1
|
Li J, Zhou W, Wang H, Huang M, Deng H. Exosomal circular RNAs in tumor microenvironment: An emphasis on signaling pathways and clinical opportunities. MedComm (Beijing) 2024; 5:e70019. [PMID: 39584047 PMCID: PMC11586091 DOI: 10.1002/mco2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Exosomes can regulate the malignant progression of tumors by carrying a variety of genetic information and transmitting it to target cells. Recent studies indicate that exosomal circular RNAs (circRNAs) regulate multiple biological processes in carcinogenesis, such as tumor growth, metastasis, epithelial-mesenchymal transition, drug resistance, autophagy, metabolism, angiogenesis, and immune escape. In the tumor microenvironment (TME), exosomal circRNAs can be transferred among tumor cells, endothelial cells, cancer-associated fibroblasts, immune cells, and microbiota, affecting tumor initiation and progression. Due to the high stability and widespread presence of exosomal circRNAs, they hold promise as biomarkers for tumor diagnosis and prognosis prediction in blood and urine. In addition, designing nanoparticles targeting exosomal circRNAs and utilizing exosomal circRNAs derived from immune cells or stem cells provide new strategies for cancer therapy. In this review, we examined the crucial role of exosomal circRNAs in regulating tumor-related signaling pathways and summarized the transmission of exosomal circRNAs between various types of cells and their impact on the TME. Finally, our review highlights the potential of exosomal circRNAs as diagnostic and prognostic prediction biomarkers, as well as suggesting new strategies for clinical therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Wencheng Zhou
- Department of Medical AestheticsWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Huiling Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyCancer CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
2
|
Duan X, Wu R, Zhang M, Li K, Yu L, Sun H, Hao X, Wang C. The heterogeneity of NOTCH1 to tumor immune infiltration in pan-cancer. Sci Rep 2024; 14:28071. [PMID: 39543218 PMCID: PMC11564518 DOI: 10.1038/s41598-024-79883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024] Open
Abstract
NOTCH1 signaling, a vital regulator of cell proliferation and differentiation, is widely involved in the occurrence and development of malignant tumors. Pharmacological regulation of NOTCH1 is promising in tumor immunotherapy, whereas the effective rate of existing therapies remains low. NOTCH1 functions, as a cancer suppressor or a cancer promoter in different cancers, is engaged in the crosstalk between the immune microenvironment and cancer cells, posing a major challenge to immunotherapy. Therefore, a comprehensive view of the overall situation of NOTCH1-associated immune infiltration in pan-cancer should be built. The relation between NOTCH1 and immune infiltration was initially investigated in this paper. In this study, the data originated from the Genotype-Tissue Expression (GTEx) and the Cancer Genome Atlas (TCGA) databases were input into multiple online bioinformatic tools to study the characteristics of NOTCH1 in pan-cancer. We found that there was obvious heterogeneity in the NOTCH1-associated tumor immune infiltration in pan-cancer. In accordance with the heterogeneity, pan-cancer mainly fell into two categories, i.e., cancers that NOTCH1 promoted immune infiltration (termed hot tumors) and NOTCH1 inhibited immune infiltration (termed cold tumors). We further analyzed the changes of immune infiltration in pan-carcinoma species from the perspectives of NOTCH1 expression, mutation, gene function, tumor metastasis and drugs. NOTCH1 expression was significantly up-regulated in cold tumors but down-regulated in hot tumors. The Gene ontology (GO) enrichment analysis of NOTCH1 with the two categories placed stress on angiogenesis and protein dealkylation, respectively. Further, the gene sets of angiogenesis facilitated immune infiltration, whereas the gene sets of protein dealkylation hindered immune infiltration. The tsRNA associated with NOTCH1 is a type of angiogenin that potentially exerts a significant influence on angiogenesis. We have conducted a meticulous analysis of the function of this tsRNA. NOTCH1 was conducive to cancer-associated fibroblasts (CAFs) immune infiltration, while the metastatic process was more dependent on the differentiation and angiogenesis function of NOTCH1. Accordingly, the heterogeneity of NOTCH1 in immune infiltration was extensively analyzed in this study based on the pan-cancer study, which can contribute to the formulation of specific immunotherapy strategies.
Collapse
Affiliation(s)
- XiaoJun Duan
- School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
- School of Basic Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Rihan Wu
- Department of Oncology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Mingyang Zhang
- School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Kexin Li
- School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Lei Yu
- School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Huirong Sun
- School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xingxia Hao
- School of Basic Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Changshan Wang
- School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
3
|
Ji RC. The emerging importance of lymphangiogenesis in aging and aging-associated diseases. Mech Ageing Dev 2024; 221:111975. [PMID: 39089499 DOI: 10.1016/j.mad.2024.111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Lymphatic aging represented by cellular and functional changes, is involved in increased geriatric disorders, but the intersection between aging and lymphatic modulation is less clear. Lymphatic vessels play an essential role in maintaining tissue fluid homeostasis, regulating immune function, and promoting macromolecular transport. Lymphangiogenesis and lymphatic remodeling following cellular senescence and organ deterioration are crosslinked with the progression of some lymphatic-associated diseases, e.g., atherosclerosis, inflammation, lymphoedema, and cancer. Age-related detrimental tissue changes may occur in lymphatic vessels with diverse etiologies, and gradually shift towards chronic low-grade inflammation, so-called inflammaging, and lead to decreased immune response. The investigation of the relationship between advanced age and organ deterioration is becoming an area of rapidly increasing significance in lymphatic biology and medicine. Here we highlight the emerging importance of lymphangiogenesis and lymphatic remodeling in the regulation of aging-related pathological processes, which will help to find new avenues for effective intervention to promote healthy aging.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita 870-1192, Japan.
| |
Collapse
|
4
|
Niapour A, Miran M, Seyedasli N, Norouzi F. Anti-angiogenic effects of aqueous extract from Agrostemma githago L. seed in human umbilical vein endothelial cells via regulating Notch/VEGF, MMP2/9, ANG2, and VEGFR2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22413-22429. [PMID: 36287364 DOI: 10.1007/s11356-022-23510-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Abnormal angiogenesis contributes to the pathogenesis of various diseases. The medicinal usage of Agrostemma githago L. seed (A. githago herein) has been stated in traditional medicine. This study aims to investigate the anti-angiogenic potential of aqueous extract of A. githago. In order to test the effect of A. githago extract, its impact on HUVECs, T98G, and HGF2PI2 cells was assessed by looking at cellular viability, changes in the distribution of cells in different phases of the cell cycle, induction of oxidative stress, and apoptosis. In addition, the release of VEGF, ANG2, and MMP2/9 factors, along with the expressions of the critical Notch signaling pathway players and VEGF receptors (VEGFR), was measured. Furthermore, a γ-secretase inhibitor (LY411575) was applied to determine whether Notch inhibition restores A. githago effects. As a further characterization, total phenolic and flavonoid contents of A. githago were estimated, and five triterpene saponin compounds were identified using LC-ESI-MS. In response to A. githago extract, a reduction in total cell viability, along with the induction of ROS and apoptosis, was detected. Exposure to the A. githago extract could modulate the release of VEGF and ANG2 from T98G and HUVECs, respectively. In addition, A. githago reduced the release of MMP2/9. Furthermore, Notch1, DLL4, and HEY2 transcripts and protein expressions were up-regulated, while VEGFR2 was down-regulated in treated HUVEC cells. Treatment with the A. githago extract resulted in a dose-dependent inhibition of AKT phosphorylation. Inhibition of Notch signaling retrieved the viability loss, reduced intracellular ROS, and alleviated the impaired tube formation in A. githago-treated HUVECs. Overall, these data underscore the anti-angiogenic potential of A. githago via inducing apoptosis, modifying the expression levels of VEGF/VEGFR2, and impacting the release of MMP2/9 and ANG2, effects that are most probably modulated through the Notch/VEGF signaling axis.
Collapse
Affiliation(s)
- Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mansour Miran
- Department of Pharmacognosy, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Naisana Seyedasli
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead NSW, Sydney, Australia
- The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead NSW, Sydney, Australia
| | - Firouz Norouzi
- Department of Genetics, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
5
|
Bustos SO, Leal Santos N, Chammas R, Andrade LNDS. Secretory Autophagy Forges a Therapy Resistant Microenvironment in Melanoma. Cancers (Basel) 2022; 14:234. [PMID: 35008395 PMCID: PMC8749976 DOI: 10.3390/cancers14010234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Melanoma is the most aggressive skin cancer characterized by high mutational burden and large heterogeneity. Cancer cells are surrounded by a complex environment, critical to tumor establishment and progression. Thus, tumor-associated stromal components can sustain tumor demands or impair cancer cell progression. One way to manage such processes is through the regulation of autophagy, both in stromal and tumor cells. Autophagy is a catabolic mechanism that provides nutrients and energy, and it eliminates damaged organelles by degradation and recycling of cellular elements. Besides this primary function, autophagy plays multiple roles in the tumor microenvironment capable of affecting cell fate. Evidence demonstrates the existence of novel branches in the autophagy system related to cytoplasmic constituent's secretion. Hence, autophagy-dependent secretion assembles a tangled network of signaling that potentially contributes to metabolism reprogramming, immune regulation, and tumor progression. Here, we summarize the current awareness regarding secretory autophagy and the intersection with exosome biogenesis and release in melanoma and their role in tumor resistance. In addition, we present and discuss data from public databases concerning autophagy and exosome-related genes as important mediators of melanoma behavior. Finally, we will present the main challenges in the field and strategies to translate most of the pre-clinical findings to clinical practice.
Collapse
Affiliation(s)
- Silvina Odete Bustos
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 01246-000, Brazil; (N.L.S.); (R.C.)
| | | | | | - Luciana Nogueira de Sousa Andrade
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 01246-000, Brazil; (N.L.S.); (R.C.)
| |
Collapse
|
6
|
Liang P, Ballou B, Lv X, Si W, Bruchez MP, Huang W, Dong X. Monotherapy and Combination Therapy Using Anti-Angiogenic Nanoagents to Fight Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005155. [PMID: 33684242 DOI: 10.1002/adma.202005155] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/10/2020] [Indexed: 06/12/2023]
Abstract
Anti-angiogenic therapy, targeting vascular endothelial cells (ECs) to prevent tumor growth, has been attracting increasing attention in recent years, beginning with bevacizumab (Avastin) through its Phase II/III clinical trials on solid tumors. However, these trials showed only modest clinical efficiency; moreover, anti-angiogenic therapy may induce acquired resistance to the drugs employed. Combining advanced drug delivery techniques (e.g., nanotechnology) or other therapeutic strategies (e.g., chemotherapy, radiotherapy, phototherapy, and immunotherapy) with anti-angiogenic therapy results in significantly synergistic effects and has opened a new horizon in fighting cancer. Herein, clinical difficulties in using traditional anti-angiogenic therapy are discussed. Then, several promising applications of anti-angiogenic nanoagents in monotherapies and combination therapies are highlighted. Finally, the challenges and perspectives of anti-angiogenic cancer therapy are summarized. A useful introduction to anti-angiogenic strategies, which may significantly improve therapeutic outcomes, is thus provided.
Collapse
Affiliation(s)
- Pingping Liang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Byron Ballou
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA, 15213, United States
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Weili Si
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Marcel P Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA, 15213, United States
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
7
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021; 11:603224. [PMID: 33763351 PMCID: PMC7982729 DOI: 10.3389/fonc.2021.603224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
Affiliation(s)
- Alejandra Suares
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Medina
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Coso
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021. [DOI: 10.3389/fonc.2021.603224
expr 816899697 + 824303767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
|
9
|
Taskaeva I, Bgatova N. Microvasculature in hepatocellular carcinoma: An ultrastructural study. Microvasc Res 2021; 133:104094. [PMID: 33011171 DOI: 10.1016/j.mvr.2020.104094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most vascularized tumor types, and is characterized by development of heterogeneous immature vessels with increased permeability. Here, we analyzed morphology and vascular permeability-related structures in endothelial cells of HCC microvessels. METHODS Small (Type I) and large (Type II) peritumoral blood microvessels were assessed in HCC-bearing mice. By transmission electron microscopy, endothelial cell cytoplasm area, free transport vesicles, vesiculo-vacuolar organelles and clathrin-coated vesicles were measured. RESULTS The phenotypic changes in the HCC microvessels included presence of sinusoidal capillarization, numerous luminal microprocesses and abnormal luminal channels, irregular dilatations of interendothelial junctions, local detachment of basement membranes and widened extracellular space. Endothelial cells Type I microvessels showed increased vesicular trafficking-related structures. CONCLUSION Ultrastructural characteristics of microvessels Type I can associate with HCC new-formed microvessels. The morphological changes observed in HCC microvessels might explain the increased transcellular and paracellular permeability in HCC endothelial cells.
Collapse
Affiliation(s)
- Iuliia Taskaeva
- Laboratory of Ultrastructural research, Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; Laboratory of Boron-Neutron Capture Therapy, Department of Physics, Novosibirsk State University, Novosibirsk, Russia.
| | - Nataliya Bgatova
- Laboratory of Ultrastructural research, Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
10
|
Wright JW, Church KJ, Harding JW. Hepatocyte Growth Factor and Macrophage-stimulating Protein "Hinge" Analogs to Treat Pancreatic Cancer. Curr Cancer Drug Targets 2020; 19:782-795. [PMID: 30914029 DOI: 10.2174/1568009619666190326130008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer (PC) ranks twelfth in frequency of diagnosis but is the fourth leading cause of cancer related deaths with a 5 year survival rate of less than 7 percent. This poor prognosis occurs because the early stages of PC are often asymptomatic. Over-expression of several growth factors, most notably vascular endothelial growth factor (VEGF), has been implicated in PC resulting in dysfunctional signal transduction pathways and the facilitation of tumor growth, invasion and metastasis. Hepatocyte growth factor (HGF) acts via the Met receptor and has also received research attention with ongoing efforts to develop treatments to block the Met receptor and its signal transduction pathways. Macrophage-stimulating protein (MSP), and its receptor Ron, is also recognized as important in the etiology of PC but is less well studied. Although the angiotensin II (AngII)/AT1 receptor system is best known for mediating blood pressure and body water/electrolyte balance, it also facilitates tumor vascularization and growth by stimulating the expression of VEGF. A metabolite of AngII, angiotensin IV (AngIV) has sequence homology with the "hinge regions" of HGF and MSP, key structures in the growth factor dimerization processes necessary for Met and Ron receptor activation. We have developed AngIV-based analogs designed to block dimerization of HGF and MSP and thus receptor activation. Norleual has shown promise as tested utilizing PC cell cultures. Results indicate that cell migration, invasion, and pro-survival functions were suppressed by this analog and tumor growth was significantly inhibited in an orthotopic PC mouse model.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, Pullman, WA, United States.,Department of Integrative Physiology and Neuroscience, and Program in Biotechnology, Washington State University, Pullman, WA, United States
| | - Kevin J Church
- Department of Integrative Physiology and Neuroscience, and Program in Biotechnology, Washington State University, Pullman, WA, United States
| | - Joseph W Harding
- Department of Psychology, Washington State University, Pullman, WA, United States.,Department of Integrative Physiology and Neuroscience, and Program in Biotechnology, Washington State University, Pullman, WA, United States
| |
Collapse
|
11
|
Morphological Analysis of Blood Capillaries and Transport Function of Endothelial Cells in Hepatocellular Carcinoma-29. Bull Exp Biol Med 2020; 169:276-280. [PMID: 32651829 DOI: 10.1007/s10517-020-04867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Indexed: 10/23/2022]
Abstract
Hepatocellular carcinoma is characterized by the pronounced vascularization, high levels of vascular endothelial growth factors, and intensive angiogenesis. Caveola-mediated endocytosis and clathrin-dependent endocytosis contribute to internalization of various growth factors, thus affecting blood supply to the tumor and neoangiogenesis. We performed a quantitative analysis of blood vessels in the tumor and evaluated the basal levels of endocytosis-associated vesicular structures in the endothelial cells of the hepatocellular carcinoma-29. The numbers of blood vessels and clathrin-coated vesicles in endothelial cells in the tumor tissue were significantly higher than in normal tissue. The association between clathrin-dependent endocytosis in the endotheliocytes of the capillaries and tumor angiogenesis can provide the basis for the development of new molecular targets for antiangiogenic antitumor therapy.
Collapse
|
12
|
Offeddu GS, Possenti L, Loessberg-Zahl JT, Zunino P, Roberts J, Han X, Hickman D, Knutson CG, Kamm RD. Application of Transmural Flow Across In Vitro Microvasculature Enables Direct Sampling of Interstitial Therapeutic Molecule Distribution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902393. [PMID: 31497931 DOI: 10.1002/smll.201902393] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/13/2019] [Indexed: 06/10/2023]
Abstract
In vitro prediction of physiologically relevant transport of therapeutic molecules across the microcirculation represents an intriguing opportunity to predict efficacy in human populations. On-chip microvascular networks (MVNs) show physiologically relevant values of molecular permeability, yet like most systems, they lack an important contribution to transport: the ever-present fluid convection through the endothelium. Quantification of transport through the MVNs by current methods also requires confocal imaging and advanced analytical techniques, which can be a bottleneck in industry and academic laboratories. Here, it is shown that by recapitulating physiological transmural flow across the MVNs, the concentration of small and large molecule therapeutics can be directly sampled in the interstitial fluid and analyzed using standard analytical techniques. The magnitudes of transport measured in MVNs reveal trends with molecular size and type (protein versus nonprotein) that are expected in vivo, supporting the use of the MVNs platform as an in vitro tool to predict distribution of therapeutics in vivo.
Collapse
Affiliation(s)
- Giovanni S Offeddu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Luca Possenti
- LaBS, Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milan, 20133, Italy
| | | | - Paolo Zunino
- MOX, Department of Mathematics, Politecnico di Milano, Milan, 20133, Italy
| | - John Roberts
- Amgen Discovery Research, Amgen Inc., 360 Binney Street, Cambridge, MA, 02141, USA
| | - Xiaogang Han
- Amgen Discovery Research, Amgen Inc., 360 Binney Street, Cambridge, MA, 02141, USA
| | - Dean Hickman
- Amgen Discovery Research, Amgen Inc., 360 Binney Street, Cambridge, MA, 02141, USA
| | - Charles G Knutson
- Amgen Discovery Research, Amgen Inc., 360 Binney Street, Cambridge, MA, 02141, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
13
|
Angiogenesis in Pancreatic Cancer: Pre-Clinical and Clinical Studies. Cancers (Basel) 2019; 11:cancers11030381. [PMID: 30889903 PMCID: PMC6468440 DOI: 10.3390/cancers11030381] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is a crucial event in tumor development and progression, occurring by different mechanisms and it is driven by pro- and anti-angiogenic molecules. Pancreatic cancer vascularization is characterized by a high microvascular density, impaired microvessel integrity and poor perfused vessels with heterogeneous distribution. In this review article, after a brief introduction on pancreatic cancer classification and on angiogenesis mechanisms involved in its progression, the pre-clinical and clinical trials conducted in pancreatic cancer treatment using anti-angiogenic inhibitors will be described. Finally, we will discuss the anti-angiogenic therapy paradox between the advantage to abolish vessel supply to block tumor growth and the disadvantage due to reduction of drug delivery at the same time. The purpose is to identify new anti-angiogenic molecules that may enhance treatment regimen.
Collapse
|
14
|
Tanigawa K, Maekawa M, Kiyoi T, Nakayama J, Kitazawa R, Kitazawa S, Semba K, Taguchi T, Akita S, Yoshida M, Ishimaru K, Watanabe Y, Higashiyama S. SNX9 determines the surface levels of integrin β1 in vascular endothelial cells: Implication in poor prognosis of human colorectal cancers overexpressing SNX9. J Cell Physiol 2019; 234:17280-17294. [PMID: 30784076 PMCID: PMC6617759 DOI: 10.1002/jcp.28346] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/17/2022]
Abstract
Angiogenesis, the formation of new blood vessels, is involved in a variety of diseases including the tumor growth. In response to various angiogenic stimulations, a number of proteins on the surface of vascular endothelial cells are activated to coordinate cell proliferation, migration, and spreading processes to form new blood vessels. Plasma membrane localization of these angiogenic proteins, which include vascular endothelial growth factor receptors and integrins, are warranted by intracellular membrane trafficking. Here, by using a siRNA library, we screened for the sorting nexin family that regulates intracellular trafficking and identified sorting nexin 9 (SNX9) as a novel angiogenic factor in human umbilical vein endothelial cells (HUVECs). SNX9 was essential for cell spreading on the Matrigel, and tube formation that mimics in vivo angiogenesis in HUVECs. SNX9 depletion significantly delayed the recycling of integrin β1, an essential adhesion molecule for angiogenesis, and reduced the surface levels of integrin β1 in HUVECs. Clinically, we showed that SNX9 protein was highly expressed in tumor endothelial cells of human colorectal cancer tissues. High-level expression of SNX9 messenger RNA significantly correlated with poor prognosis of the patients with colorectal cancer. These results suggest that SNX9 is an angiogenic factor and provide a novel target for the development of new antiangiogenic drugs.
Collapse
Affiliation(s)
- Kazufumi Tanigawa
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masashi Maekawa
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan.,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University
| | - Takeshi Kiyoi
- Division of Analytical Bio-medicine, Advanced Research Support Center, Ehime University
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University
| | - Riko Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine.,Division of Diagnostic Pathology, Ehime University Hospital
| | - Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University
| | - Tomohiko Taguchi
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University
| | - Satoshi Akita
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine
| | - Motohira Yoshida
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine
| | - Kei Ishimaru
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine
| | - Yuji Watanabe
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan.,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University
| |
Collapse
|
15
|
Schaaf MB, Houbaert D, Meçe O, Agostinis P. Autophagy in endothelial cells and tumor angiogenesis. Cell Death Differ 2019; 26:665-679. [PMID: 30692642 PMCID: PMC6460396 DOI: 10.1038/s41418-019-0287-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
In mammalian cells, autophagy is the major pathway for the degradation and recycling of obsolete and potentially noxious cytoplasmic materials, including proteins, lipids, and whole organelles, through the lysosomes. Autophagy maintains cellular and tissue homeostasis and provides a mechanism to adapt to extracellular cues and metabolic stressors. Emerging evidence unravels a critical function of autophagy in endothelial cells (ECs), the major components of the blood vasculature, which delivers nutrients and oxygen to the parenchymal tissue. EC-intrinsic autophagy modulates the response of ECs to various metabolic stressors and has a fundamental role in redox homeostasis and EC plasticity. In recent years moreover, genetic evidence suggests that autophagy regulates pathological angiogenesis, a hallmark of solid tumors. In the hypoxic, nutrient-deprived, and pro-angiogenic tumor microenvironment, heightened autophagy in the blood vessels is emerging as a critical mechanism enabling ECs to dynamically accommodate their higher bioenergetics demands to the extracellular environment and connect with other components of the tumor stroma through paracrine signaling. In this review, we provide an overview of the major cellular mechanisms regulated by autophagy in ECs and discuss their potential role in tumor angiogenesis, tumor growth, and response to anticancer therapy. Vascular homeostasis relies on the proper behavior of endothelial cells (ECs). Emerging evidence indicate a critical role of autophagy, a vesicular process for lysosomal degradation of cytoplasmic content, in EC biology. While EC-intrinsic autophagy promotes EC function and quiescent state through redox homeostasis and possibly metabolic control, a role for EC-associated autophagy in cancer seems more complex. ![]()
Collapse
Affiliation(s)
- Marco B Schaaf
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Diede Houbaert
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Odeta Meçe
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis 2018; 9:115. [PMID: 29371595 PMCID: PMC5833710 DOI: 10.1038/s41419-017-0061-0] [Citation(s) in RCA: 437] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022]
Abstract
It is now well established that cancer cells co-exist within a complex environment with stromal cells and depend for their growth and dissemination on tight and plastic interactions with components of the tumor microenvironment (TME). Cancer cells incite the formation of new blood and lymphatic vessels from preexisting vessels to cope with their high nutrient/oxygen demand and favor tumor outgrowth. Research over the past decades has highlighted the crucial role played by tumor-associated blood and lymphatic vasculature in supporting immunoevasion and in subverting T-cell-mediated immunosurveillance, which are the main hallmarks of cancers. The structurally and functionally aberrant tumor vasculature contributes to the protumorigenic and immunosuppressive TME by maintaining a cancer cell’s permissive environment characterized by hypoxia, acidosis, and high interstitial pressure, while simultaneously generating a physical barrier to T cells' infiltration. Recent research moreover has shown that blood endothelial cells forming the tumor vessels can actively suppress the recruitment, adhesion, and activity of T cells. Likewise, during tumorigenesis the lymphatic vasculature undergoes dramatic remodeling that facilitates metastatic spreading of cancer cells and immunosuppression. Beyond carcinogenesis, the erratic tumor vasculature has been recently implicated in mechanisms of therapy resistance, including those limiting the efficacy of clinically approved immunotherapies, such as immune checkpoint blockers and adoptive T-cell transfer. In this review, we discuss emerging evidence highlighting the major role played by tumor-associated blood and lymphatic vasculature in thwarting immunosurveillance mechanisms and antitumor immunity. Moreover, we also discuss novel therapeutic approaches targeting the tumor vasculature and their potential to help overcoming immunotherapy resistance.
Collapse
Affiliation(s)
- Marco B Schaaf
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Valproic Acid Induces Endocytosis-Mediated Doxorubicin Internalization and Shows Synergistic Cytotoxic Effects in Hepatocellular Carcinoma Cells. Int J Mol Sci 2017; 18:ijms18051048. [PMID: 28498322 PMCID: PMC5454960 DOI: 10.3390/ijms18051048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023] Open
Abstract
Valproic acid (VPA), a well-known histone deacetylase (HDAC) inhibitor, is used as an anti-cancer drug for various cancers, but the synergistic anti-cancer effect of VPA and doxorubicin (DOX) combination treatment and its potential underlying mechanism in hepatocellular carcinoma (HCC) remain to be elucidated. Here, we evaluate the mono- and combination-therapy effects of VPA and DOX in HCC and identify a specific and efficient, synergistic anti-proliferative effect of the VPA and DOX combination in HCC cells, especially HepG2 cells; this effect was not apparent in MIHA cells, a normal hepatocyte cell line. The calculation of the coefficient of drug interaction confirmed the significant synergistic effect of the combination treatment. Concurrently, the synergistic apoptotic cell death caused by the VPA and DOX combination treatment was confirmed by Hoechst nuclear staining and Western blot analysis of caspase-3 and poly (ADP-ribose) polymerase (PARP) activation. Co-treatment with VPA and DOX enhanced reactive oxygen species (ROS) generation and autophagy, which were clearly attenuated by ROS and autophagy inhibitors, respectively. Furthermore, as an indication of the mechanism underlying the synergistic effect, we observed that DOX internalization, which was induced in the VPA and DOX combination-treated group, occurred via by the caveolae-mediated endocytosis pathway. Taken together, our study uncovered the potential effect of the VPA and DOX combination treatment with regard to cell death, including induction of cellular ROS, autophagy, and the caveolae-mediated endocytosis pathway. Therefore, these results present novel implications in drug delivery research for the treatment of HCC.
Collapse
|
18
|
Demirsoy S, Martin S, Motamedi S, van Veen S, Holemans T, Van den Haute C, Jordanova A, Baekelandt V, Vangheluwe P, Agostinis P. ATP13A2/PARK9 regulates endo-/lysosomal cargo sorting and proteostasis through a novel PI(3, 5)P2-mediated scaffolding function. Hum Mol Genet 2017; 26:1656-1669. [PMID: 28334751 DOI: 10.1093/hmg/ddx070] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
ATP13A2 (also called PARK9), is a transmembrane endo-/lysosomal-associated P5 type transport ATPase. Loss-of-function mutations in ATP13A2 result in the Kufor-Rakeb Syndrome (KRS), a form of autosomal Parkinson's disease (PD). In spite of a growing interest in ATP13A2, very little is known about its physiological role in stressed cells. Recent studies suggest that the N-terminal domain of ATP13A2 may hold key regulatory functions, but their nature remains incompletely understood. To this end, we generated a set of melanoma and neuroblastoma cell lines stably overexpressing wild-type (WT), catalytically inactive (D508N) and N-terminal mutants, or shRNA against ATP13A2. We found that under proteotoxic stress conditions, evoked by the proteasome inhibitor Bortezomib, endo-/lysosomal associated full-length ATP13A2 WT, catalytically-inactive or N-terminal fragment mutants, reduced the intracellular accumulation of ubiquitin-conjugated (Ub) proteins, independent of autophagic degradation. In contrast, ATP13A2 silencing increased the intracellular accumulation of Ub-proteins, a pattern also observed in patient-derived fibroblasts harbouring ATP13A2 loss-of function mutations. In treated cells, ATP13A2 evoked endocytic vesicle relocation and increased cargo export through nanovesicles. Expression of an ATP13A2 mutant abrogating PI(3,5)P2 binding or chemical inhibition of the PI(3,5)P2-generating enzyme PIKfyve, compromised vesicular trafficking/nanovesicles export and rescued intracellular accumulation of Ub-proteins in response to proteasomal inhibition. Hence, our study unravels a novel activity-independent scaffolding role of ATP13A2 in trafficking/export of intracellular cargo in response to proteotoxic stress.
Collapse
Affiliation(s)
- S Demirsoy
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven)
| | - S Martin
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N1, Herestraat 49, Box 802, B-3000 Leuven, Belgium
| | - S Motamedi
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven)
| | - S van Veen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N1, Herestraat 49, Box 802, B-3000 Leuven, Belgium
| | - T Holemans
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N1, Herestraat 49, Box 802, B-3000 Leuven, Belgium
| | - C Van den Haute
- Research Group for Neurobiology and Gene Therapy, Department of Neurosciences, University of Leuven (KU Leuven), B3000 Leuven, Belgium
| | - A Jordanova
- Molecular Neurogenomics Group, VIB Center for Molecular Neurology, University of Antwerp, 2610 Antwerpen, Belgium
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - V Baekelandt
- Research Group for Neurobiology and Gene Therapy, Department of Neurosciences, University of Leuven (KU Leuven), B3000 Leuven, Belgium
| | - P Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N1, Herestraat 49, Box 802, B-3000 Leuven, Belgium
| | - P Agostinis
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven)
| |
Collapse
|
19
|
Jarad M, Kuczynski EA, Morrison J, Viloria-Petit AM, Coomber BL. Release of endothelial cell associated VEGFR2 during TGF-β modulated angiogenesis in vitro. BMC Cell Biol 2017; 18:10. [PMID: 28114883 PMCID: PMC5260130 DOI: 10.1186/s12860-017-0127-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/18/2017] [Indexed: 01/11/2023] Open
Abstract
Background Sprouting angiogenesis requires vascular endothelial proliferation, migration and morphogenesis. The process is regulated by soluble factors, principally vascular endothelial growth factor (VEGF), and via bidirectional signaling through the Jagged/Notch system, leading to assignment of tip cell and stalk cell identity. The cytokine transforming growth factor beta (TGF-β) can either stimulate or inhibit angiogenesis via its differential surface receptor signaling. Here we evaluate changes in expression of angiogenic signaling receptors when bovine aortic endothelial cells were exposed to TGF-β1 under low serum conditions. Results TGF-β1 induced a dose dependent inhibition of tip cell assignment and subsequent angiogenesis on Matrigel, maximal at 5.0 ng/ml. This occurred via ALK5-dependent pathways and was accompanied by significant upregulation of the TGF-β co-receptor endoglin, and SMAD2 phosphorylation, but no alteration in Smad1/5 activation. TGF-β1 also induced ALK5-dependent downregulation of Notch1 but not of its ligand delta-like ligand 4. Cell associated VEGFR2 (but not VEGFR1) was significantly downregulated and accompanied by reciprocal upregulation of VEGFR2 in conditioned medium. Quantitative polymerase chain reaction analysis revealed that this soluble VEGFR2 was not generated by a selective shift in mRNA isoform transcription. This VEGFR2 in conditioned medium was full-length protein and was associated with increased soluble HSP-90, consistent with a possible shedding of microvesicles/exosomes. Conclusions Taken together, our results suggest that endothelial cells exposed to TGF-β1 lose both tip and stalk cell identity, possibly mediated by loss of VEGFR2 signaling. The role of these events in physiological and pathological angiogenesis requires further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s12860-017-0127-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Jarad
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, OVC Room 3645, Guelph, N1G 2W1, ON, Canada
| | - E A Kuczynski
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, OVC Room 3645, Guelph, N1G 2W1, ON, Canada
| | - J Morrison
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, OVC Room 3645, Guelph, N1G 2W1, ON, Canada
| | - A M Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, OVC Room 3645, Guelph, N1G 2W1, ON, Canada
| | - B L Coomber
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, OVC Room 3645, Guelph, N1G 2W1, ON, Canada.
| |
Collapse
|
20
|
Lupo G, Caporarello N, Olivieri M, Cristaldi M, Motta C, Bramanti V, Avola R, Salmeri M, Nicoletti F, Anfuso CD. Anti-angiogenic Therapy in Cancer: Downsides and New Pivots for Precision Medicine. Front Pharmacol 2017; 7:519. [PMID: 28111549 PMCID: PMC5216034 DOI: 10.3389/fphar.2016.00519] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
Primary solid tumors originate close to pre-existing tissue vasculature, initially growing along such tissue blood vessels, and this phenomenon is important for the metastatic potential which frequently occurs in highly vascularized tissues. Unfortunately, preclinic and clinic anti-angiogenic approaches have not been very successful, and multiple factors have been found to contribute to toxicity and tumor resistance. Moreover, tumors can highlight intrinsic or acquired resistances, or show adaptation to the VEGF-targeted therapies. Furthermore, different mechanisms of vascularization, activation of alternative signaling pathways, and increased tumor aggressiveness make this context even more complex. On the other hand, it has to be considered that the transitional restoration of normal, not fenestrated, microvessels allows the drug to reach the tumor and act with the maximum efficiency. However, these effects are time-limited and different, depending on the various types of cancer, and clearly define a specific “normalization window.” So, new horizons in the therapeutic approaches consist on the treatment of the tumor with pro- (instead of anti-) angiogenic therapies, which could strengthen a network of well-structured blood vessels that facilitate the transport of the drug.
Collapse
Affiliation(s)
- Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Nunzia Caporarello
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Melania Olivieri
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Martina Cristaldi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Carla Motta
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Vincenzo Bramanti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Roberto Avola
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Carmelina D Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| |
Collapse
|
21
|
Keulers TG, Schaaf MBE, Rouschop KMA. Autophagy-Dependent Secretion: Contribution to Tumor Progression. Front Oncol 2016; 6:251. [PMID: 27933272 PMCID: PMC5122571 DOI: 10.3389/fonc.2016.00251] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022] Open
Abstract
Autophagy is best known as a lysosomal degradation and recycling pathway to maintain cellular homeostasis. During autophagy, cytoplasmic content is recognized and packed in autophagic vacuoles, or autophagosomes, and targeted for degradation. However, during the last years, it has become evident that the role of autophagy is not restricted to degradation alone but also mediates unconventional forms of secretion. Furthermore, cells with defects in autophagy apparently are able to reroute their cargo, like mitochondria, to the extracellular environment; effects that contribute to an array of pathologies. In this review, we discuss the current knowledge of the physiological roles of autophagy-dependent secretion, i.e., the effect on inflammation and insulin/hormone secretion. Finally, we focus on the effects of autophagy-dependent secretion on the tumor microenvironment (TME) and tumor progression. The autophagy-mediated secreted factors may stimulate cellular proliferation via auto- and paracrine signaling. The autophagy-mediated release of immune modulating proteins changes the immunosuppresive TME and may promote an invasive phenotype. These effects may be either direct or indirect through facilitating formation of the mobilized vesicle, aid in anterograde trafficking, or alterations in homeostasis and/or autonomous cell signaling.
Collapse
Affiliation(s)
- Tom G Keulers
- Maastricht Radiation Oncology (MaastRO) Lab, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center , Maastricht , Netherlands
| | - Marco B E Schaaf
- Cell Death Research and Therapy (CDRT) Laboratory, Department Cellular and Molecular Medicine, KU Leuven, University of Leuven , Leuven , Belgium
| | - Kasper M A Rouschop
- Maastricht Radiation Oncology (MaastRO) Lab, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center , Maastricht , Netherlands
| |
Collapse
|
22
|
Demirsoy S, Martin S, Maes H, Agostinis P. Adapt, Recycle, and Move on: Proteostasis and Trafficking Mechanisms in Melanoma. Front Oncol 2016; 6:240. [PMID: 27896217 PMCID: PMC5108812 DOI: 10.3389/fonc.2016.00240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Melanoma has emerged as a paradigm of a highly aggressive and plastic cancer, capable to co-opt the tumor stroma in order to adapt to the hostile microenvironment, suppress immunosurveillance mechanisms, and disseminate. In particular, oncogene- and aneuploidy-driven dysregulations of proteostasis in melanoma cells impose a rewiring of central proteostatic processes, such as the heat shock and unfolded protein responses, autophagy, and the endo-lysosomal system, to avoid proteotoxicity. Research over the past decade has indicated that alterations in key nodes of these proteostasis pathways act in conjunction with crucial oncogenic drivers to increase intrinsic adaptations of melanoma cells against proteotoxic stress, modulate the high metabolic demand of these cancer cells and the interface with other stromal cells, through the heightened release of soluble factors or exosomes. Here, we overview and discuss how key proteostasis pathways and vesicular trafficking mechanisms are turned into vital conduits of melanoma progression, by supporting cancer cell's adaptation to the microenvironment, limiting or modulating the ability to respond to therapy and fueling melanoma dissemination.
Collapse
Affiliation(s)
- Seyma Demirsoy
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Shaun Martin
- Laboratory for Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Hannelore Maes
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Patrizia Agostinis
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| |
Collapse
|
23
|
Vascular Complications of Cancer Chemotherapy. Can J Cardiol 2015; 32:852-62. [PMID: 26968393 PMCID: PMC4989034 DOI: 10.1016/j.cjca.2015.12.023] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
Development of new anticancer drugs has resulted in improved mortality rates and 5-year survival rates in patients with cancer. However, many of the modern chemotherapies are associated with cardiovascular toxicities that increase cardiovascular risk in cancer patients, including hypertension, thrombosis, heart failure, cardiomyopathy, and arrhythmias. These limitations restrict treatment options and might negatively affect the management of cancer. The cardiotoxic effects of older chemotherapeutic drugs such as alkylating agents, antimetabolites, and anticancer antibiotics have been known for a while. The newer agents, such as the antiangiogenic drugs that inhibit vascular endothelial growth factor signalling are also associated with cardiovascular pathology, especially hypertension, thromboembolism, myocardial infarction, and proteinuria. Exact mechanisms by which vascular endothelial growth factor inhibitors cause these complications are unclear but impaired endothelial function, vascular and renal damage, oxidative stress, and thrombosis might be important. With increasing use of modern chemotherapies and prolonged survival of cancer patients, the incidence of cardiovascular disease in this patient population will continue to increase. Accordingly, careful assessment and management of cardiovascular risk factors in cancer patients by oncologists and cardiologists working together is essential for optimal care so that prolonged cancer survival is not at the expense of increased cardiovascular events.
Collapse
|