1
|
Gao B, Sun Q. Post-translational assembly of multi-functional antibody. Biotechnol Adv 2025; 80:108533. [PMID: 39929326 DOI: 10.1016/j.biotechadv.2025.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/27/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
The advent of multi-specific antibodies has introduced a significant advantage over traditional monoclonal antibody therapeutics by engaging multiple targets and pathways. This review delves into the post-translational assembly techniques for multi-specific antibodies, highlighting the innovations and challenges associated with approaches of chemical conjugation, oligonucleotide-mediated assembly, and protein-protein interactions. Chemical conjugation methods have evolved to enhance the assembly process's specificity and flexibility, enabling transient engagement and versatile antibody formats. Meanwhile, oligonucleotide-mediated assembly leverages the precision of Watson-Crick base pairing, granting unmatched control over the antibody's structure and functional orientation. Additionally, protein-protein interaction strategies, notably through SpyTag/SpyCatcher systems, present a direct assembly approach without necessitating ancillary modifications, streamlining the production process. This review summarizes the significance of these methodologies in generating antibodies with diverse structures and multi-target engagement capabilities, underscoring their potential in improving therapeutic efficacy and reducing production complexity.
Collapse
Affiliation(s)
- Baizhen Gao
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States; Interdisciplinary Program of Genetics and Genomics, Texas A&M University, College Station, TX 77840, United States.
| |
Collapse
|
2
|
Helmin-Basa A, Gackowska L, Balcerowska S, Ornawka M, Naruszewicz N, Wiese-Szadkowska M. The application of the natural killer cells, macrophages and dendritic cells in treating various types of cancer. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2019-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Innate immune cells such as natural killer (NK) cells, macrophages and dendritic cells (DCs) are involved in the surveillance and clearance of tumor. Intensive research has exposed the mechanisms of recognition and elimination of tumor cells by these immune cells as well as how cancers evade immune response. Hence, harnessing the immune cells has proven to be an effective therapy in treating a variety of cancers. Strategies aimed to harness and augment effector function of these cells for cancer therapy have been the subject of intense researches over the decades. Different immunotherapeutic possibilities are currently being investigated for anti-tumor activity. Pharmacological agents known to influence immune cell migration and function include therapeutic antibodies, modified antibody molecules, toll-like receptor agonists, nucleic acids, chemokine inhibitors, fusion proteins, immunomodulatory drugs, vaccines, adoptive cell transfer and oncolytic virus–based therapy. In this review, we will focus on the preclinical and clinical applications of NK cell, macrophage and DC immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Anna Helmin-Basa
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Lidia Gackowska
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Sara Balcerowska
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Marcelina Ornawka
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Natalia Naruszewicz
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Małgorzata Wiese-Szadkowska
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| |
Collapse
|
3
|
Ebrahimi F, Hosseinimehr SJ. Homomultimer strategy for improvement of radiolabeled peptides and antibody fragments in tumor targeting. Curr Med Chem 2022; 29:4923-4957. [PMID: 35450521 DOI: 10.2174/0929867329666220420131836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
A homomultimeric radioligand is composed of multiple identical ligands connected to the linker and radionuclide to detect a variety of overexpressed receptors on cancer cells. Multimer strategy holds great potential for introducing new radiotracers based on peptide and monoclonal antibody (mAb) derivatives in molecular imaging and therapy. It offers a reliable procedure for the preparation of biological-based targeting with diverse affinities and pharmacokinetics. In this context, we provide a useful summary and interpretation of the main results by a comprehensive look at multimeric radiopharmaceuticals in nuclear oncology. Therefore, there will be explanations for the strategy mechanisms and the main variables affecting the biodistribution results. The discussion is followed by highlights of recent work in the targeting of various types of receptors. The consequences are expressed based on comparing some parameters between monomer and multimer counterparts in each relevant section.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Kuwahara A, Nagai K, Nakanishi T, Kumagai I, Asano R. Functional Domain Order of an Anti-EGFR × Anti-CD16 Bispecific Diabody Involving NK Cell Activation. Int J Mol Sci 2020; 21:ijms21238914. [PMID: 33255436 PMCID: PMC7727810 DOI: 10.3390/ijms21238914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022] Open
Abstract
Bispecific antibodies (bsAbs) have emerged as promising therapeutics. A bispecific diabody (bsDb) is a small bsAb consisting of two distinct chimeric single-chain components, with two possible arrangements of the domains. We previously reported the effect of domain order on the function of a humanized bsDb targeting the epidermal growth factor receptor (EGFR) on cancer cells, and CD3 on T cells. Notably, the co-localization of a T-cell receptor (TCR) with CD3 is bulky, potentially affecting the cross-linking ability of bsDbs, due to steric hindrance. Here, we constructed and evaluated humanized bsDbs, with different domain orders, targeting EGFR and CD16 on natural killer (NK) cells (hEx16-Dbs). We predicted minimal effects due to steric hindrance, as CD16 lacks accessory molecules. Interestingly, one domain arrangement displayed superior cytotoxicity in growth inhibition assays, despite similar cross-linking abilities for both domain orders tested. In hEx16-Dbs specifically, domain order might affect the agonistic activity of the anti-CD16 portion, which was supported by a cytokine production test, and likely contributed to the superiority of one of the hEx16-Dbs. Our results indicate that both the target antigen and mode of action of an antibody must be considered in the construction of highly functional bsAbs.
Collapse
Affiliation(s)
- Atsushi Kuwahara
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (A.K.); (I.K.)
| | - Keisuke Nagai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan;
| | - Takeshi Nakanishi
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan;
| | - Izumi Kumagai
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (A.K.); (I.K.)
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (A.K.); (I.K.)
- Correspondence: ; Tel.: +81-42-388-7512
| |
Collapse
|
5
|
Ueda A, Umetsu M, Nakanishi T, Hashikami K, Nakazawa H, Hattori S, Asano R, Kumagai I. Chemically Crosslinked Bispecific Antibodies for Cancer Therapy: Breaking from the Structural Restrictions of the Genetic Fusion Approach. Int J Mol Sci 2020; 21:ijms21030711. [PMID: 31973200 PMCID: PMC7037651 DOI: 10.3390/ijms21030711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/02/2022] Open
Abstract
Antibodies are composed of structurally and functionally independent domains that can be used as building blocks to construct different types of chimeric protein-format molecules. However, the generally used genetic fusion and chemical approaches restrict the types of structures that can be formed and do not give an ideal degree of homogeneity. In this study, we combined mutation techniques with chemical conjugation to construct a variety of homogeneous bivalent and bispecific antibodies. First, building modules without lysine residues—which can be chemical conjugation sites—were generated by means of genetic mutation. Specific mutated residues in the lysine-free modules were then re-mutated to lysine residues. Chemical conjugation at the recovered lysine sites enabled the construction of homogeneous bivalent and bispecific antibodies from block modules that could not have been so arranged by genetic fusion approaches. Molecular evolution and bioinformatics techniques assisted in finding viable alternatives to the lysine residues that did not deactivate the block modules. Multiple candidates for re-mutation positions offer a wide variety of possible steric arrangements of block modules, and appropriate linkages between block modules can generate highly bioactive bispecific antibodies. Here, we propose the effectiveness of the lysine-free block module design for site-specific chemical conjugation to form a variety of types of homogeneous chimeric protein-format molecule with a finely tuned structure and function.
Collapse
Affiliation(s)
| | - Mitsuo Umetsu
- Correspondence: (M.U.); (I.K.); Tel.: +81-22-795-7274 (M.U.); +81-22-795-7275 (I.K.)
| | | | | | | | | | | | - Izumi Kumagai
- Correspondence: (M.U.); (I.K.); Tel.: +81-22-795-7274 (M.U.); +81-22-795-7275 (I.K.)
| |
Collapse
|
6
|
Hemmi S, Asano R, Kimura K, Umetsu M, Nakanishi T, Kumagai I, Makabe K. Construction of a circularly connected VHH bispecific antibody (cyclobody) for the desirable positioning of antigen-binding sites. Biochem Biophys Res Commun 2019; 523:72-77. [PMID: 31831177 DOI: 10.1016/j.bbrc.2019.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022]
Abstract
A bispecific antibody (bsAb) is an emerging class of next-generation biological therapeutics. BsAbs are engineered antibodies possessing dual antigen-binding paratopes in one molecule. The circular backbone topology has never been demonstrated, although an enormous number of bispecific constructs have been proposed. The circular topology is potentially beneficial for fixing the orientation of two paratopes and protection from exopeptidase digestion. We construct herein a circularly connected bispecific VHH, termed cyclobody, using the split-intein circular ligation of peptides and proteins. The constructed cyclobodies are protected from proteolysis with a retained bispecificity. The anti-EGFR × anti-GFP cyclobody can specifically stain EGFR-positive cells with GFP. The anti-EGFR × anti-CD16 cyclobody shows cytotoxic activity against EGFR-positive cancer cells with comparative activity of a tandem VHH construct. Successful demonstration of a new topology for the bispecific antibody will expand the construction strategy for developing antibody-based drugs and reagents.
Collapse
Affiliation(s)
- Saki Hemmi
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8538, Japan
| | - Kouki Kimura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8538, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11-606 Aoba-yama, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Takeshi Nakanishi
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Izumi Kumagai
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8538, Japan
| | - Koki Makabe
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|
7
|
Osaki T, Nakanishi T, Aoki M, Omizu T, Nishiura D, Kitamura M. Soluble Expression in Escherichia coli of a Single-Domain Antibody-Tumor Necrosis Factor α Fusion Protein Specific for Epidermal Growth Factor Receptor. Monoclon Antib Immunodiagn Immunother 2018; 37:20-25. [PMID: 29474158 DOI: 10.1089/mab.2017.0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tumor-targeted antibody-cytokine fusion proteins, called immunocytokines, are expected to be a useful platform for the development of effective antitumor therapeutic agents; however, their design and cost-efficient production remain as challenges. In this study, we constructed an antibody-cytokine fusion protein (Ia1-TNFα) comprising the single-domain antibody Ia1, which targets epidermal growth factor receptor (EGFR) overexpressed in epithelial tumors and a tumor necrosis factor α (TNFα) domain, which has antitumor activity. Ia1-TNFα was produced in a soluble form by using an Escherichia coli expression system, and after affinity purification of the culture supernatant, an yield of ∼2 mg/L of cell culture was obtained. Gel filtration analysis showed that Ia1-TNFα existed predominantly as a trimer, which is consistent with the multimerization state of TNFα. Ia1-TNFα exhibited approximately 7-fold lower TNFα biological activity than that of TNFα itself. Flow cytometric analysis revealed that Ia1-TNFα specifically bound to EGFR-expressing tumor cells and that its binding activity was higher than that of monovalent Ia1, suggesting that the fusion protein bound to the tumor cells multivalently. Altogether, these results show that fusion of TNFα with a single-domain antibody could be a cost-efficient means of producing antitumor therapeutic agents.
Collapse
Affiliation(s)
- Tomohiro Osaki
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University , Osaka, Japan
| | - Takeshi Nakanishi
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University , Osaka, Japan
| | - Motoshi Aoki
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University , Osaka, Japan
| | - Takahiro Omizu
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University , Osaka, Japan
| | - Daisuke Nishiura
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University , Osaka, Japan
| | - Masaya Kitamura
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University , Osaka, Japan
| |
Collapse
|
8
|
Fujii H, Tanaka Y, Nakazawa H, Sugiyama A, Manabe N, Shinoda A, Shimizu N, Hattori T, Hosokawa K, Sujino T, Ito T, Niide T, Asano R, Kumagai I, Umetsu M. Compact Seahorse‐Shaped T Cell–Activating Antibody for Cancer Therapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201700031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hiroto Fujii
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences Tohoku University 2‐1‐1 Katahira Aoba‐ku Sendai 980–8577 Japan
- JST PRESTO 2‐1‐1 Katahira Aoba‐ku Sendai 980–8577 Japan
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Aruto Sugiyama
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Noriyoshi Manabe
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Akira Shinoda
- Faculty of Advanced Life Science Hokkaido University Sapporo 060–0810 Japan
| | - Nobutaka Shimizu
- Photon Factory Institute of Materials Structure Science High Energy Accelerator Research Organization 1‐1 Oho Tsukuba Ibaraki 305–0801 Japan
| | - Takamitsu Hattori
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Katsuhiro Hosokawa
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Takuma Sujino
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Tomoyuki Ito
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Teppei Niide
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Ryutaro Asano
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Izumi Kumagai
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering Graduate School of Engineering Tohoku University Aoba 6‐6‐11 Aramaki Aoba‐ku Sendai 980–8579 Japan
| |
Collapse
|
9
|
Verdino P, Atwell S, Demarest SJ. Emerging trends in bispecific antibody and scaffold protein therapeutics. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Abstract
A group of impressive immunotherapies for cancer treatment, including immune checkpoint-blocking antibodies, gene therapy and immune cell adoptive cellular immunotherapy, have been established, providing new weapons to fight cancer. Natural killer (NK) cells are a component of the first line of defense against tumors and virus infections. Studies have shown dysfunctional NK cells in patients with cancer. Thus, restoring NK cell antitumor functionality could be a promising therapeutic strategy. NK cells that are activated and expanded ex vivo can supplement malfunctional NK cells in tumor patients. Therapeutic antibodies, chimeric antigen receptor (CAR), or bispecific proteins can all retarget NK cells precisely to tumor cells. Therapeutic antibody blockade of the immune checkpoints of NK cells has been suggested to overcome the immunosuppressive signals delivered to NK cells. Oncolytic virotherapy provokes antitumor activity of NK cells by triggering antiviral immune responses. Herein, we review the current immunotherapeutic approaches employed to restore NK cell antitumor functionality for the treatment of cancer.
Collapse
Affiliation(s)
- Yangxi Li
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Rui Sun
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
11
|
Yu S, Li A, Liu Q, Yuan X, Xu H, Jiao D, Pestell RG, Han X, Wu K. Recent advances of bispecific antibodies in solid tumors. J Hematol Oncol 2017; 10:155. [PMID: 28931402 PMCID: PMC5607507 DOI: 10.1186/s13045-017-0522-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/01/2017] [Indexed: 01/04/2023] Open
Abstract
Cancer immunotherapy is the most exciting advancement in cancer therapy. Similar to immune checkpoint blockade and chimeric antigen receptor T cell (CAR-T), bispecific antibody (BsAb) is attracting more and more attention as a novel strategy of antitumor immunotherapy. BsAb not only offers an effective linkage between therapeutics (e.g., immune effector cells, radionuclides) and targets (e.g., tumor cells) but also simultaneously blocks two different oncogenic mediators. In recent decades, a variety of BsAb formats have been generated. According to the structure of Fc domain, BsAb can be classified into two types: IgG-like format and Fc-free format. Among these formats, bispecific T cell engagers (BiTEs) and triomabs are commonly investigated. BsAb has achieved an exciting breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. In this review, we focus on the preclinical experiments and clinical studies of epithelial cell adhesion molecule (EpCAM), human epidermal growth factor receptor (HER) family, carcinoembryonic antigen (CEA), and prostate-specific membrane antigen (PSMA) related BsAbs in solid tumors, as well as discuss the challenges and corresponding approaches in clinical application.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Anping Li
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Richard G Pestell
- Pennsylvania Center for Cancer and Regenerative Medicine, Wynnewood, PA, 19096, USA
| | - Xinwei Han
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|