1
|
Pentari C, Katsimpouras C, Haon M, Berrin JG, Zerva A, Topakas E. Exploring the synergy between fungal CE15 glucuronoyl esterases and xylanases for lignocellulose saccharification. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:38. [PMID: 40140928 PMCID: PMC11948903 DOI: 10.1186/s13068-025-02639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Lignin-carbohydrate complexes in lignocellulosic biomass act as a barrier to its biodegradation and biotechnological exploitation. Enzymatic dissociation between lignin and hemicellulose is a key process that allows the efficient bioconversion of both polymers. Glucuronoyl esterases of the Carbohydrate Esterase 15 family target the ester linkages between the glucuronic acid of xylan and lignin moieties, assisting enzymatic biodegradation of lignocellulose. RESULTS In this study, two CE15 glucuronoyl esterases from the white-rot fungi Artolenzites elegans and Trametes ljubarskyi were heterologously expressed in Pichia pastoris and biochemically characterized on the model substrate D-glucuronic acid ester with cinnamyl alcohol and a variety of pretreated lignocellulosic biomasses. The pretreatment method was shown to be a determining factor in revealing both the activity of the esterases on lignocellulose and their synergistic relationships with other hemicellulases. AeGE15 and TlGE15 demonstrated activity on pretreated biomass with high hemicellulose and lignin content, increasing saccharification by 57 ± 1 μM and 61 ± 3 μM of xylose equivalents, respectively. Furthermore, the synergy between these CE15 esterases and three xylanases from distinct glycoside hydrolase families (GH10, GH11 and GH30) was investigated on pretreated lignocellulosic samples, highlighting beneficial enzymatic interplays. Pretreated birchwood degradation by AnXyn11 was increased from 6% to approximately 10% by the esterases, based on xylose equivalents of unsubstituted xylooligomers. The GEs also promoted the glucuronoxylanase specificity of TtXyn30A, leading up to three-times higher release in aldouronic acids. Finally, a synergistic effect between AeGE15 and TmXyn10 was observed on pretreated corn bran, increasing xylose and xylotriose release by 27 ± 8% and 55 ± 15%, respectively. CONCLUSIONS Both CE15 esterases promoted biomass saccharification by the xylanases, while there was a prominent effect on the GH30 glucuronoxylanase regarding the release of aldouronic acids. Overall, this study shed some light on the role of CE15 glucuronoyl esterases in the enzymatic biodegradation of plant biomass, particularly its (arabino)glucuronoxylan component, during cooperative activity with xylanases.
Collapse
Affiliation(s)
- Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15772, Athens, Greece
| | - Constantinos Katsimpouras
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139 MA, USA
| | - Mireille Haon
- INRAE, Aix Marseille Univ., BBF, Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ., BBF, Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Anastasia Zerva
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15772, Athens, Greece.
| |
Collapse
|
2
|
You Y, Kong H, Li C, Gu Z, Ban X, Li Z. Carbohydrate binding modules: Compact yet potent accessories in the specific substrate binding and performance evolution of carbohydrate-active enzymes. Biotechnol Adv 2024; 73:108365. [PMID: 38677391 DOI: 10.1016/j.biotechadv.2024.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms. Moreover, through the modification of specific sites of CBMs and the fusion of heterologous CBMs with catalytic domains, improved enzymatic properties and catalytic patterns of numerous CAZymes have been achieved. Based on cutting-edge technologies in computational biology, gene editing, and protein engineering, CBMs as auxiliary components have become portable and efficient tools for the evolution and application of CAZymes. With the aim to provide a theoretical reference for the functional research, rational design, and targeted utilization of novel CBMs in the future, we systematically reviewed the function-related characteristics and potentials of CAZyme-derived CBMs in this review, including substrate recognition and binding mechanisms, non-catalytic contributions to enzyme performances, module modifications, and innovative applications in various fields.
Collapse
Affiliation(s)
- Yuxian You
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
3
|
Ma B, Chen H, Gong J, Liu W, Wei X, Zhang Y, Li X, Li M, Wang Y, Shang S, Tian B, Li Y, Wang R, Tan Z. Enhancing Protein Solubility via Glycosylation: From Chemical Synthesis to Machine Learning Predictions. Biomacromolecules 2024; 25:3001-3010. [PMID: 38598264 DOI: 10.1021/acs.biomac.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Glycosylation is a valuable tool for modulating protein solubility; however, the lack of reliable research strategies has impeded efficient progress in understanding and applying this modification. This study aimed to bridge this gap by investigating the solubility of a model glycoprotein molecule, the carbohydrate-binding module (CBM), through a two-stage process. In the first stage, an approach involving chemical synthesis, comparative analysis, and molecular dynamics simulations of a library of glycoforms was employed to elucidate the effect of different glycosylation patterns on solubility and the key factors responsible for the effect. In the second stage, a predictive mathematical formula, innovatively harnessing machine learning algorithms, was derived to relate solubility to the identified key factors and accurately predict the solubility of the newly designed glycoforms. Demonstrating feasibility and effectiveness, this two-stage approach offers a valuable strategy for advancing glycosylation research, especially for the discovery of glycoforms with increased solubility.
Collapse
Affiliation(s)
- Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hedi Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jinyuan Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenqiang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiuli Wei
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yajing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yani Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shiying Shang
- Center of Pharmaceutical Technology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Boxue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ruihan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Chemical Engineering College, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Chen C, Ma B, Wang Y, Cui Q, Yao L, Li Y, Chen B, Feng Y, Tan Z. Structural insight into why S-linked glycosylation cannot adequately mimic the role of natural O-glycosylation. Int J Biol Macromol 2023; 253:126649. [PMID: 37666405 DOI: 10.1016/j.ijbiomac.2023.126649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
There is an increasing interest in using S-glycosylation as a replacement for the more commonly occurring O-glycosylation, aiming to enhance the resistance of glycans against chemical hydrolysis and enzymatic degradation. However, previous studies have demonstrated that these two types of glycosylation exert distinct effects on protein properties and functions. In order to elucidate the structural basis behind the observed differences, we conducted a systematic and comparative analysis of 6 differently glycosylated forms of a model glycoprotein, CBM, using NMR spectroscopy and molecular dynamic simulations. Our findings revealed that the different stabilizing effects of S- and O-glycosylation could be attributed to altered hydrogen-bonding capability between the glycan and the polypeptide chain, and their diverse impacts on binding affinity could be elucidated by examining the interactions and motion dynamics of glycans in substrate-bound states. Overall, this study underscores the pivotal role of the glycosidic linkage in shaping the function of glycosylation and advises caution when switching glycosylation types in protein glycoengineering.
Collapse
Affiliation(s)
- Chao Chen
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao, Shandong 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yefei Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao, Shandong 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao, Shandong 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lishan Yao
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao, Shandong 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Baoquan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao, Shandong 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
5
|
Shi Q, Abdel-Hamid AM, Sun Z, Cheng Y, Tu T, Cann I, Yao B, Zhu W. Carbohydrate-binding modules facilitate the enzymatic hydrolysis of lignocellulosic biomass: Releasing reducing sugars and dissociative lignin available for producing biofuels and chemicals. Biotechnol Adv 2023; 65:108126. [PMID: 36921877 DOI: 10.1016/j.biotechadv.2023.108126] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/05/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
The microbial decomposition and utilization of lignocellulosic biomass present in the plant tissues are driven by a series of carbohydrate active enzymes (CAZymes) acting in concert. As the non-catalytic domains widely found in the modular CAZymes, carbohydrate-binding modules (CBMs) are intimately associated with catalytic domains (CDs) that effect the diverse hydrolytic reactions. The CBMs function as auxiliary components for the recognition, adhesion, and depolymerization of the complex substrate mediated by the associated CDs. Therefore, CBMs are deemed as significant biotools available for enzyme engineering, especially to facilitate the enzymatic hydrolysis of dense and insoluble plant tissues to acquire more fermentable sugars. This review aims at presenting the taxonomies and biological properties of the CBMs currently curated in the CAZy database. The molecular mechanisms that CBMs use in assisting the enzymatic hydrolysis of plant polysaccharides and the regulatory factors of CBM-substrate interactions are outlined in detail. In addition, guidelines for the rational designs of CBM-fused CAZymes are proposed. Furthermore, the potential to harness CBMs for industrial applications, especially in enzymatic pretreatment of the recalcitrant lignocellulose, is evaluated. It is envisaged that the ideas outlined herein will aid in the engineering and production of novel CBM-fused enzymes to facilitate efficient degradation of lignocellulosic biomass to easily fermentable sugars for production of value-added products, including biofuels.
Collapse
Affiliation(s)
- Qicheng Shi
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Ahmed M Abdel-Hamid
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Zhanying Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Isaac Cann
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801, USA; Department of Animal Science, University of Illinois at Urbana-Champaign, IL 61801, USA; Department of Microbiology, University of Illinois at Urbana-Champaign, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, IL 61801, USA; Center for East Asian and Pacific Studies, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Yao F, Xu S, Jiang Z, Zhao J, Hu C. The inhibition of p-hydroxyphenyl hydroxyl group in residual lignin on enzymatic hydrolysis of cellulose and its underlying mechanism. BIORESOURCE TECHNOLOGY 2022; 346:126585. [PMID: 34929326 DOI: 10.1016/j.biortech.2021.126585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The controlling factors of the inhibition on enzymatic hydrolysis caused by residual lignin were identified with molecular level understanding of the mechanism. Residual lignin samples with different properties were isolated, characterized and added into the enzymatic hydrolysis of Avicel. It was found that the phenolic hydroxyl group (OH) was the main inhibitor in residual lignin, and the p-hydroxyphenyl OH was the crucial sub-structure that exhibited the highest inhibition and non-productive adsorption, ascribing to its higher electrophilicity and lower steric hindrance. The H-bond interaction and π-π stacking between phenolic OH of lignin and phenolic OH of tyrosine on the planar face of carbohydrate binding module of cellulase were probably responsible for the non-productive adsorption. The binding sites of H-bonds may be the H in phenolic OH of lignin and the O in phenolic OH of tyrosine, respectively, and that of the π-π stacking may be the benzene rings of them.
Collapse
Affiliation(s)
- Fengpei Yao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Shuguang Xu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Zhicheng Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Juan Zhao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
7
|
Sprenger K, Roeters SJ, Mauri S, Mertig R, Nishiyama Y, Pfaendtner J, Weidner T. Direct Evidence for Aligned Binding of Cellulase Enzymes to Cellulose Surfaces. J Phys Chem Lett 2021; 12:10684-10688. [PMID: 34709817 DOI: 10.1021/acs.jpclett.1c02757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The conversion of biomass into green fuels and chemicals is of great societal interest. Engineers have been designing new cellulase enzymes for the breakdown of otherwise insoluble cellulose materials. A barrier to the rational design of new enzymes has been our lack of a molecular picture of how cellulase binding occurs. A critical factor is the attachment via the enzyme's carbohydrate binding module (CBM). To elucidate the structural and mechanistic details of cellulase adsorption, we have combined experimental data from sum frequency generation spectroscopy with molecular dynamics simulations to probe the equilibrium structure and surface alignment of a 14-residue peptide mimicking the CBM. The data show that binding is driven by hydrogen bonding and that tyrosine side chains within the CBM align the cellulase with the registry of the cellulose surface. Such an alignment is favorable for the translocation and effective cellulose breakdown and is therefore likely an important parameter for the design of novel enzymes.
Collapse
Affiliation(s)
- Kayla Sprenger
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Steven J Roeters
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Sergio Mauri
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Rolf Mertig
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98192, United States
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98192, United States
| |
Collapse
|
8
|
Schaller KS, Kari J, Molina GA, Tidemand KD, Borch K, Peters GHJ, Westh P. Computing Cellulase Kinetics with a Two-Domain Linear Interaction Energy Approach. ACS OMEGA 2021; 6:1547-1555. [PMID: 33490814 PMCID: PMC7818601 DOI: 10.1021/acsomega.0c05361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/24/2020] [Indexed: 05/21/2023]
Abstract
While heterogeneous enzyme reactions play an essential role in both nature and green industries, computational predictions of their catalytic properties remain scarce. Recent experimental work demonstrated the applicability of the Sabatier principle for heterogeneous biocatalysis. This provides a simple relationship between binding strength and the catalytic rate and potentially opens a new way for inexpensive computational determination of kinetic parameters. However, broader implementation of this approach will require fast and reliable prediction of binding free energies of complex two-phase systems, and computational procedures for this are still elusive. Here, we propose a new framework for the assessment of the binding strengths of multidomain proteins, in general, and interfacial enzymes, in particular, based on an extended linear interaction energy (LIE) method. This two-domain LIE (2D-LIE) approach was successfully applied to predict binding and activation free energies of a diverse set of cellulases and resulted in robust models with high accuracy. Overall, our method provides a fast computational screening tool for cellulases that have not been experimentally characterized, and we posit that it may also be applicable to other heterogeneously acting biocatalysts.
Collapse
Affiliation(s)
- Kay S. Schaller
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
- Department
of Chemistry, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - Jeppe Kari
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| | - Gustavo A. Molina
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| | | | - Kim Borch
- Novozymes
A/S, Biologiens Vej 2, DK-2800 Kgs. Lyngby, Denmark
| | - Günther H. J. Peters
- Department
of Chemistry, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Westh
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
- . Phone: +45 45 25 26 41
| |
Collapse
|
9
|
Li Y, Guan X, Chaffey PK, Ruan Y, Ma B, Shang S, Himmel ME, Beckham GT, Long H, Tan Z. Carbohydrate-binding module O-mannosylation alters binding selectivity to cellulose and lignin. Chem Sci 2020; 11:9262-9271. [PMID: 34123172 PMCID: PMC8163390 DOI: 10.1039/d0sc01812k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies. In this study, we examine the impact of O-glycosylation on the binding selectivity of a model Family 1 carbohydrate-binding module (CBM), which has been shown to be one of the primary sub-domains responsible for non-productive lignin binding in multi-modular cellulases. Specifically, we examine the relationship between glycan structure and the binding specificity of the CBM to cellulose and lignin substrates. We find that the glycosylation pattern of the CBM exhibits a strong influence on the binding affinity and the selectivity between both cellulose and lignin. In addition, the large set of binding data collected allows us to examine the relationship between binding affinity and the correlation in motion between pairs of glycosylation sites. Our results suggest that glycoforms displaying highly correlated motion in their glycosylation sites tend to bind cellulose with high affinity and lignin with low affinity. Taken together, this work helps lay the groundwork for future exploitation of glycoengineering as a tool to improve the performance of industrial enzymes. Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies.![]()
Collapse
Affiliation(s)
- Yaohao Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China .,Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Patrick K Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Yuan Ruan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Bo Ma
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Shiying Shang
- School of Pharmaceutical Sciences, Tsinghua University Beijing 100084 China
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory Golden CO 80401 USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory Golden CO 80401 USA
| | - Hai Long
- Computational Science Center, National Renewable Energy Laboratory Golden CO 80401 USA
| | - Zhongping Tan
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| |
Collapse
|
10
|
Pena CE, Costa MGS, Batista PR. Glycosylation effects on the structure and dynamics of a full-length Cel7A cellulase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140248. [PMID: 31279935 DOI: 10.1016/j.bbapap.2019.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 11/17/2022]
Abstract
Fungi cellulases are used to degrade cellulose-containing biomass for bioethanol production. Industrial cellulases such as Cel7A from Trichoderma reesei (TrCel7A) are critical in this process. Thus, the understanding of structure and dynamics is crucial for engineering variants with improved cellulolytic activity. This cellulase consists of two domains connected by a flexible and highly glycosylated linker. However, the linker flexibility has hindered the determination of Cel7A complete structure. Herein, based on atomic and sparse data, we applied integrative modelling to build a model of the complete enzyme structure. Next, through simulations, we studied the glycosylation effects on the structure and dynamics of a solubilized TrCel7A. Essential dynamics analysis showed that O-glycosylation in the linker led to the stabilization of protein overall dynamics. O-linked glycans seem to restrict protein dihedral angles distribution in this region, selecting more elongated conformations. Besides the reduced flexibility, functional interdomain motions occurred in a more concerted way in the glycosylated system. In contrast, in the absence of glycosylation, we observed vast conformational plasticity with the functional domains frequently collapsing. We report here evidence that targeting Cel7A linker flexibility by point mutations including modification of glycosylation sites could be a promising design strategy to improve cellulase activity.
Collapse
Affiliation(s)
- Carlos Eduardo Pena
- Fundação Oswaldo Cruz, Programa de Computação Científica, Rio de Janeiro 21040-900, Brazil; Instituto Oswaldo Cruz, Programa de Pós-graduação em Biologia Computacional e Sistemas, Rio de Janeiro 21040-900, Brazil
| | - Mauricio G S Costa
- Fundação Oswaldo Cruz, Programa de Computação Científica, Rio de Janeiro 21040-900, Brazil; Instituto Oswaldo Cruz, Programa de Pós-graduação em Biologia Computacional e Sistemas, Rio de Janeiro 21040-900, Brazil; École Normale Supérieure Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan 94235, France
| | - Paulo Ricardo Batista
- Fundação Oswaldo Cruz, Programa de Computação Científica, Rio de Janeiro 21040-900, Brazil; Instituto Oswaldo Cruz, Programa de Pós-graduação em Biologia Computacional e Sistemas, Rio de Janeiro 21040-900, Brazil.
| |
Collapse
|
11
|
Li Y, Tran AH, Danishefsky SJ, Tan Z. Chemical biology of glycoproteins: From chemical synthesis to biological impact. Methods Enzymol 2019; 621:213-229. [PMID: 31128780 DOI: 10.1016/bs.mie.2019.02.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances have demonstrated the feasibility and robustness of chemical synthesis for the production of homogeneously glycosylated protein forms (glycoforms). By taking advantage of the unmatchable flexibility and precision provided by chemical synthesis, the quantitative effects of glycosylation were obtained using chemical glycobiology approaches. These findings greatly advanced our fundamental knowledge of glycosylation. More importantly, analysis of these findings has led to the development of glycoengineering guidelines for rationally improving the properties of peptides and proteins. In this chapter, we present the key experimental steps for chemical biology studies of protein glycosylation, with the aim of facilitating and promoting research in this important but significantly underexplored area of biology.
Collapse
Affiliation(s)
- Yaohao Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Amy H Tran
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Samuel J Danishefsky
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Zhongping Tan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States.
| |
Collapse
|
12
|
Meier KK, Jones SM, Kaper T, Hansson H, Koetsier MJ, Karkehabadi S, Solomon EI, Sandgren M, Kelemen B. Oxygen Activation by Cu LPMOs in Recalcitrant Carbohydrate Polysaccharide Conversion to Monomer Sugars. Chem Rev 2018; 118:2593-2635. [PMID: 29155571 PMCID: PMC5982588 DOI: 10.1021/acs.chemrev.7b00421] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Natural carbohydrate polymers such as starch, cellulose, and chitin provide renewable alternatives to fossil fuels as a source for fuels and materials. As such, there is considerable interest in their conversion for industrial purposes, which is evidenced by the established and emerging markets for products derived from these natural polymers. In many cases, this is achieved via industrial processes that use enzymes to break down carbohydrates to monomer sugars. One of the major challenges facing large-scale industrial applications utilizing natural carbohydrate polymers is rooted in the fact that naturally occurring forms of starch, cellulose, and chitin can have tightly packed organizations of polymer chains with low hydration levels, giving rise to crystalline structures that are highly recalcitrant to enzymatic degradation. The topic of this review is oxidative cleavage of carbohydrate polymers by lytic polysaccharide mono-oxygenases (LPMOs). LPMOs are copper-dependent enzymes (EC 1.14.99.53-56) that, with glycoside hydrolases, participate in the degradation of recalcitrant carbohydrate polymers. Their activity and structural underpinnings provide insights into biological mechanisms of polysaccharide degradation.
Collapse
Affiliation(s)
- Katlyn K. Meier
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Stephen M. Jones
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Thijs Kaper
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, California 94304, United States
| | - Henrik Hansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Martijn J. Koetsier
- DuPont Industrial Biosciences, Netherlands, Nieuwe Kanaal 7-S, 6709 PA Wageningen, The Netherlands
| | - Saeid Karkehabadi
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Bradley Kelemen
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, California 94304, United States
| |
Collapse
|
13
|
Guan X, Chaffey PK, Chen H, Feng W, Wei X, Yang LM, Ruan Y, Wang X, Li Y, Barosh KB, Tran AH, Zhu J, Liang W, Zheng YT, Wang X, Tan Z. O-GalNAcylation of RANTES Improves Its Properties as a Human Immunodeficiency Virus Type 1 Entry Inhibitor. Biochemistry 2017; 57:136-148. [PMID: 29202246 DOI: 10.1021/acs.biochem.7b00875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many human proteins have the potential to be developed as therapeutic agents. However, side effects caused by direct administration of natural proteins have significantly slowed expansion of protein therapeutics into the clinic. Post-translational modifications (PTMs) can improve protein properties, but because of significant knowledge gaps, we are considerably limited in our ability to apply PTMs to generate better protein therapeutics. Here, we seek to fill the gaps by studying the PTMs of a small representative chemotactic cytokine, RANTES. RANTES can inhibit HIV-1 infection by competing with it for binding to receptor CCR5 and stimulating CCR5 endocytosis. Unfortunately, RANTES can induce strong signaling, leading to severe inflammatory side effects. We apply a chemical biology approach to explore the potential of post-translationally modified RANTES as safe inhibitors of HIV-1 infection. We synthesized and systematically tested a library of RANTES isoforms for their ability to inhibit inflammatory signaling and prevent HIV-1 infection of primary human cells. Through this research, we revealed that most of the glycosylated variants have decreased inflammation-associated properties and identified one particular glyco variant, a truncated RANTES containing a Galβ1-3GalNAc disaccharide α-linked to Ser4, which stands out as having the best overall properties: relatively high HIV-1 inhibition potency but also weak inflammatory properties. Moreover, our results provided a structural basis for the observed changes in the properties of RANTES. Taken together, this work highlights the potential importance of glycosylation as an alternative strategy for developing CCR5 inhibitors to treat HIV-1 infection and, more generally, for reducing or eliminating unwanted properties of therapeutic proteins.
Collapse
Affiliation(s)
- Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Patrick K Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Huan Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
| | - Wei Feng
- Department of Chemistry & Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | - Xiuli Wei
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
| | - Yuan Ruan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Xinfeng Wang
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Yaohao Li
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Kimberly B Barosh
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Amy H Tran
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Jaimie Zhu
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Wei Liang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
| | - Xu Wang
- Department of Chemistry & Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| |
Collapse
|
14
|
Distinct roles of N- and O-glycans in cellulase activity and stability. Proc Natl Acad Sci U S A 2017; 114:13667-13672. [PMID: 29229855 DOI: 10.1073/pnas.1714249114] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In nature, many microbes secrete mixtures of glycoside hydrolases, oxidoreductases, and accessory enzymes to deconstruct polysaccharides and lignin in plants. These enzymes are often decorated with N- and O-glycosylation, the roles of which have been broadly attributed to protection from proteolysis, as the extracellular milieu is an aggressive environment. Glycosylation has been shown to sometimes affect activity, but these effects are not fully understood. Here, we examine N- and O-glycosylation on a model, multimodular glycoside hydrolase family 7 cellobiohydrolase (Cel7A), which exhibits an O-glycosylated carbohydrate-binding module (CBM) and an O-glycosylated linker connected to an N- and O-glycosylated catalytic domain (CD)-a domain architecture common to many biomass-degrading enzymes. We report consensus maps for Cel7A glycosylation that include glycan sites and motifs. Additionally, we examine the roles of glycans on activity, substrate binding, and thermal and proteolytic stability. N-glycan knockouts on the CD demonstrate that N-glycosylation has little impact on cellulose conversion or binding, but does have major stability impacts. O-glycans on the CBM have little impact on binding, proteolysis, or activity in the whole-enzyme context. However, linker O-glycans greatly impact cellulose conversion via their contribution to proteolysis resistance. Molecular simulations predict an additional role for linker O-glycans, namely that they are responsible for maintaining separation between ordered domains when Cel7A is engaged on cellulose, as models predict α-helix formation and decreased cellulose interaction for the nonglycosylated linker. Overall, this study reveals key roles for N- and O-glycosylation that are likely broadly applicable to other plant cell-wall-degrading enzymes.
Collapse
|
15
|
Chaffey PK, Guan X, Wang X, Ruan Y, Li Y, Miller SG, Tran AH, Koelsch TN, Pass LF, Tan Z. Quantitative Effects of O-Linked Glycans on Protein Folding. Biochemistry 2017; 56:4539-4548. [DOI: 10.1021/acs.biochem.7b00483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrick K. Chaffey
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Xiaoyang Guan
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Xinfeng Wang
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Yuan Ruan
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Yaohao Li
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Suzannah G. Miller
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Amy H. Tran
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Theo N. Koelsch
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Lomax F. Pass
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Zhongping Tan
- Department of Chemistry and
Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
16
|
Jones RW, Perez FG. A Small Cellulose-Binding-Domain Protein (CBD1) in Phytophthora is Highly Variable in the Non-binding Amino Terminus. Curr Microbiol 2017; 74:1287-1293. [PMID: 28748272 PMCID: PMC5640731 DOI: 10.1007/s00284-017-1315-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/19/2017] [Indexed: 01/05/2023]
Abstract
The small cellulose-binding-domain protein CBD1 is tightly bound to the cellulosic cell wall of the plant pathogenic stramenopile Phytophthora infestans. Transgene expression of the protein in potato plants also demonstrated binding to plant cell walls. A study was undertaken using 47 isolates of P. infestans from a worldwide collection, along with 17 other Phytophthora species and a related pathogen Plasmopara halstedii, to determine if the critical cell wall protein is subject to amino acid variability. Within the amino acid sequence of the secreted portion of CBD 1, encoded by the P. infestans isolates, 30 were identical with each other, and with P. mirabilis. Four isolates had one amino acid difference, each in a different location, while one isolate had two amino acid substitutions. The remaining 13 isolates had five amino acid changes that were each in identical locations (D17/G, D31/G, I32/S, T43/A, and G50/A), suggesting a single origin. Comparison of P. infestans CBD1 with other Phytophthora species identified extensive amino acid variation among the 60 amino acids at the amino terminus of the protein, and a high level of conservation from G61, where the critical cellulose-binding domain sequences begin, to the end of the protein (L110). While the region needed to bind to cellulose is conserved, the region that is available to interact with other cell wall components is subject to considerable variation, a feature that is evident even in the related genus Plasmopara. Specific changes can be used in determining intra- and inter-species relatedness. Application of this information allowed for the design of species-specific primers for PCR detection of P. infestans and P. sojae, by combining primers from the highly conserved and variable regions of the CBD1 gene.
Collapse
Affiliation(s)
- Richard W Jones
- Genetic Improvement of Fruits and Vegetables Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA.
| | - Frances G Perez
- Genetic Improvement of Fruits and Vegetables Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| |
Collapse
|
17
|
Chaffey PK, Guan X, Chen C, Ruan Y, Wang X, Tran AH, Koelsch TN, Cui Q, Feng Y, Tan Z. Structural Insight into the Stabilizing Effect of O-Glycosylation. Biochemistry 2017; 56:2897-2906. [DOI: 10.1021/acs.biochem.7b00195] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrick K. Chaffey
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Xiaoyang Guan
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Chao Chen
- Shandong
Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory
of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yuan Ruan
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Xinfeng Wang
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Amy H. Tran
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Theo N. Koelsch
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Qiu Cui
- Shandong
Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory
of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yingang Feng
- Shandong
Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory
of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Zhongping Tan
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
18
|
Yang JK, Xiong W, Chen FY, Xu L, Han ZG. Aromatic amino acids in the cellulose binding domain of Penicillium crustosum endoglucanase EGL1 differentially contribute to the cellulose affinity of the enzyme. PLoS One 2017; 12:e0176444. [PMID: 28475645 PMCID: PMC5419506 DOI: 10.1371/journal.pone.0176444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/10/2017] [Indexed: 11/29/2022] Open
Abstract
The cellulose binding domain (CBD) of cellulase binding to cellulosic materials is the initiation of a synergistic action on the enzymatic hydrolysis of the most abundant renewable biomass resources in nature. The binding of the CBD domain to cellulosic substrates generally relies on the interaction between the aromatic amino acids structurally located on the flat face of the CBD domain and the glucose rings of cellulose. In this study, we found the CBD domain of a newly cloned Penicillium crustosum endoglucanase EGL1, which was phylogenetically related to Aspergillus, Fusarium and Rhizopus, and divergent from the well-characterized Trichoderma reeseis cellulase CBD domain, contain two conserved aromatic amino acid-rich regions, Y451-Y452 and Y477-Y478-Y479, among which three amino acids Y451, Y477, and Y478 structurally sited on a flat face of this domain. Cellulose binding assays with green fluorescence protein as the marker, adsorption isotherm assays and an isothermal titration calorimetry assays revealed that although these three amino acids participated in this process, the Y451-Y452 appears to contribute more to the cellulose binding than Y477-Y478-Y479. Further glycine scanning mutagenesis and structural modelling revealed that the binding between CBD domain and cellulosic materials might be multi-amino-acids that participated in this process. The flexible poly-glucose molecule could contact Y451, Y477, and Y478 which form the contacting flat face of CBD domain as the typical model, some other amino acids in or outside the flat face might also participate in the interaction. Thus, it is possible that the conserved Y451-Y452 of CBD might have a higher chance of contacting the cellulosic substrates, contributing more to the affinity of CBD than the other amino acids.
Collapse
Affiliation(s)
- Jiang-Ke Yang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
- * E-mail:
| | - Wei Xiong
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Fang-Yuan Chen
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Li Xu
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zheng-Gang Han
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
19
|
Arola S, Linder MB. Binding of cellulose binding modules reveal differences between cellulose substrates. Sci Rep 2016; 6:35358. [PMID: 27748440 PMCID: PMC5066208 DOI: 10.1038/srep35358] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/28/2016] [Indexed: 11/20/2022] Open
Abstract
The interaction between cellulase enzymes and their substrates is of central importance to several technological and scientific challenges. Here we report that the binding of cellulose binding modules (CBM) from Trichoderma reesei cellulases Cel6A and Cel7A show a major difference in how they interact with substrates originating from wood compared to bacterial cellulose. We found that the CBM from TrCel7A recognizes the two substrates differently and as a consequence shows an unexpected way of binding. We show that the substrate has a large impact on the exchange rate of the studied CBM, and moreover, CBM-TrCel7A seems to have an additional mode of binding on wood derived cellulose but not on cellulose originating from bacterial source. This mode is not seen in double CBM (DCBM) constructs comprising both CBM-TrCel7A and CBM-TrCel6A. The linker length of DCBMs affects the binding properties, and slows down the exchange rates of the proteins and thus, can be used to analyze the differences between the single CBM. These results have impact on the cellulase research and offer new understanding on how these industrially relevant enzymes act.
Collapse
Affiliation(s)
- Suvi Arola
- School of Science, Aalto University, P. O. Box 11100, FI-00076, Aalto, Finland
- School of Chemical Technology, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland
- VTT, Technical Research Centre of Finland, Bio and process technology, P.O.Box 1000, FIN–02044 VTT, Finland
| | - Markus B. Linder
- School of Chemical Technology, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland
| |
Collapse
|
20
|
Amore A, Ciesielski PN, Lin CY, Salvachúa D, Sànchez i Nogué V. Development of Lignocellulosic Biorefinery Technologies: Recent Advances and Current Challenges. Aust J Chem 2016. [DOI: 10.1071/ch16022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent developments of the biorefinery concept are described within this review, which focuses on the efforts required to make the lignocellulosic biorefinery a sustainable and economically viable reality. Despite the major research and development endeavours directed towards this goal over the past several decades, the integrated production of biofuel and other bio-based products still needs to be optimized from both technical and economical perspectives. This review will highlight recent progress towards the optimization of the major biorefinery processes, including biomass pretreatment and fractionation, saccharification of sugars, and conversion of sugars and lignin into fuels and chemical precursors. In addition, advances in genetic modification of biomass structure and composition for the purpose of enhancing the efficacy of conversion processes, which is emerging as a powerful tool for tailoring biomass fated for the biorefinery, will be overviewed. The continual improvement of these processes and their integration in the format of a modern biorefinery is paving the way for a sustainable bio-economy which will displace large portions of petroleum-derived fuels and chemicals with renewable substitutes.
Collapse
|