1
|
Huang L, Nguyen ST, Yang Z, Kirschke CP, Prouteau C, Copin MC, Bonneau D, Blanchet O, Mallebranche C, Pellier I, Coutant R, Miot C, Ziegler A. Reduced AKT activation accompanied with high TP53 expression is implicated in the impaired hematogenesis in Ziegler-Huang syndrome and the Znt7 null mice partially recapitulates the human disease linked to pancytopenia. J Trace Elem Med Biol 2025; 89:127658. [PMID: 40286389 DOI: 10.1016/j.jtemb.2025.127658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/10/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Inherited bone marrow failure (IBMF) is a life-threatening condition. Excessive expression of TP53 induces cell cycle arrest and apoptosis of hematopoietic cells in individuals with IBMF. We recently discovered two pathogenic variants, NM_001144884:c.21dup;p.(Asp8ArgfsTer3) and NM_001144884:c.842 + 15 T > C, in ZNT7 associated with IBMF (Ziegler-Huang Syndrome; BMF8). However, the pathophysiologic mechanism of IBMF caused by ZNT7 mutations remained unknown. METHOD We investigated TP53 expression and the activation of its upstream regulator, AKT, in cell lines from affected individuals. We rescued the wild-type phenotype of AKT activation via transduction of wild-type ZNT7 into patient's fibroblasts. We performed fluorescence microscopy to assess co-expression patterns of ZNT7 with hematopoietic cell markers in different human and mouse bone marrow cell types. Finally, we evaluated the hematological features of Znt7 deficient mice. RESULTS The growth of patient's EBV-transformed B (B-EBV) lymphoblasts was impaired. We observed excessive expression of TP53 in the patient's B-EBV lymphoblasts accompanied by a significant decrease in AKT activation. Importantly, overexpression of wild-type ZNT7 in patient's fibroblasts rescued the activation of the AKT pathway by insulin. Additionally, human ZNT7 was expressed in myeloid and lymphoid lineage cells, whereas mouse ZnT7 was mainly expressed in the nucleated hematopoietic cells in the respective bone marrow. Despite these differences, we observed progressive cytopenia in Znt7KO mice, partially recapitulating BMF8 in humans. CONCLUSION Excessive expression of TP53 and down-regulation of AKT activation induced by ZNT7 deficiency might impair cell survival, which may contribute to the pathophysiology of bone marrow failure in affected individuals with BMF8.
Collapse
Affiliation(s)
- Liping Huang
- USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA; Graduate Group of Nutritional Biology, Department of Nutrition, University of California at Davis, One Shields Ave, Davis, CA 95616, USA; Integrative Genetics and Genomics, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| | - Steven T Nguyen
- USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA
| | - Zhongyue Yang
- Graduate Group of Nutritional Biology, Department of Nutrition, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Catherine P Kirschke
- USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA
| | - Clément Prouteau
- Department of Genetics, University Hospital of Angers, 4 rue Larrey, Cedex 9, Angers 49333, France
| | | | - Dominique Bonneau
- Department of Genetics, University Hospital of Angers, 4 rue Larrey, Cedex 9, Angers 49333, France
| | - Odile Blanchet
- Biobank Resource Center, CHU Angers, University Hospital of Angers, 4 rue Larrey, Cedex 9, BB-0033-00038, 49333, France; University Angers Nantes Université CHU Angers INSERM CNRS CRCI2NA SFR ICAT, Cedex 9, Angers 49333, France
| | - Coralie Mallebranche
- University Angers Nantes Université CHU Angers INSERM CNRS CRCI2NA SFR ICAT, Cedex 9, Angers 49333, France
| | - Isabelle Pellier
- University Angers Nantes Université CHU Angers INSERM CNRS CRCI2NA SFR ICAT, Cedex 9, Angers 49333, France
| | - Régis Coutant
- Department of Pediatric Endocrinology, University Hospital of Angers, Cedex 9, Angers 49333, France; Reference Center for Rare Pituitary Diseases, University of Hospital of Angers, Cedex 9, Angers 49333, France
| | - Charline Miot
- University Angers Nantes Université CHU Angers INSERM CNRS CRCI2NA SFR ICAT, Cedex 9, Angers 49333, France; Immunology and Allergology Laboratory, University Hospital of Angers, 4 rue Larrey, Cedex 9, Angers 49333, France
| | - Alban Ziegler
- Department of Genetics, University Hospital of Angers, 4 rue Larrey, Cedex 9, Angers 49333, France; Deparment of Medical Genetics, University Hospital of Toulouse, Toulouse 31100, France.
| |
Collapse
|
2
|
Kiouri DP, Chasapis CT, Mavromoustakos T, Spiliopoulou CA, Stefanidou ME. Zinc and its binding proteins: essential roles and therapeutic potential. Arch Toxicol 2025; 99:23-41. [PMID: 39508885 DOI: 10.1007/s00204-024-03891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Zinc is an essential micronutrient that participates in a multitude of cellular and biochemical processes. It is indispensable for normal growth and the maintenance of physiological functions. As one of the most significant trace elements in the body, zinc fulfills three primary biological roles: catalytic, structural, and regulatory. It serves as a cofactor in over 300 enzymes, and more than 3000 proteins require zinc, underscoring its crucial role in numerous physiological processes such as cell division and growth, immune function, tissue maintenance, as well as synthesis protein and collagen synthesis. Zinc deficiency has been linked to increased oxidative stress and inflammation, which may contribute to the pathogenesis of a multitude of diseases, like neurological disorders and cancer. In addition, zinc is a key constituent of zinc-binding proteins, which play a pivotal role in maintaining cellular zinc homeostasis. This review aims to update and expand upon the understanding of zinc biology, highlighting the fundamental roles of zinc in biological processes and the health implications of zinc deficiency. This work also explores the diverse functions of zinc in immune regulation, cellular growth, and neurological health, emphasizing the need for further research to fully elucidate the therapeutic potential of zinc supplementation in disease prevention and management.
Collapse
Affiliation(s)
- Despoina P Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Christos T Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece.
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Chara A Spiliopoulou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Maria E Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
3
|
Torres-Arreola AK, García OP, Estrella-Ibarra P, Campos-Maldonado F, Camacho-Barron M, Del Carmen Aburto-Fernández M, Lerma-Alvarado RM, Rodriguez-Méndez AJ, Solís-Sáinz JC, García-Solís P. Zinc Transporter ZnT1 mRNA Expression Is Negatively Associated with Leptin Serum Concentrations but Is not Associated with Insulin Resistance or Inflammatory Markers in Visceral Adipose Tissue. Biol Trace Elem Res 2024; 202:5319-5327. [PMID: 38319549 DOI: 10.1007/s12011-024-04089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
The aim of this study was to evaluate the relationship between biomarkers of chronic inflammation, insulin resistance, and zinc transporter ZnT1 expression in human visceral adipose tissue. Visceral adipose tissue obtained from 47 adults undergoing laparoscopic surgery for cholecystectomy was used to analyze ZnT1 mRNA expression by RT-qPCR. ZnT1 mRNA levels were compared between subjects with normal weight, overweight, and obesity. A significantly lower ZnT1 expression was observed in overweight and obesity compared with normal-weight subjects (p = 0.0016). Moreover, subjects with normal weight had significantly higher serum zinc concentration (97.7 ± 13.1 mg/L) than subjects with overweight (87.0 ± 12.8 mg/L) and obesity (83.1 ± 6.6 mg/L) (p = 0.002). Pearson test showed a positive correlation between serum zinc concentrations and ZnT1 mRNA expression in visceral adipose tissue (r = 0.323; p = 0.031) and a negative correlation with body mass index (r = - 0.358; p = 0.013). A linear regression model was used to analyze the associations between ZnT1 mRNA expression and serum zinc levels, insulin resistance (HOMA2-IR), serum adipokines (leptin and adiponectin), and serum inflammation biomarkers (tumor necrosis factor alpha, interleukin-6, and C-reactive protein). Interestingly, leptin concentrations were negatively associated with ZnT1 mRNA expression (p = 0.012); however, no significant associations were found for the rest of the analyzed variables. Future research is needed to analyze the causality of negative association between ZntT1 expression in visceral adipose tissue and leptin.
Collapse
Affiliation(s)
- Ana Karen Torres-Arreola
- Endocrinology and Nutrition Laboratory, Center of Advanced Biomedical Research, School of Medicine, Autonomous University of Queretaro, Carretera a Chichimequillas S/N Ejido Bolaños Av. Universidad Dirección a La Derecha, 76140, Santiago de Querétaro, Qro., Mexico
- Biomedical Sciences PhD Program, School of Medicine, Autonomous University of Queretaro, Queretaro, Mexico
| | - Olga P García
- Department of Human Nutrition, School of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - Paulina Estrella-Ibarra
- Endocrinology and Nutrition Laboratory, Center of Advanced Biomedical Research, School of Medicine, Autonomous University of Queretaro, Carretera a Chichimequillas S/N Ejido Bolaños Av. Universidad Dirección a La Derecha, 76140, Santiago de Querétaro, Qro., Mexico
- Biological Sciences PhD Program, School of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - Francisco Campos-Maldonado
- Endocrinology and Nutrition Laboratory, Center of Advanced Biomedical Research, School of Medicine, Autonomous University of Queretaro, Carretera a Chichimequillas S/N Ejido Bolaños Av. Universidad Dirección a La Derecha, 76140, Santiago de Querétaro, Qro., Mexico
- Biomedical Sciences PhD Program, School of Medicine, Autonomous University of Queretaro, Queretaro, Mexico
| | - Mariela Camacho-Barron
- Department of Human Nutrition, School of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | | | | | - Adriana Jheny Rodriguez-Méndez
- Endocrinology and Nutrition Laboratory, Center of Advanced Biomedical Research, School of Medicine, Autonomous University of Queretaro, Carretera a Chichimequillas S/N Ejido Bolaños Av. Universidad Dirección a La Derecha, 76140, Santiago de Querétaro, Qro., Mexico
| | - Juan Carlos Solís-Sáinz
- Endocrinology and Nutrition Laboratory, Center of Advanced Biomedical Research, School of Medicine, Autonomous University of Queretaro, Carretera a Chichimequillas S/N Ejido Bolaños Av. Universidad Dirección a La Derecha, 76140, Santiago de Querétaro, Qro., Mexico
| | - Pablo García-Solís
- Endocrinology and Nutrition Laboratory, Center of Advanced Biomedical Research, School of Medicine, Autonomous University of Queretaro, Carretera a Chichimequillas S/N Ejido Bolaños Av. Universidad Dirección a La Derecha, 76140, Santiago de Querétaro, Qro., Mexico.
| |
Collapse
|
4
|
Chantarasakha K, Yangchum A, Isaka M, Tepaamorndech S. Fungal Depsidones Stimulate AKT-Dependent Glucose Uptake in 3T3-L1 Adipocytes. JOURNAL OF NATURAL PRODUCTS 2024; 87:1673-1681. [PMID: 38597733 PMCID: PMC11287747 DOI: 10.1021/acs.jnatprod.3c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Enhanced glucose uptake in insulin-sensitive tissues is one of the therapeutic strategies to ameliorate hyperglycemia and maintain glucose homeostasis in type 2 diabetes. This study disclosed the role of fungal depsidones in glucose uptake and the underlying mechanism in 3T3-L1 adipocytes. Depsidones, including nidulin, nornidulin, and unguinol, isolated from Aspergillus unguis, stimulate glucose uptake in adipocytes. Compared to the others, nidulin exhibited an upward trend in glucose uptake. The effect of nidulin was found to be dose- and time-dependent. Nidulin also enhanced insulin- and metformin-stimulated glucose uptake. Upregulation of GLUT4 expression and AKT and AMPK phosphorylation were observed with nidulin treatment. Blockage of AKT, but not AMPK, phosphorylation was largely accompanied by diminished glucose uptake. In agreement, nidulin triggered the translocation of GLUT4 to the plasma membrane. Importantly, nidulin elevated glucose uptake associated with increased AKT phosphorylation in insulin-resistant adipocytes. Taken together, nidulin could stimulate glucose uptake mainly through AKT-dependent GLUT4 translocation, serving as a seed compound in drug discovery for type 2 diabetes.
Collapse
Affiliation(s)
- Kanittha Chantarasakha
- National
Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency
(NSTDA), 111 Thailand
Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Arunrat Yangchum
- National
Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency
(NSTDA), 111 Thailand
Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Masahiko Isaka
- National
Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency
(NSTDA), 111 Thailand
Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Surapun Tepaamorndech
- Department
of Microbiology, Faculty of Medicine, Chulalongkorn
University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Bui HB, Watanabe S, Nomura N, Liu K, Uemura T, Inoue M, Tsutsumi A, Fujita H, Kinoshita K, Kato Y, Iwata S, Kikkawa M, Inaba K. Cryo-EM structures of human zinc transporter ZnT7 reveal the mechanism of Zn 2+ uptake into the Golgi apparatus. Nat Commun 2023; 14:4770. [PMID: 37553324 PMCID: PMC10409766 DOI: 10.1038/s41467-023-40521-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
Zinc ions (Zn2+) are vital to most cells, with the intracellular concentrations of Zn2+ being tightly regulated by multiple zinc transporters located at the plasma and organelle membranes. We herein present the 2.2-3.1 Å-resolution cryo-EM structures of a Golgi-localized human Zn2+/H+ antiporter ZnT7 (hZnT7) in Zn2+-bound and unbound forms. Cryo-EM analyses show that hZnT7 exists as a dimer via tight interactions in both the cytosolic and transmembrane (TM) domains of two protomers, each of which contains a single Zn2+-binding site in its TM domain. hZnT7 undergoes a TM-helix rearrangement to create a negatively charged cytosolic cavity for Zn2+ entry in the inward-facing conformation and widens the luminal cavity for Zn2+ release in the outward-facing conformation. An exceptionally long cytosolic histidine-rich loop characteristic of hZnT7 binds two Zn2+ ions, seemingly facilitating Zn2+ recruitment to the TM metal transport pathway. These structures permit mechanisms of hZnT7-mediated Zn2+ uptake into the Golgi to be proposed.
Collapse
Affiliation(s)
- Han Ba Bui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kehong Liu
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Tomoko Uemura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Michio Inoue
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Akihisa Tsutsumi
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Fujita
- Advanced Research Laboratory, Canon Medical Systems Corporation, Otawara, 324-8550, Japan
| | - Kengo Kinoshita
- Department of System Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, 980-8579, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, 980-8573, Japan
| | - Yukinari Kato
- Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Masahide Kikkawa
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
6
|
Tian C, Zhao J, Liu D, Sun J, Ji C, Jiang Q, Li H, Wang X, Sun Y. Identification of metabolism-related genes for predicting peritoneal metastasis in patients with gastric cancer. BMC Genom Data 2022; 23:84. [PMID: 36503378 PMCID: PMC9743729 DOI: 10.1186/s12863-022-01096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The reprogramming of metabolism is an important factor in the metastatic process of cancer. In our study, we intended to investigate the predictive value of metabolism-related genes (MRGs) in recurrent gastric cancer (GC) patients with peritoneal metastasis. METHODS The sequencing data of mRNA of GC patients were obtained from Asian Cancer Research Group (ACRG) and the GEO databases (GSE53276). The differentially expressed MRGs (DE-MRGs) between a cell line without peritoneal metastasis (HSC60) and one with peritoneal metastasis (60As6) were analyzed with the Limma package. According to the LASSO regression, eight MRGs were identified as crucially related to peritoneal seeding recurrence in patients. Then, disease free survival related genes were screened using Cox regression, and a promising prognostic model was constructed based on 8 MRGs. We trained and verified it in two independent cohort. RESULTS We confirmed 713 DE-MRGs and the enriched pathways. Pathway analysis found that the MRG-related pathways were related to tumor metabolism development. With the help of Kaplan-Meier analysis, we found that the group with higher risk scores had worse rates of peritoneal seeding recurrence than the group with lower scores in the cohorts. CONCLUSIONS This study developed an eight-gene signature correlated with metabolism that could predict peritoneal seeding recurrence for GC patients. This signature could be a promising prognostic model, providing better strategy in treatment.
Collapse
Affiliation(s)
- Chenyu Tian
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junjie Zhao
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan Liu
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Sun
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chengbo Ji
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Quan Jiang
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haojie Li
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuefei Wang
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yihong Sun
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Islam T, Albracht-Schulte K, Ramalingam L, Schlabritz-Lutsevich N, Park OH, Zabet-Moghaddam M, Kalupahana NS, Moustaid-Moussa N. Anti-inflammatory mechanisms of polyphenols in adipose tissue: role of gut microbiota, intestinal barrier integrity and zinc homeostasis. J Nutr Biochem 2022; 115:109242. [PMID: 36442715 DOI: 10.1016/j.jnutbio.2022.109242] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/18/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
Abstract
Obesity is associated with an imbalance of micro-and macro-nutrients, gut dysbiosis, and a "leaky" gut phenomenon. Polyphenols, such as curcumin, resveratrol, and anthocyanins may alleviate the systemic effects of obesity, potentially by improving gut microbiota, intestinal barrier integrity (IBI), and zinc homeostasis. The essential micronutrient zinc plays a crucial role in the regulation of enzymatic processes, including inflammation, maintenance of the microbial ecology, and intestinal barrier integrity. In this review, we focus on IBI- which prevents intestinal lipopolysaccharide (LPS) leakage - as a critical player in polyphenol-mediated protective effects against obesity-associated white adipose tissue (WAT) inflammation. This occurs through mechanisms that block the movement of the bacterial endotoxin LPS across the gut barrier. Available research suggests that polyphenols reduce WAT and systemic inflammation via crosstalk with inflammatory NF-κB, the mammalian target of rapamycin (mTOR) signaling and zinc homeostasis.
Collapse
Affiliation(s)
- Tariful Islam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Kembra Albracht-Schulte
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Natalia Schlabritz-Lutsevich
- Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Advanced Fertility Center, Odessa, Texas, USA
| | - Oak-Hee Park
- Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; College of Human Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Masoud Zabet-Moghaddam
- Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas, USA
| | - Nishan S Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Physiology, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA.
| |
Collapse
|
8
|
Ruz M, Andrews-Guzmán M, Arredondo-Olguín M. Modulation of Zinc Transporter Expressions by Additional Zinc in C2C12 Cells Cultured in a High Glucose Environment and in the Presence of Insulin or Interleukin-6. Biol Trace Elem Res 2022; 201:3428-3437. [PMID: 36227447 DOI: 10.1007/s12011-022-03443-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022]
Abstract
Zn status has been related to various chronic diseases presenting oxidative stress and inflammation, such as type 2 diabetes. Zn supplementation has been suggested to be a potential coadjuvant in the management of this condition. Zn transporters constitute a key component in the maintenance of Zn homeostasis. Our aim was to evaluate the modulatory effect of additional Zn (10 or 100 µM; as a ZnSO4*7H20) on the mRNA relative expression of selected Zn transporters (ZnT1, ZnT5, ZnT7, ZIP6, ZIP7, ZIP10, ZIP14), in myoblast (C2C12) cells cultured in normal (10 mM) and high glucose (30 mM), and in the absence or presence of insulin (1 nM), and interleukin-6 (IL-6; 5 nM) for 24 h. The main findings of our study were that in high glucose conditions in absence of insulin or IL-6, additional Zn increased ZnT1 and ZIP6, and decreased ZnT5 and ZIP7 expressions. However, this situation is modified by insulin, where incremental Zn induced increased expressions of ZnT1, ZnT5, and all the ZIP transporters studied. In high glucose conditions and in the presence of IL-6, additional Zn caused increased expressions of ZnT7, ZIP7, and ZIP14, compared with results in the absence of IL-6. This study provides preliminary evidence for the differential expression of selected Zn transporters in C2C12 cells subjected to high glucose and incremental Zn, suggesting that important changes in intracellular Zn distribution take place in response to inflammatory and high-insulin environments. Further study is necessary to understand the implications of these findings.
Collapse
Affiliation(s)
- Manuel Ruz
- Department of Nutrition, Faculty of Medicine, University of Chile, Avenida Independencia 1027, Independencia, Santiago, Chile
| | - Mónica Andrews-Guzmán
- Micronutrient Laboratory, Institute of Nutrition and Food Technology, University of Chile, Macul 5540, Macul, Santiago, Chile
| | - Miguel Arredondo-Olguín
- Micronutrient Laboratory, Institute of Nutrition and Food Technology, University of Chile, Macul 5540, Macul, Santiago, Chile.
| |
Collapse
|
9
|
Roles of ZnT86D in Neurodevelopment and Pathogenesis of Alzheimer Disease in a Drosophila melanogaster Model. Int J Mol Sci 2022; 23:ijms231911832. [PMID: 36233134 PMCID: PMC9569493 DOI: 10.3390/ijms231911832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Zinc is a fundamental trace element essential for numerous biological processes, and zinc homeostasis is regulated by the Zrt-/Irt-like protein (ZIP) and zinc transporter (ZnT) families. ZnT7 is mainly localized in the Golgi apparatus and endoplasmic reticulum (ER) and transports zinc into these organelles. Although previous studies have reported the role of zinc in animal physiology, little is known about the importance of zinc in the Golgi apparatus and ER in animal development and neurodegenerative diseases. In this study, we demonstrated that ZnT86D, a Drosophila ortholog of ZnT7, plays a pivotal role in the neurodevelopment and pathogenesis of Alzheimer disease (AD). When ZnT86D was silenced in neurons, the embryo-to-adult survival rate, locomotor activity, and lifespan were dramatically reduced. The toxic phenotypes were accompanied by abnormal neurogenesis and neuronal cell death. Furthermore, knockdown of ZnT86D in the neurons of a Drosophila AD model increased apoptosis and exacerbated neurodegeneration without significant changes in the deposition of amyloid beta plaques and susceptibility to oxidative stress. Taken together, our results suggest that an appropriate distribution of zinc in the Golgi apparatus and ER is important for neuronal development and neuroprotection and that ZnT7 is a potential protective factor against AD.
Collapse
|
10
|
Li G, Dong Z, Yue S, Wan D, Yin Y. Paternal Zn-deficiency abolishes metabolic effects in offspring induced by diet type. ANIMAL NUTRITION 2022; 8:310-320. [PMID: 35024468 PMCID: PMC8718729 DOI: 10.1016/j.aninu.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022]
Abstract
Accumulating evidence implicates that offspring are susceptible to paternal alterations in numerous fetal disorders, such as growth and metabolic defects. However, less study has been conducted to define the relationship between paternal zinc deficiency (ZnD) and energy metabolism of offspring. In the present study, we used a paternal ZnD exposure (Zn at 0.3 μg/g) model to test energy metabolism of male and female offspring with the intervention of diet type (high-fat diet and low-fat diet). Our results demonstrated that paternal ZnD decreased body weight (BW) gain per week (P < 0.01) and ME intake per week (P < 0.05) at 11 weeks in male offspring with high-fat diet intervention but not in female offspring. Further, anabolism and catabolism of hepatic energy products also exhibited alterations. ZnD attenuated liver glucose but increased lipids content accompanied with elevated adiponectin and reduction in leptin level in serum, which exhibited lipid metabolic disturbance and smaller ratio of liver weight to BW in male but not female offspring. The qRT-PCR and liver energy metabolites analysis revealed that paternal ZnD mainly induced reduction in glucose tolerance and lowered glucose uptaking ability in male offspring and thereby alleviated glycolysis and the tricarboxylic acid cycle (TCA) cycle, which displayed a male gender-dependency. Therefore, we propose that paternal ZnD abolishes metabolic effects in male offspring induced by diet type intervention. Our findings reveal a novel link between paternal Zn-D and offspring energy metabolism.
Collapse
Affiliation(s)
- Guanya Li
- Key Laboratory of Agro-Ecological Processess in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhenglin Dong
- Key Laboratory of Agro-Ecological Processess in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Shusheng Yue
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Dan Wan
- Key Laboratory of Agro-Ecological Processess in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
- Corresponding author.
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processess in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
| |
Collapse
|
11
|
Chantarasakha K, Asawapanumas T, Suntivich R, Panya A, Phonsatta N, Thiennimitr P, Laoteng K, Tepaamorndech S. Hatakabb, a herbal extract, contains pyrogallol as the novel mediator inhibiting LPS-induced TNF-α production by NF-κB inactivation and HMOX-1 upregulation. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
12
|
Mendes Garrido Abregú F, Caniffi C, Arranz CT, Tomat AL. Impact of Zinc Deficiency During Prenatal and/or Postnatal Life on Cardiovascular and Metabolic Diseases: Experimental and Clinical Evidence. Adv Nutr 2022; 13:833-845. [PMID: 35167660 PMCID: PMC9156367 DOI: 10.1093/advances/nmac012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/13/2021] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
This review summarizes the latest findings, from animal models and clinical studies, regarding the cardiovascular and metabolic consequences in adult life of zinc deficiency (ZD) during prenatal and early postnatal life. The effect of zinc supplementation (ZS) and new insights about sex differences in the phenotype and severity of cardiovascular and metabolic alterations are also discussed. Zinc has antioxidant, anti-inflammatory, and antiapoptotic properties and regulates the activity of enzymes involved in regulation of the metabolic, cardiovascular, and renal systems. Maternal ZD is associated with intrauterine growth restriction and low birth weight (LBW). Breast-fed preterm infants are at risk of ZD due to lower zinc uptake during fetal life and reduced gut absorption capacity. ZS is most likely to increase growth in preterm infants and survival in LBW infants in countries where ZD is prevalent. Studies performed in rats revealed that moderate ZD during prenatal and/or early postnatal growth is a risk factor for the development of hypertension, cardiovascular and renal alterations, obesity, and diabetes in adult life. An adequate zinc diet during postweaning life does not always prevent the cardiovascular and metabolic alterations induced by zinc restriction during fetal and lactation periods. Male rats are more susceptible to this injury than females, and some of the mechanisms involved include: 1) alterations in organogenesis, 2) activation of oxidative, apoptotic, and inflammatory processes, 3) dysfunction of nitric oxide and renin-angiotensin-aldosterone systems, 4) changes in glucose and lipid metabolism, and 5) adipose tissue dysfunction. Safeguarding body zinc requirements during pregnancy, lactation, and growth periods could become a new target in the prevention and treatment of cardiovascular and metabolic disorders. Further research is needed to elucidate the efficacy of ZS during early stages of growth to prevent the development of these diseases later in life.
Collapse
Affiliation(s)
- Facundo Mendes Garrido Abregú
- Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina,CONICET, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Caniffi
- Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina,CONICET, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cristina T Arranz
- Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina,CONICET, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
13
|
Richardson CE, Krishnan S, Gray IJ, Keim NL, Newman JW. The Omega-3 Index Response to an 8 Week Randomized Intervention Containing Three Fatty Fish Meals Per Week Is Influenced by Adiposity in Overweight to Obese Women. Front Nutr 2022; 9:810003. [PMID: 35187036 PMCID: PMC8855121 DOI: 10.3389/fnut.2022.810003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/12/2022] [Indexed: 01/13/2023] Open
Abstract
BackgroundThe Dietary Guidelines for Americans (DGA) recommends consuming ~225 g/wk of a variety of seafood providing >1.75 g/wk of long-chain omega-3 fatty acids to reduce cardiovascular disease risk, however individual responses to treatment vary.ObjectiveThis study had three main objectives. First, to determine if a DGA-conforming diet (DGAD), in comparison to a typical American diet (TAD), can increase the omega-3 index (OM3I), i.e., the red blood cell mol% of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA). Second, to identify factors explaining variability in the OM3I response to dietary treatment. Third to identify factors associated with the baseline OM3I.DesignThis is a secondary analysis of a randomized, double-blind 8 wk dietary intervention of overweight/obese women fed an 8d rotating TAD (n = 20) or DGAD (n = 22) registered at www.clinicaltrials.gov as NCT02298725. The DGAD-group consumed 240 g/wk of Atlantic farmed salmon and albacore tuna in three meals with an estimated EPA + DHA of 3.7 ± 0.6 g/wk. The TAD-group consumed ~160 g/wk of farmed white shrimp and a seafood salad containing imitation crab in three meal with an estimated EPA + DHA of 0.45 ± 0.05 g/wk. Habitual diet was determined at baseline, and body composition was determined at 0 and 8wks. Red blood cell fatty acids were measured at 0, 2 and 8 wk.ResultsAt 8 wk, the TAD-group OM3I was unchanged (5.90 ± 1.35–5.80 ± 0.76%), while the DGAD-group OM3I increased (5.63 ± 1.27–7.33 ± 1.36%; p < 0.001). In the DGAD-group 9 of 22 participants achieved an OM3I >8%. Together, body composition and the baseline OM3I explained 83% of the response to treatment variability. Baseline OM3I (5.8 ± 1.3%; n = 42) was negatively correlated to the android fat mass (p = 0.0007) and positively correlated to the FFQ estimated habitual (EPA+DHA) when expressed as a ratio to total dietary fat (p = 0.006).ConclusionsAn 8 wk TAD did not change the OM3I of ~6%, while a DGAD with 240 g/wk of salmon and albacore tuna increased the OM3I. Body fat distribution and basal omega-3 status are primary factors influencing the OM3I response to dietary intake in overweight/obese women.
Collapse
Affiliation(s)
| | - Sridevi Krishnan
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Ira J. Gray
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) Western Human Nutrition Research Center, Davis, CA, United States
| | - Nancy L. Keim
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) Western Human Nutrition Research Center, Davis, CA, United States
| | - John W. Newman
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) Western Human Nutrition Research Center, Davis, CA, United States
- *Correspondence: John W. Newman
| |
Collapse
|
14
|
Pérez-García A, Torrecilla-Parra M, Fernández-de Frutos M, Martín-Martín Y, Pardo-Marqués V, Ramírez CM. Posttranscriptional Regulation of Insulin Resistance: Implications for Metabolic Diseases. Biomolecules 2022; 12:biom12020208. [PMID: 35204710 PMCID: PMC8961590 DOI: 10.3390/biom12020208] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance defines an impairment in the biologic response to insulin action in target tissues, primarily the liver, muscle, adipose tissue, and brain. Insulin resistance affects physiology in many ways, causing hyperglycemia, hypertension, dyslipidemia, visceral adiposity, hyperinsulinemia, elevated inflammatory markers, and endothelial dysfunction, and its persistence leads to the development metabolic disease, including diabetes, obesity, cardiovascular disease, or nonalcoholic fatty liver disease (NAFLD), as well as neurological disorders such as Alzheimer’s disease. In addition to classical transcriptional factors, posttranscriptional control of gene expression exerted by microRNAs and RNA-binding proteins constitutes a new level of regulation with important implications in metabolic homeostasis. In this review, we describe miRNAs and RBPs that control key genes involved in the insulin signaling pathway and related regulatory networks, and their impact on human metabolic diseases at the molecular level, as well as their potential use for diagnosis and future therapeutics.
Collapse
|
15
|
Tamura Y. The Role of Zinc Homeostasis in the Prevention of Diabetes Mellitus and Cardiovascular Diseases. J Atheroscler Thromb 2021; 28:1109-1122. [PMID: 34148917 PMCID: PMC8592709 DOI: 10.5551/jat.rv17057] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022] Open
Abstract
Zinc is an essential micronutrient for human health and is involved in various biological functions, such as growth, metabolism, and immune function. In recent years, research on intracellular zinc dynamics has progressed, and it has become clear that zinc transporters strictly control intracellular zinc localization, zinc regulates the functions of various proteins and signal transduction pathways as a second messenger similar to calcium ions, and intracellular zinc dyshomeostasis is associated with impaired insulin synthesis, secretion, sensitivity, lipid metabolism, and vascular function. Numerous animal and human studies have shown that zinc deficiency may be associated with the risk factors for diabetes and cardiovascular diseases (CVDs) and zinc administration might be beneficial for the prevention and treatment of these diseases. Therefore, an understanding of zinc biology may help the establishment of novel strategies for the prevention and treatment of diabetes and CVDs. This review will summarize the current knowledge on the role of zinc homeostasis in the pathogenesis of diabetes and atherosclerosis and will discuss the potential of zinc in the prevention of these diseases.
Collapse
Affiliation(s)
- Yukinori Tamura
- Division of Physiology and Biochemistry, Faculty of Nutrition, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
16
|
Abstract
Since the discovery of manifest Zn deficiency in 1961, the increasing number of studies demonstrated the association between altered Zn status and multiple diseases. In this chapter, we provide a review of the most recent advances on the role of Zn in health and disease (2010-20), with a special focus on the role of Zn in neurodegenerative and neurodevelopmental disorders, diabetes and obesity, male and female reproduction, as well as COVID-19. In parallel with the revealed tight association between ASD risk and severity and Zn status, the particular mechanisms linking Zn2+ and ASD pathogenesis like modulation of synaptic plasticity through ProSAP/Shank scaffold, neurotransmitter metabolism, and gut microbiota, have been elucidated. The increasing body of data indicate the potential involvement of Zn2+ metabolism in neurodegeneration. Systemic Zn levels in Alzheimer's and Parkinson's disease were found to be reduced, whereas its sequestration in brain may result in modulation of amyloid β and α-synuclein processing with subsequent toxic effects. Zn2+ was shown to possess adipotropic effects through the role of zinc transporters, zinc finger proteins, and Zn-α2-glycoprotein in adipose tissue physiology, underlying its particular role in pathogenesis of obesity and diabetes mellitus type 2. Recent findings also contribute to further understanding of the role of Zn2+ in spermatogenesis and sperm functioning, as well as oocyte development and fertilization. Finally, Zn2+ was shown to be the potential adjuvant therapy in management of novel coronavirus infection (COVID-19), underlining the perspectives of zinc in management of old and new threats.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia.
| |
Collapse
|
17
|
Vysloužil J, Kulich P, Zeman T, Vaculovič T, Tvrdoňová M, Mikuška P, Večeřa Z, Stráská J, Moravec P, Balcar VJ, Šerý O. Subchronic continuous inhalation exposure to zinc oxide nanoparticles induces pulmonary cell response in mice. J Trace Elem Med Biol 2020; 61:126511. [PMID: 32294608 DOI: 10.1016/j.jtemb.2020.126511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/21/2020] [Accepted: 03/18/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVES We used mice as an animal model to investigate the entry of ZnO nanoparticles from the ambient air into the lungs and other organs, subsequent changes in Zn levels and the impact on the transcription of Zn homeostasis-related genes in the lungs. METHODS The mice were exposed to two concentrations of ZnO nanoparticles; lower (6.46 × 104 particles/cm3) and higher (1.93 × 106 particles/cm3), allowed to breathe the nanoparticles in the air for 12 weeks and subjected to necropsy. Characterization of the ZnO nanoparticles was done using transmission electron microscopy (TEM). Energy-dispersive X-ray (EDX) spectroscopy was used to quantify ZnO nanoparticles in the lungs, brain, liver and kidney. The total zinc content in the lungs, brain, liver, kidney, red blood cells and plasma was estimated by inductively coupled plasma mass spectroscopy (ICP-MS). Transcription rate of the genes was evaluated by RealTime PCR. RESULTS The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes. CONCLUSION Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised.
Collapse
Affiliation(s)
- Jan Vysloužil
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 967/97, 602 00, Brno, Czech Republic; Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Pavel Kulich
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 967/97, 602 00, Brno, Czech Republic
| | - Tomáš Zeman
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 967/97, 602 00, Brno, Czech Republic
| | - Tomáš Vaculovič
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Michaela Tvrdoňová
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Pavel Mikuška
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 967/97, 602 00, Brno, Czech Republic
| | - Zbyněk Večeřa
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 967/97, 602 00, Brno, Czech Republic
| | - Jana Stráská
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Pavel Moravec
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 2/135, 165 02 Prague, Czech Republic
| | - Vladimir J Balcar
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 967/97, 602 00, Brno, Czech Republic; Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Anderson Stuart Building F13, Sydney, NSW, 2006, Australia
| | - Omar Šerý
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 967/97, 602 00, Brno, Czech Republic; Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
18
|
Li GY, Dong ZL, Huang HF, Zhang YM, Wan D, Wu X, Yin YL. Effects of diet zinc level on circadian rhythms and lipid metabolism in male mice. BIOL RHYTHM RES 2020. [DOI: 10.1080/09291016.2018.1526498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Guan-ya Li
- Key Laboratory of Agro-Ecological Processess in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zheng-lin Dong
- Key Laboratory of Agro-Ecological Processess in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Hui-feng Huang
- Key Laboratory of Agro-Ecological Processess in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yi-ming Zhang
- Key Laboratory of Agro-Ecological Processess in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dan Wan
- Key Laboratory of Agro-Ecological Processess in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xin Wu
- Key Laboratory of Agro-Ecological Processess in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yu-long Yin
- Key Laboratory of Agro-Ecological Processess in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
19
|
Huang L, Tepaamorndech S, Kirschke CP, Cai Y, Zhao J, Cao X, Rao A. Subcongenic analysis of a quantitative trait locus affecting body weight and glucose metabolism in zinc transporter 7 (znt7)-knockout mice. BMC Genet 2019; 20:19. [PMID: 30777014 PMCID: PMC6378724 DOI: 10.1186/s12863-019-0715-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/11/2019] [Indexed: 11/24/2022] Open
Abstract
Background A genome-wide mapping study using male F2zinc transporter 7-knockout mice (znt7-KO) and their wild type littermates in a mixed 129P1/ReJ (129P1) and C57BL/6J (B6) background identified a quantitative trait locus (QTL) on chromosome 7, which had a synergistic effect on body weight gain and fat deposit with the znt7-null mutation. Results The genetic segment for body weight on mouse chromosome 7 was investigated by newly created subcongenic znt7-KO mouse strains carrying different lengths of genomic segments of chromosome 7 from the 129P1 donor strain in the B6 background. We mapped the sub-QTL for body weight in the proximal region of the previously mapped QTL, ranging from 47.4 to 64.4 megabases (Mb) on chromosome 7. The 129P1 donor allele conferred lower body weight gain and better glucose handling during intraperitoneal glucose challenge than the B6 allele control. We identified four candidate genes, including Htatip2, E030018B13Rik, Nipa1, and Atp10a, in this sub-QTL using quantitative RT-PCR and cSNP detection (single nucleotide polymorphisms in the protein coding region). Conclusions This study dissected the genetic determinates of body weight and glucose metabolism in znt7-KO mice. The study demonstrated that a 17-Mb long 129P1 genomic region on mouse chromosome 7 conferred weight reduction and improved glucose tolerance in znt7-KO male mice. Among the four candidate genes identified, Htatip2 is the most likely candidate gene involved in the control of body weight based on its function in regulation of lipid metabolism. The candidate genes discovered in this study lay a foundation for future studies of their roles in development of metabolic diseases, such as obesity and type 2 diabetes. Electronic supplementary material The online version of this article (10.1186/s12863-019-0715-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L Huang
- Obesity and Metabolism Research Unit, USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA.
| | - S Tepaamorndech
- Integrative Genetics and Genomics Graduate Group, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.,Present Address: Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - C P Kirschke
- Obesity and Metabolism Research Unit, USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA
| | - Y Cai
- Graduate Group of Nutritional Biology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - J Zhao
- Department of Nutrition, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.,School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, China
| | - Xiaohan Cao
- Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Andrew Rao
- Department of Nutrition, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
20
|
Cruz KJC, de Oliveira ARS, Morais JBS, Severo JS, Mendes PMV, de Sousa Melo SR, de Sousa GS, Marreiro DDN. Zinc and Insulin Resistance: Biochemical and Molecular Aspects. Biol Trace Elem Res 2018; 186:407-412. [PMID: 29564656 DOI: 10.1007/s12011-018-1308-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/14/2018] [Indexed: 01/31/2023]
Abstract
Studies have shown the participation of minerals in mechanisms involved in the pathogenesis of insulin resistance. Zinc, in particular, seems to play an important role in the secretion and action of this hormone. Therefore, the aim of this review is to understand the role of zinc in increasing insulin sensitivity. We conducted a search of articles published in the PubMed and ScienceDirect database selected from March 2016 to February 2018, using the keywords "zinc," "insulin," "insulin resistance," "insulin sensitivity," and "supplementation." Following the eligibility criteria were selected 53 articles. The scientific evidences presented in this review show the importance of zinc and their carrier proteins in the synthesis and secretion of insulin, as well as in the signaling pathway of action of this hormone. Zinc deficiency is associated with glucose intolerance and insulin resistance; however, the effectiveness of the intervention with the zinc supplementation is still inconclusive.
Collapse
Affiliation(s)
- Kyria Jayanne Clímaco Cruz
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil
| | - Ana Raquel Soares de Oliveira
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil
| | - Jennifer Beatriz Silva Morais
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil
| | - Juliana Soares Severo
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil
| | - Priscyla Maria Vieira Mendes
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil
| | | | | | - Dilina do Nascimento Marreiro
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil.
| |
Collapse
|
21
|
Agrawal K, Hassoun LA, Foolad N, Borkowski K, Pedersen TL, Sivamani RK, Newman JW. Effects of atopic dermatitis and gender on sebum lipid mediator and fatty acid profiles. Prostaglandins Leukot Essent Fatty Acids 2018; 134:7-16. [PMID: 29886894 PMCID: PMC6800162 DOI: 10.1016/j.plefa.2018.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 01/10/2023]
Abstract
Skin disease alters cutaneous lipid mediator metabolism, and if skin secretions contain evidence of these changes, they may constitute useful clinical matrices with low associated subject burden. The influences of skin diseases on sebum lipid mediators are understudied. Here, sebum oxylipins, endocannabinoids, sphingolipids, and fatty acids were quantified from the non-lesional bilateral cheeks of subjects with and without quiescent atopic dermatitis (AD) using LC-MS/MS and GC-MS. AD decreased C36 [NS] and [NdS] ceramide concentrations. Compared to males, females demonstrated increased concentrations of oxylipin alcohols and ketones, and saturated and monounsaturated non-esterified fatty acids, as well as decreased concentrations of C42 [NS] and [NdS] ceramides. Additionally, contemporaneously collected sweat lipid mediator profiles were distinct, with sebum showing higher concentrations of most targets, but fewer highly polar lipids. Therefore, AD and gender appear to alter sebum lipid metabolism even in non-lesional skin of quiescent subjects.
Collapse
Affiliation(s)
- Karan Agrawal
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; West Coast Metabolomics Center, University of California-Davis Genome Center, Davis, CA 95616, USA
| | - Lauren A Hassoun
- Department of Dermatology, University of California-Davis Medical Center, Sacramento, CA 95816, USA
| | - Negar Foolad
- Department of Dermatology, University of California-Davis Medical Center, Sacramento, CA 95816, USA
| | - Kamil Borkowski
- West Coast Metabolomics Center, University of California-Davis Genome Center, Davis, CA 95616, USA
| | | | - Raja K Sivamani
- Department of Dermatology, University of California-Davis Medical Center, Sacramento, CA 95816, USA; Department of Biological Sciences, California State University, Sacramento, CA 95819, USA.
| | - John W Newman
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; West Coast Metabolomics Center, University of California-Davis Genome Center, Davis, CA 95616, USA; Obesity and Metabolism Research Unit, Western Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Davis, CA 95616, USA.
| |
Collapse
|
22
|
van Leeuwen EM, Emri E, Merle BMJ, Colijn JM, Kersten E, Cougnard-Gregoire A, Dammeier S, Meester-Smoor M, Pool FM, de Jong EK, Delcourt C, Rodrigez-Bocanegra E, Biarnés M, Luthert PJ, Ueffing M, Klaver CCW, Nogoceke E, den Hollander AI, Lengyel I. A new perspective on lipid research in age-related macular degeneration. Prog Retin Eye Res 2018; 67:56-86. [PMID: 29729972 DOI: 10.1016/j.preteyeres.2018.04.006] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
Abstract
There is an urgency to find new treatment strategies that could prevent or delay the onset or progression of AMD. Different classes of lipids and lipoproteins metabolism genes have been associated with AMD in a multiple ways, but despite the ever-increasing knowledge base, we still do not understand fully how circulating lipids or local lipid metabolism contribute to AMD. It is essential to clarify whether dietary lipids, systemic or local lipoprotein metabolismtrafficking of lipids in the retina should be targeted in the disease. In this article, we critically evaluate what has been reported in the literature and identify new directions needed to bring about a significant advance in our understanding of the role for lipids in AMD. This may help to develop potential new treatment strategies through targeting the lipid homeostasis.
Collapse
Affiliation(s)
- Elisabeth M van Leeuwen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eszter Emri
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Benedicte M J Merle
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Johanna M Colijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eveline Kersten
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Audrey Cougnard-Gregoire
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Sascha Dammeier
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Magda Meester-Smoor
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Eiko K de Jong
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Cécile Delcourt
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | | | | | | | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Everson Nogoceke
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Imre Lengyel
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
23
|
Huang L, Tepaamorndech S, Kirschke CP, Newman JW, Keyes WR, Pedersen TL, Dumnil J. Aberrant fatty acid metabolism in skeletal muscle contributes to insulin resistance in zinc transporter 7 ( znt7)-knockout mice. J Biol Chem 2018; 293:7549-7563. [PMID: 29555680 DOI: 10.1074/jbc.m117.817692] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
ZnT7 (Slc30a7) is a widely expressed zinc transporter involved in sequestration of zinc into the Golgi apparatus and vesicular compartments. znt7-knockout (KO) mice are mildly zinc-deficient and lean. Despite their lean phenotype, adult male znt7-KO mice are prone to insulin resistance. We hypothesized that fat partitioning from adipose to nonadipose tissues causes insulin resistance in znt7-KO mice. Here, we used biological and biochemical methods, including fatty acid and oxylipin profiling, EM, immunohistochemistry, quantitative RT-PCR, and Western blot analysis, to identify the underlying mechanism of insulin resistance in znt7-KO mice. We found that insulin resistance in this model was primarily associated with increased intracellular fatty acid levels in the skeletal muscle, which promoted intracellular lipid accumulation and production of bioactive lipid mediators, such as 12,13-dihydroxyoctadecanoic acid (12,13-DiHOME) and 12-hydroxyeicosatetraenoic acid (12-HETE). The expression of fatty acid-binding protein 3 (Fabp3) was dramatically up-regulated in the znt7-KO muscle cells accompanied by increased expression of Cd36, Slc27a1, and Slc27a4, the three major fatty acid transporters in the skeletal muscle. We also demonstrated that znt7-KO muscle cells had increased fatty acid oxidative capacity, indicated by enlarged mitochondria and increased mRNA or protein expression of key enzymes involved in the fatty acid mitochondrial shuttle and β-oxidation. We conclude that increased fatty acid uptake in the znt7-KO skeletal muscle is a key factor that contributes to the excessive intracellular lipid deposit and elevated production of bioactive lipid mediators. These mediators may play pivotal roles in oxidative stress and inflammation, leading to insulin resistance.
Collapse
Affiliation(s)
- Liping Huang
- From the Obesity and Metabolism Research Unit, United States Department of Agriculture/Agricultural Research Service/Western Human Nutrition Research Center, Davis, California 95616, .,Department of Nutrition and.,Integrative Genetics and Genomics Graduate Group, University of California, Davis, California 95616, and
| | - Surapun Tepaamorndech
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, California 95616, and.,Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
| | - Catherine P Kirschke
- From the Obesity and Metabolism Research Unit, United States Department of Agriculture/Agricultural Research Service/Western Human Nutrition Research Center, Davis, California 95616
| | - John W Newman
- From the Obesity and Metabolism Research Unit, United States Department of Agriculture/Agricultural Research Service/Western Human Nutrition Research Center, Davis, California 95616.,Department of Nutrition and
| | - William R Keyes
- From the Obesity and Metabolism Research Unit, United States Department of Agriculture/Agricultural Research Service/Western Human Nutrition Research Center, Davis, California 95616
| | - Theresa L Pedersen
- From the Obesity and Metabolism Research Unit, United States Department of Agriculture/Agricultural Research Service/Western Human Nutrition Research Center, Davis, California 95616
| | - Jureeporn Dumnil
- Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
| |
Collapse
|
24
|
Role of Zinc Homeostasis in the Pathogenesis of Diabetes and Obesity. Int J Mol Sci 2018; 19:ijms19020476. [PMID: 29415457 PMCID: PMC5855698 DOI: 10.3390/ijms19020476] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Zinc deficiency is a risk factor for obesity and diabetes. However, until recently, the underlying molecular mechanisms remained unclear. The breakthrough discovery that the common polymorphism in zinc transporter SLC30A8/ZnT8 may increase susceptibility to type 2 diabetes provided novel insights into the role of zinc in diabetes. Our group and others showed that altered ZnT8 function may be involved in the pathogenesis of type 2 diabetes, indicating that the precise control of zinc homeostasis is crucial for maintaining health and preventing various diseases, including lifestyle-associated diseases. Recently, the role of the zinc transporter ZIP13 in the regulation of beige adipocyte biogenesis was clarified, which indicated zinc homeostasis regulation as a possible therapeutic target for obesity and metabolic syndrome. Here we review advances in the role of zinc homeostasis in the pathophysiology of diabetes, and propose that inadequate zinc distribution may affect the onset of diabetes and metabolic diseases by regulating various critical biological events.
Collapse
|
25
|
Olechnowicz J, Tinkov A, Skalny A, Suliburska J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci 2018; 68:19-31. [PMID: 28965330 PMCID: PMC5754376 DOI: 10.1007/s12576-017-0571-7] [Citation(s) in RCA: 345] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022]
Abstract
A number of studies have reported that zinc plays a substantial role in the development of metabolic syndrome, taking part in the regulation of cytokine expression, suppressing inflammation, and is also required to activate antioxidant enzymes that scavenge reactive oxygen species, reducing oxidative stress. Zinc also plays a role in the correct functioning of lipid and glucose metabolism, regulating and forming the expression of insulin. In numerous studies, zinc supplementation has been found to improve blood pressure, glucose, and LDL cholesterol serum level. Deeper knowledge of zinc's properties may help in treating metabolic syndrome, thus protecting against stroke and angina pectoris, and ultimately against death.
Collapse
Affiliation(s)
- J Olechnowicz
- Poznan University of Life Sciences, ul. Wojska Polskiego 31, 62-624, Poznan , Poland
| | - A Tinkov
- Orenburg State Medical University, Sovetskaya St., 6, Orenburg, 460000, Russia
- Orenburg State University, Pobedy Avenue, 13, Orenburg, 460018, Russia
- RUDN University, Miklukho-Maklay St., 10/2, Moscow, 117198, Russia
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia
| | - A Skalny
- Orenburg State University, Pobedy Avenue, 13, Orenburg, 460018, Russia
- RUDN University, Miklukho-Maklay St., 10/2, Moscow, 117198, Russia
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia
- All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Grina St., 7, Moscow, 117216, Russia
| | - Joanna Suliburska
- Poznan University of Life Sciences, ul. Wojska Polskiego 31, 62-624, Poznan , Poland.
| |
Collapse
|
26
|
Wang J, Hua L, Chen J, Zhang J, Bai X, Gao B, Li C, Shi Z, Sheng W, Gao Y, Xing B. Identification and characterization of long non-coding RNAs in subcutaneous adipose tissue from castrated and intact full-sib pair Huainan male pigs. BMC Genomics 2017; 18:542. [PMID: 28724410 PMCID: PMC5518130 DOI: 10.1186/s12864-017-3907-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/27/2017] [Indexed: 11/10/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) regulate adipose tissue metabolism, however, their function on testosterone deficiency related obesity in humans is less understood. For this research, intact and castrated male pigs are the best model animal because of their similar proportional organ sizes, cardiovascular systems and metabolic features. Results We identified lncRNAs in subcutaneous adipose tissue by deep RNA-sequencing using the intact and castrated Huainan male pigs. The results showed that castration reduced serum testosterone but increased body fatness-related traits (serum triglyceride levels, backfat thickness, intramuscular fat content, and adipocyte size). Meanwhile, 343 lncRNAs from subcutaneous adipose tissue were identified, including 223 intergenic lncRNAs (lincRNAs), 68 anti-sense lncRNAs, and 52 intronic lncRNAs. It was predicted that there were 416 recognition sites for C/EBPα in the 303 lncRNA promoter region, and 13 adipogenesis-promoting miRNAs and five adipogenesis-depressing miRNAs target these lncRNAs. Eighteen lncRNAs, including nine up- and nine down-regulated had more than 2-fold differential expression between the castrated and intact male pigs (q-value < 0.05). Functional analysis indicated that these 18 lncRNAs and their target genes were involved in fatty acid, insulin, and the adipocytokine signaling pathway. We further analyzed the features of a conserved mouse lncRNA gene ENSMUST00000189966 and found it mainly expressed in the cell nucleus and target the Nuclear Receptor Subfamily 2 Group F Member 2 (NR2F2) gene. In 3 T3-L1 cells, differentiation down-regulated their expression, but dihydrotestosterone (DHT) significantly up-regulated their expression in a concentration-dependent manner (P < 0.05). Conclusions These results suggested that lncRNAs and their target genes might participated in the castration-induced fat deposition and provide a new therapeutic target for combatting testosterone deficiency-related obesity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3907-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Liushuai Hua
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Junfeng Chen
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Jiaqing Zhang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Xianxiao Bai
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Binwen Gao
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Congjun Li
- United States Department of Agriculture-Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, MD, 20705, USA
| | - Zhihai Shi
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Weidong Sheng
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Yuan Gao
- Xinxian Bureau of Animal Husbandry, Xinxian, 465550, Beijing, People's Republic of China
| | - Baosong Xing
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
27
|
Tepaamorndech S, Oort P, Kirschke CP, Cai Y, Huang L. ZNT7 binds to CD40 and influences CD154-triggered p38 MAPK activity in B lymphocytes-a possible regulatory mechanism for zinc in immune function. FEBS Open Bio 2017; 7:675-690. [PMID: 28469980 PMCID: PMC5407898 DOI: 10.1002/2211-5463.12211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/09/2017] [Accepted: 02/14/2017] [Indexed: 01/04/2023] Open
Abstract
Zinc deficiency impairs the immune system leading to frequent infections. Although zinc is known to play critical roles in maintaining healthy immune function, the underlying molecular targets are largely unknown. In this study, we demonstrate that zinc is important for the CD154–CD40‐mediated activation of downstream signaling pathways in human B lymphocytes. CD40 is a receptor localized on the cell surface of many immune cells, including B lymphocytes. It binds to CD154, a membrane protein expressed on antigen‐activated T helper (Th) lymphocytes. This CD154‐CD40 interaction leads to B‐cell activation. We showed that cellular zinc deficiency impaired the CD154‐CD40‐mediated p38 mitogen‐activated protein kinase (p38 MAPK) phosphorylation. We also showed that zinc supplemental treatment of B lymphocytes had limited effect on this CD40‐mediated p38 MAPK signaling. Most importantly, we demonstrated that the zinc transporter protein zinc transporter 7 (ZNT7) interacted with CD40 using immunoprecipitation analyses. ZNT7 knockdown in B lymphocytes had a negative effect on the cell surface expression of CD40. Consequently, the CD40‐mediated p38 MAPK signaling transduction was down‐regulated in ZNT7KD B lymphocytes. Conversely, this p38 MAPK signaling activity was up‐regulated by overexpression (OE) of ZNT7 in B lymphocytes. Moreover, we found that ZNT7 knockdown in B lymphocytes constitutively up‐ and down‐regulated the inhibitor of i kappa B kinase and AKT serine/threonine kinase phosphorylation, respectively, which implies the activation of survival signaling in ZNT7KD B cells. We conclude that CD40 is the target molecule for ZNT7 in regulation of immune function of B lymphocytes.
Collapse
Affiliation(s)
- Surapun Tepaamorndech
- Integrative Genetics and Genomics Graduate Group University of California Davis CA USA.,Food Biotechnology Research Unit National Center for Genetic Engineering and Biotechnology Pathum Thani Thailand
| | - Pieter Oort
- Obesity and Metabolism Research Unit USDA/ARS/Western Human Nutrition Research Center Davis CA USA.,Present address: Astrona Biotechnologies HM Clause Innovation Center 28605 County Road 104 Davis CA 95618 USA
| | - Catherine P Kirschke
- Obesity and Metabolism Research Unit USDA/ARS/Western Human Nutrition Research Center Davis CA USA
| | - Yimeng Cai
- Graduate Group of Nutritional Biology University of California Davis CA USA
| | - Liping Huang
- Integrative Genetics and Genomics Graduate Group University of California Davis CA USA.,Obesity and Metabolism Research Unit USDA/ARS/Western Human Nutrition Research Center Davis CA USA.,Graduate Group of Nutritional Biology University of California Davis CA USA
| |
Collapse
|
28
|
Szrok S, Stelmanska E, Turyn J, Bielicka-Gieldon A, Sledzinski T, Swierczynski J. Metallothioneins 1 and 2, but not 3, are regulated by nutritional status in rat white adipose tissue. GENES AND NUTRITION 2016; 11:18. [PMID: 27551319 PMCID: PMC4968437 DOI: 10.1186/s12263-016-0533-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/10/2016] [Indexed: 11/23/2022]
Abstract
Background Cumulating evidence underlines the role of adipose tissue metallothionein (MT) in the development of obesity and type 2 diabetes. Fasting/refeeding was shown to affect MT gene expression in the rodent liver. The influence of nutritional status on MT gene expression in white adipose tissue (WAT) is inconclusive. The aim of this study was to verify if fasting and fasting/refeeding may influence expression of MT genes in WAT of rats. Results Fasting resulted in a significant increase in MT1 and MT2 gene expressions in retroperitoneal, epididymal, and inguinal WAT of rats, and this effect was reversed by refeeding. Altered expressions of MT1 and MT2 genes in all main fat depots were reflected by changes in serum MT1 and MT2 levels. MT1 and MT2 messenger RNA (mRNA) levels in WAT correlated inversely with serum insulin concentration. Changes in MT1 and MT2 mRNA levels were apparently not related to total zinc concentrations and MTF1 and Zn transporter mRNA levels in WAT. Fasting or fasting/refeeding exerted no effect on the expression of MT3 gene in WAT. Addition of insulin to isolated adipocytes resulted in a significant decrease in MT1 and MT2 gene expressions. In contrast, forskolin or dibutyryl-cAMP (dB-cAMP) enhanced the expressions of MT1 and MT2 genes in isolated adipocytes. Insulin partially reversed the effect of dB-cAMP on MT1 and MT2 gene expressions. Conclusions This study showed that the expressions of MT1 and MT2 genes in WAT are regulated by nutritional status, and the regulation may be independent of total zinc concentration. Electronic supplementary material The online version of this article (doi:10.1186/s12263-016-0533-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sylwia Szrok
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Ewa Stelmanska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Jacek Turyn
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | | | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Julian Swierczynski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| |
Collapse
|