on nutrient digestibility, gut microbiota and CAZymes in pig colon, which will furnish new insights into the impacts of the use of dietary fibers on animal and human health. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00108-1.
Collapse
Affiliation(s)
- Jie Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongying Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menglan Jia
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China. .,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
10
|
Song Y, Wu X, Zhao Y, Jiang X, Wang L. Comparative molecular dynamics simulations identify a salt-sensitive loop responsible for the halotolerant activity of GH5 cellulases. J Biomol Struct Dyn 2021; 40:9522-9529. [PMID: 34043936 DOI: 10.1080/07391102.2021.1930167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Halotolerant glycoside hydrolases (GH) have broad application potentials in biorefinery industries. Elucidating the structure-activity relationship underlying the halotolerant catalysis is essential to design superior biocatalysts. Here, we performed molecular dynamics simulations to investigate the structural dynamics of two GH5 cellulases, namely the halotolerant Cel5R and non-halotolerant TfCel5A. Through characterizing the physical properties at different salt concentrations, the results revealed that the overall structures of Cel5R and TfCel5A were marginally affected by the increase in salt concentrations. However, a salt-sensitive loop was identified from both Cel5R and TfCel5A based on its significantly increased flexibility at high salt concentrations. Importantly, compared to TfCel5A the salt-sensitive loop of Cel5R engaged more sodium ions and water molecules around the active site of the enzyme. Besides, the unique residue motif of the salt-sensitive loop in Cel5R formed more intramolecular hydrogen bonds, stabilizing the active architecture of Cel5R at high salt concentrations. Collectively, the structural and dynamic differences may contribute to the various catalytic halotolerance of Cel5R and TfCel5A. These findings provide mechanistic insight into the halotolerant catalysis and will guide the ration design of GH5 cellulases with improved catalytic properties.Communicated by Ramaswamy H. Samy.
Collapse
Affiliation(s)
- Yuxuan Song
- Taishan College, Shandong University, Qingdao, China
| | - Xiuyun Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yue Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xukai Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
11
|
Sidar A, Albuquerque ED, Voshol GP, Ram AFJ, Vijgenboom E, Punt PJ. Carbohydrate Binding Modules: Diversity of Domain Architecture in Amylases and Cellulases From Filamentous Microorganisms. Front Bioeng Biotechnol 2020; 8:871. [PMID: 32850729 PMCID: PMC7410926 DOI: 10.3389/fbioe.2020.00871] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Enzymatic degradation of abundant renewable polysaccharides such as cellulose and starch is a field that has the attention of both the industrial and scientific community. Most of the polysaccharide degrading enzymes are classified into several glycoside hydrolase families. They are often organized in a modular manner which includes a catalytic domain connected to one or more carbohydrate-binding modules. The carbohydrate-binding modules (CBM) have been shown to increase the proximity of the enzyme to its substrate, especially for insoluble substrates. Therefore, these modules are considered to enhance enzymatic hydrolysis. These properties have played an important role in many biotechnological applications with the aim to improve the efficiency of polysaccharide degradation. The domain organization of glycoside hydrolases (GHs) equipped with one or more CBM does vary within organisms. This review comprehensively highlights the presence of CBM as ancillary modules and explores the diversity of GHs carrying one or more of these modules that actively act either on cellulose or starch. Special emphasis is given to the cellulase and amylase distribution within the filamentous microorganisms from the genera of Streptomyces and Aspergillus that are well known to have a great capacity for secreting a wide range of these polysaccharide degrading enzyme. The potential of the CBM and other ancillary domains for the design of improved polysaccharide decomposing enzymes is discussed.
Collapse
Affiliation(s)
- Andika Sidar
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands.,Department of Food Science and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Erica D Albuquerque
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands.,Sun Pharmaceutical Industries Europe BV., Hoofddorp, Netherlands
| | - Gerben P Voshol
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands.,Dutch DNA Biotech B.V., Utrecht, Netherlands
| | - Arthur F J Ram
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands
| | - Erik Vijgenboom
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands
| | - Peter J Punt
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands.,Dutch DNA Biotech B.V., Utrecht, Netherlands
| |
Collapse
|
12
|
Limsakul P, Phitsuwan P, Waeonukul R, Pason P, Tachaapaikoon C, Poomputsa K, Kosugi A, Sakka M, Sakka K, Ratanakhanokchai K. A novel AA10 from Paenibacillus curdlanolyticus and its synergistic action on crystalline and complex polysaccharides. Appl Microbiol Biotechnol 2020; 104:7533-7550. [PMID: 32651597 DOI: 10.1007/s00253-020-10758-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) play an important role in the degradation of complex polysaccharides in lignocellulosic biomass. In the present study, we characterized a modular LPMO (PcAA10A), consisting of a family 10 auxiliary activity of LPMO (AA10) catalytic domain, and non-catalytic domains including a family 5 carbohydrate-binding module, two fibronectin type-3 domains, and a family 3 carbohydrate-binding module from Paenibacillus curdlanolyticus B-6, which was expressed in a recombinant Escherichia coli. Comparison of activities between full-length PcAA10A and the catalytic domain polypeptide (PcAA10A_CD) indicates that the non-catalytic domains are important for the deconstruction of crystalline cellulose and complex polysaccharides contained in untreated lignocellulosic biomass. Interestingly, PcAA10A_CD acted not only on cellulose and chitin, but also on xylan, mannan, and xylan and cellulose contained in lignocellulosic biomass, which has not been reported for the AA10 family. Mutation of the key residues, Trp51 located at subsite - 2 and Phe171 located at subsite +2, in the substrate-binding site of PcAA10A_CD revealed that these residues are substantially involved in broad substrate specificity toward cellulose, xylan, and mannan, albeit with a low effect toward chitin. Furthermore, PcAA10A had a boosting effect on untreated corn hull degradation by P. curdlanolyticus B-6 endo-xylanase Xyn10D and Clostridium thermocellum endo-glucanase Cel9A. These results suggest that PcAA10A is a unique LPMO capable of cleaving and enhancing lignocellulosic biomass degradation, making it a good candidate for biotechnological applications. KEY POINTS: • PcAA10A is a novel modular LPMO family 10 from Paenibacillus curdlanolyticus. • PcAA10A showed broad substrate specificity on β-1,4 glycosidic linkage substrates. • Non-catalytic domains are important for degrading complex polysaccharides. • PcAA10A is a unique LPMO capable of enhancing lignocellulosic biomass degradation.
Collapse
Affiliation(s)
- Puangpen Limsakul
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paripok Phitsuwan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Rattiya Waeonukul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Patthra Pason
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chakrit Tachaapaikoon
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Kanokwan Poomputsa
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, 305-8686, Japan
| | - Makiko Sakka
- Graduated School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan
| | - Kazuo Sakka
- Graduated School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan.
| | - Khanok Ratanakhanokchai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
13
|
da Silva VM, Cabral AD, Sperança MA, Squina FM, Muniz JRC, Martin L, Nicolet Y, Garcia W. High-resolution structure of a modular hyperthermostable endo-β-1,4-mannanase from Thermotoga petrophila: The ancillary immunoglobulin-like module is a thermostabilizing domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140437. [PMID: 32325255 DOI: 10.1016/j.bbapap.2020.140437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/20/2020] [Accepted: 04/18/2020] [Indexed: 11/16/2022]
Abstract
The endo-β-1,4-mannanase from the hyperthermostable bacterium Thermotoga petrophila (TpMan) is an enzyme that catalyzes the hydrolysis of mannan and heteromannan polysaccharides. Of the three domains that comprise TpMan, the N-terminal GH5 catalytic domain and the C-terminal carbohydrate-binding domain are connected through a central ancillary domain of unknown structure and function. In this study, we report the partial crystal structure of the TpMan at 1.45 Å resolution, so far, the first modular hyperthermostable endo-β-1,4-mannanase structure determined. The structure exhibits two domains, a (β/α)8-barrel GH5 catalytic domain connected via a linker to the central domain with an immunoglobulin-like β-sandwich fold formed of seven β-strands. Functional analysis showed that whereas the immunoglobulin-like domain does not have the carbohydrate-binding function, it stacks on the GH5 catalytic domain acting as a thermostabilizing domain and allowing operation at hyperthermophilic conditions. The carbohydrate-binding domain is absent in the crystal structure most likely due to its high flexibility around the immunoglobulin-like domain which may act also as a pivot. These results represent new structural and functional information useful on biotechnological applications for biofuel and food industries.
Collapse
Affiliation(s)
- Viviam M da Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil; Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| | - Aline D Cabral
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Marcia A Sperança
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Fabio M Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - João Renato C Muniz
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, SP, Brazil
| | - Lydie Martin
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| | - Yvain Nicolet
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
14
|
Liu W, Tu T, Gu Y, Wang Y, Zheng F, Zheng J, Wang Y, Su X, Yao B, Luo H. Insight into the Thermophilic Mechanism of a Glycoside Hydrolase Family 5 β-Mannanase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:473-483. [PMID: 30518205 DOI: 10.1021/acs.jafc.8b04860] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To study the molecular basis for thermophilic β-mannanase of glycoside hydrolase family 5, two β-mannanases, TlMan5A and PMan5A, from Talaromyces leycettanus JCM12802 and Penicillium sp. WN1 were used as models. The four residues, His112 and Phe113, located near the antiparallel β-sheet at the barrel bottom and Leu375 and Ala408 from loop 7 and loop 8 of PMan5A, were inferred to be key thermostability contributors through module substitution, truncation, and site-directed mutagenesis. The effects of these four residues on the thermal properties followed the order H112Y > A408P > L375H > F113Y and were strongly synergetic. These results were interpreted structurally using molecular dynamics (MD) simulations, which showed that improved hydrophobic interactions in the inner wall of the β-barrel and the rigidity of loop 8 were caused by the outside domain of the barrel bottom and proline, respectively. The TIM barrel bottom and four specific residues responsible for the thermostability of GH5 β-mannanases were elucidated.
Collapse
Affiliation(s)
- Weina Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Yuan Gu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Fei Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Jie Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Yaru Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| |
Collapse
|
15
|
Ueda M, Hirano Y, Fukuhara H, Naka Y, Nakazawa M, Sakamoto T, Ogata Y, Tamada T. Gene cloning, expression, and X-ray crystallographic analysis of a β-mannanase from Eisenia fetida. Enzyme Microb Technol 2018; 117:15-22. [DOI: 10.1016/j.enzmictec.2018.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/16/2018] [Accepted: 05/25/2018] [Indexed: 10/16/2022]
|
16
|
You X, Qin Z, Yan Q, Yang S, Li Y, Jiang Z. Structural insights into the catalytic mechanism of a novel glycoside hydrolase family 113 β-1,4-mannanase from Amphibacillus xylanus. J Biol Chem 2018; 293:11746-11757. [PMID: 29871927 DOI: 10.1074/jbc.ra118.002363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/25/2018] [Indexed: 11/06/2022] Open
Abstract
β-1,4-Mannanase degrades β-1,4-mannan polymers into manno-oligosaccharides with a low degree of polymerization. To date, only one glycoside hydrolase (GH) family 113 β-1,4-mannanase, from Alicyclobacillus acidocaldarius (AaManA), has been structurally characterized, and no complex structure of enzyme-manno-oligosaccharides from this family has been reported. Here, crystal structures of a GH family 113 β-1,4-mannanase from Amphibacillus xylanus (AxMan113A) and its complexes with mannobiose, mannotriose, mannopentaose, and mannahexaose were solved. AxMan113A had higher affinity for -1 and +1 mannoses, which explains why the enzyme can hydrolyze mannobiose. At least six subsites (-4 to +2) exist in the groove, but mannose units preferentially occupied subsites -4 to -1 because of steric hindrance formed by Lys-238 and Trp-239. Based on the structural information and bioinformatics, rational design was implemented to enhance hydrolysis activity. Enzyme activity of AxMan113A mutants V139C, N237W, K238A, and W239Y was improved by 93.7, 63.4, 112.9, and 36.4%, respectively, compared with the WT. In addition, previously unreported surface-binding sites were observed. Site-directed mutagenesis studies and kinetic data indicated that key residues near the surface sites play important roles in substrate binding and recognition. These first GH family 113 β-1,4-mannanase-manno-oligosaccharide complex structures may be useful in further studying the catalytic mechanism of GH family 113 members, and provide novel insight into protein engineering of GHs to improve their hydrolysis activity.
Collapse
Affiliation(s)
- Xin You
- From the Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing 100083
| | - Zhen Qin
- the School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, and
| | - Qiaojuan Yan
- From the Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing 100083
| | - Shaoqing Yang
- the College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiao Li
- From the Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing 100083
| | - Zhengqiang Jiang
- the College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
17
|
You X, Qin Z, Li YX, Yan QJ, Li B, Jiang ZQ. Structural and biochemical insights into the substrate-binding mechanism of a novel glycoside hydrolase family 134 β-mannanase. Biochim Biophys Acta Gen Subj 2018; 1862:1376-1388. [DOI: 10.1016/j.bbagen.2018.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 12/11/2022]
|
18
|
Loop of Streptomyces Feruloyl Esterase Plays an Important Role in the Enzyme's Catalyzing the Release of Ferulic Acid from Biomass. Appl Environ Microbiol 2018; 84:AEM.02300-17. [PMID: 29150515 DOI: 10.1128/aem.02300-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 11/20/2022] Open
Abstract
Feruloyl esterases (FAEs) are key enzymes required for the production of ferulic acid from agricultural biomass. Previously, we identified and characterized R18, an FAE from Streptomyces cinnamoneus NBRC 12852, which showed no sequence similarity to the known FAEs. To determine the region involved in its catalytic activity, we constructed chimeric enzymes using R18 and its homolog (TH2-18) from S. cinnamoneus strain TH-2. Although R18 and TH2-18 showed 74% identity in their primary sequences, the recombinant proteins of these two FAEs (recombinant R18 [rR18] and rTH2-18) showed very different specific activities toward ethyl ferulate. By comparing the catalytic activities of the chimeras, a domain comprised of residues 140 to 154 was found to be crucial for the catalytic activity of R18. Furthermore, we analyzed the crystal structure of rR18 at a resolution of 1.5 Å to elucidate the relationship between its activity and its structure. rR18 possessed a typical catalytic triad, consisting of Ser-191, Asp-214, and His-268, which was characteristic of the serine esterase family. By structural analysis, the above-described domain was found to be present in a loop-like structure (the R18 loop), which possessed a disulfide bond conserved in the genus Streptomyces Moreover, compared to rTH2-18 of its parental strain, the TH2-18 mutant, in which Pro and Gly residues were inserted into the domain responsible for forming the R18 loop, showed markedly high kcat values using artificial substrates. We also showed that the FAE activity of TH2-18 toward corn bran, a natural substrate, was improved by the insertion of the Gly and Pro residues.IMPORTANCEStreptomyces species are widely distributed bacteria that are predominantly present in soil and function as decomposers in natural environments. They produce various enzymes, such as carbohydrate hydrolases, esterases, and peptidases, which decompose agricultural biomass. In this study, based on the genetic information on two Streptomyces cinnamoneus strains, we identified novel feruloyl esterases (FAEs) capable of producing ferulic acid from biomass. These two FAEs shared high similarity in their amino acid sequences but did not resemblance any known FAEs. By comparing chimeric proteins and performing crystal structure analysis, we confirmed that a flexible loop was important for the catalytic activity of Streptomyces FAEs. Furthermore, we determined that the catalytic activity of one FAE was improved drastically by inserting only 2 amino acids into its loop-forming domain. Thus, differences in the amino acid sequence of the loop resulted in different catalytic activities. In conclusion, our findings provide a foundation for the development of novel enzymes for industrial use.
Collapse
|
19
|
Production, properties, and applications of endo-β-mannanases. Biotechnol Adv 2017; 35:1-19. [DOI: 10.1016/j.biotechadv.2016.11.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 10/12/2016] [Accepted: 11/07/2016] [Indexed: 12/27/2022]
|
20
|
Kumagai Y, Uraji M, Wan K, Okuyama M, Kimura A, Hatanaka T. Molecular insights into the mechanism of thermal stability of actinomycete mannanase. FEBS Lett 2016; 590:2862-9. [DOI: 10.1002/1873-3468.12322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Yuya Kumagai
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries; Research Institute for Biological Sciences (RIBS); Okayama Japan
- Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Misugi Uraji
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries; Research Institute for Biological Sciences (RIBS); Okayama Japan
| | - Kun Wan
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries; Research Institute for Biological Sciences (RIBS); Okayama Japan
| | - Masayuki Okuyama
- Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Atsuo Kimura
- Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Tadashi Hatanaka
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries; Research Institute for Biological Sciences (RIBS); Okayama Japan
| |
Collapse
|