1
|
Kunert KJ, Pillay P. Loop replacement design: a new way to improve potency of plant cystatins. FEBS J 2022; 289:1823-1826. [DOI: 10.1111/febs.16335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 01/26/2023]
Affiliation(s)
- Karl J. Kunert
- Department of Plant and Soil Sciences Department, Forestry and Agricultural Biotechnology Institute University of Pretoria South Africa
| | - Priyen Pillay
- Future Production Chemicals Cluster Council for Scientific and Industrial Research Pretoria South Africa
| |
Collapse
|
2
|
Tremblay J, Goulet MC, Vorster J, Goulet C, Michaud D. Harnessing the functional diversity of plant cystatins to design inhibitor variants highly active against herbivorous arthropod digestive proteases. FEBS J 2021; 289:1827-1841. [PMID: 34799995 DOI: 10.1111/febs.16288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022]
Abstract
Protein engineering approaches have been proposed to improve the inhibitory properties of plant cystatins against herbivorous arthropod digestive proteases, generally involving the site-directed mutagenesis of functionally relevant amino acids or the selection of improved inhibitor variants by phage display approaches. Here, we propose a novel approach where the function-related structural elements of a cystatin are substituted by the corresponding elements of an alternative cystatin. Inhibitory assays were first performed with 20 representative plant cystatins and model Cys proteases, including arthropod proteases, to appreciate the extent of functional variability among the plant cystatin family. The most, and less, potent of these cystatins were then used as 'donors' of structural elements to create hybrids of tomato cystatin SlCYS8 used as a model 'recipient' inhibitor. In brief, inhibitory activities against Cys proteases strongly differed from one plant cystatin to another, with Ki (papain) values diverging by more than 30-fold and inhibitory rates against arthropod proteases varying by up to 50-fold depending on the enzymes assessed. In line with theoretical assumptions from docking models generated for different Cys protease-cystatin combinations, structural element substitutions had a strong impact on the activity of recipient cystatin SlCYS8, positive or negative depending on the basic inhibitory potency of the donor cystatin. Our data confirm the wide variety of cystatin inhibitory profiles among plant taxa. They also demonstrate the usefulness of these proteins as a pool of discrete structural elements for the design of cystatin variants with improved potency against herbivorous pest digestive Cys proteases.
Collapse
Affiliation(s)
- Jonathan Tremblay
- Département de phytologie, Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, Québec, Canada
| | - Marie-Claire Goulet
- Département de phytologie, Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, Québec, Canada
| | - Juan Vorster
- Department of Plant and Soil Sciences, The University of Pretoria, Pretoria, South Africa
| | - Charles Goulet
- Département de phytologie, Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, Québec, Canada
| | - Dominique Michaud
- Département de phytologie, Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, Québec, Canada
| |
Collapse
|
3
|
Abstract
Dozens of studies have assessed the practical value of plant cystatins as ectopic inhibitors of Cys proteases in biological systems. The potential of these proteins in crop protection to control herbivorous pests and pathogens has been documented extensively over the past 25 years. Their usefulness to regulate endogenous Cys proteases in planta has also been considered recently, notably to implement novel traits of agronomic relevance in crops or to generate protease activity-depleted environments in plants or plant cells used as bioreactors for recombinant proteins. After a brief update on the basic structural characteristics of plant cystatins, we summarize recent advances on the use of these proteins in plant biotechnology. Attention is also paid to the molecular improvement of their structural properties for the improvement of their protease inhibitory effects or the fine-tuning of their biological target range.
Collapse
|
4
|
Medina E, Villalobos P, Coñuecar R, Ramírez-Sarmiento CA, Babul J. The protonation state of an evolutionarily conserved histidine modulates domainswapping stability of FoxP1. Sci Rep 2019; 9:5441. [PMID: 30931977 PMCID: PMC6443806 DOI: 10.1038/s41598-019-41819-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/13/2019] [Indexed: 11/12/2022] Open
Abstract
Forkhead box P (FoxP) proteins are members of the versatile Fox transcription factors, which control the timing and expression of multiple genes for eukaryotic cell homeostasis. Compared to other Fox proteins, they can form domain-swapped dimers through their DNA-binding –forkhead– domains, enabling spatial reorganization of distant chromosome elements by tethering two DNA molecules together. Yet, domain swapping stability and DNA binding affinity varies between different FoxP proteins. Experimental evidence suggests that the protonation state of a histidine residue conserved in all Fox proteins is responsible for pH-dependent modulation of these interactions. Here, we explore the consequences of the protonation state of another histidine (H59), only conserved within FoxM/O/P subfamilies, on folding and dimerization of the forkhead domain of human FoxP1. Dimer dissociation kinetics and equilibrium unfolding experiments demonstrate that protonation of H59 leads to destabilization of the domain-swapped dimer due to an increase in free energy difference between the monomeric and transition states. This pH–dependence is abolished when H59 is mutated to alanine. Furthermore, anisotropy measurements and molecular dynamics evidence that H59 has a direct impact in the local stability of helix H3. Altogether, our results highlight the relevance of H59 in domain swapping and folding stability of FoxP1.
Collapse
Affiliation(s)
- Exequiel Medina
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, 7800003, Chile
| | - Pablo Villalobos
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, 7800003, Chile
| | - Ricardo Coñuecar
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, 7800003, Chile
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 7820436, Chile.
| | - Jorge Babul
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, 7800003, Chile.
| |
Collapse
|
5
|
Recruited lysosomal enzymes as major digestive enzymes in insects. Biochem Soc Trans 2019; 47:615-623. [PMID: 30902923 DOI: 10.1042/bst20180344] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 01/17/2023]
Abstract
The mass recruitment to the midgut contents of lysosomal proteolytic enzymes occurred in insects under three major selective pressures. Hemipteran (true bugs, aphids, and cicadas) ancestors lost their serine peptidases (SP) on adapting to feed on protein-free plant sap. When they returned to protein diets, their cathepsins L and B were recruited to replace their lost SP. Among beetles of the series Cucujiformia, cathepsins L were recruited to hydrolyze ingested plant inhibitors that affect their major SP and/or to deal with special seed proteins, such as prolamins. Larval flies have a very acid middle midgut and use cathepsin D to digest bacteria from their infected food. All the recruited enzymes originated from duplicated genes. The recruited digestive enzymes differ from their lysosomal counterparts in critical regions of their amino acid sequences that resulted in changes in substrate specificities and other kinetic properties. The discharge of digestive cathepsins in the midgut contents, instead of lysosomes, seems to be a consequence of their overexpression or the existence of new targeting signals. Their activation at the midgut contents occurs by an autoactivation mechanism or with the help of other enzymes or by a combination of both. The targeting to lysosomes of the insect lysosomal enzymes does not follow the mammalian mannose 6-phosphate route, but an incompletely known mechanism.
Collapse
|
6
|
Rasoolizadeh A, Goulet MC, Guay JF, Cloutier C, Michaud D. Population-associated heterogeneity of the digestive Cys protease complement in Colorado potato beetle, Leptinotarsa decemlineata. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:125-133. [PMID: 28267460 DOI: 10.1016/j.jinsphys.2017.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/19/2017] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
Herbivorous insects use complex protease complements to process plant proteins, useful to adjust their digestive functions to the plant diet and to elude the antidigestive effects of dietary protease inhibitors. We here assessed whether basic profiles and diet-related adjustments of the midgut protease complement may vary among populations of the insect herbivore Colorado potato beetle (Leptinotarsa decemlineata). Two laboratory colonies of this insect were used as models, derived from insect samples collected in potato fields ∼1200km distant from each other in North America. Synchronized 4th-instar larvae reared on potato were kept on this plant, or switched to tomato or eggplant, to compare their midgut cathepsin activities and content of intestain Cys proteases under different diet regimes. Cathepsin D activity, cathepsin L activity, cathepsin B activity and total intestain content shortly after larval molting on potato leaves were about two times lower in one population compared to the other. By comparison, cathepsin D activity, cathepsin B activity, total intestain content and relative abundance of the most prominent intestain families were similar in the two populations after three days regardless of the plant diet, unlike cathepsin L activity and less prominent intestain families showing population-associated variability. Variation in Cys protease profiles translated into the differential efficiency of a Cys protease inhibitor, tomato cystatin SlCYS8, to inhibit cathepsin L activity in midgut extracts of the two insect groups. Despite quantitative differences, SlCYS8 single variants engineered to strongly inhibit Cys proteases showed improved potency against cathepsin L activity of either population. These data suggest the feasibility of designing cystatins to control L. decemlineata that are effective against different populations of this insect. They underline, on the other hand, the practical relevance of considering natural variability of the protease complement among L. decemlineata target populations, eventually determinant in the success or failure of cystatin-based control strategies on a large-scale basis.
Collapse
Affiliation(s)
- Asieh Rasoolizadeh
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Marie-Claire Goulet
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Conrad Cloutier
- Département de biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Dominique Michaud
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
7
|
Saikhedkar NS, Joshi RS, Bhoite AS, Mohandasan R, Yadav AK, Fernandes M, Kulkarni KA, Giri AP. Tripeptides derived from reactive centre loop of potato type II protease inhibitors preferentially inhibit midgut proteases of Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 95:17-25. [PMID: 29486250 DOI: 10.1016/j.ibmb.2018.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Potato type II protease inhibitors (Pin-II PIs) impede the growth of lepidopteran insects by inhibiting serine protease-like enzymes in the larval gut. The three amino acid reactive centre loop (RCL) of these proteinaceous inhibitors is crucial for protease binding and is conserved across the Pin-II family. However, the molecular mechanism and inhibitory potential of the RCL tripeptides in isolation of the native protein has remained elusive. In this study, six peptides corresponding to the RCLs of the predominant Pin-II PIs were identified, synthesized and evaluated for in vitro and in vivo inhibitory activity against serine proteases of the polyphagous insect, Helicoverpa armigera. RCL peptides with sequences PRN, PRY and TRE were found to be potent inhibitors that adversely affected the growth and development of H. armigera. The binding mechanism and differential affinity of the RCL peptides with serine proteases was delineated by crystal structures of complexes of the RCL peptides with trypsin. Residues P1 and P2 of the inhibitors play a crucial role in the interaction and specificity of these inhibitors. Important features of RCL peptides like higher inhibition of insect proteases, enhanced efficacy at alkaline gut pH, longer retention and high stability in insect gut make them suitable molecules for the development of sustainable pest management strategies for crop protection.
Collapse
Affiliation(s)
- Nidhi S Saikhedkar
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Rakesh S Joshi
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Ashiwini S Bhoite
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Radhika Mohandasan
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Amit Kumar Yadav
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Moneesha Fernandes
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Kiran A Kulkarni
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.
| | - Ashok P Giri
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.
| |
Collapse
|
8
|
Rasoolizadeh A, Munger A, Goulet MC, Sainsbury F, Cloutier C, Michaud D. Functional proteomics-aided selection of protease inhibitors for herbivore insect control. Sci Rep 2016; 6:38827. [PMID: 27958307 PMCID: PMC5153846 DOI: 10.1038/srep38827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/15/2016] [Indexed: 11/09/2022] Open
Abstract
Studies have reported the potential of protease inhibitors to engineer insect resistance in transgenic plants but the general usefulness of this approach in crop protection still remains to be established. Insects have evolved strategies to cope with dietary protease inhibitors, such as the use of proteases recalcitrant to inhibition, that often make the selection of effective inhibitors very challenging. Here, we used a functional proteomics approach for the ‘capture’ of Cys protease targets in crude protein extracts as a tool to identify promising cystatins for plant improvement. Two cystatins found to differ in their efficiency to capture Cys proteases of the coleopteran pest Leptinotarsa decemlineata also differed in their usefulness to produce transgenic potato lines resistant to this insect. Plants expressing the most potent cystatin at high level had a strong repressing effect on larval growth and leaf intake, while plants expressing the weakest cystatin showed no effect on both two parameters compared to untransformed parental line used for genetic transformation. Our data underline the relevance of considering the whole range of possible protease targets when selecting an inhibitor for plant pest control. They also confirm the feasibility of developing cystatin-expressing transgenics resistant to a major pest of potato.
Collapse
Affiliation(s)
| | - Aurélie Munger
- Département de phytologie, Université Laval, Québec City, QC, Canada
| | | | - Frank Sainsbury
- Département de phytologie, Université Laval, Québec City, QC, Canada
| | - Conrad Cloutier
- Département de biologie, Université Laval, Québec City QC, Canada
| | - Dominique Michaud
- Département de phytologie, Université Laval, Québec City, QC, Canada
| |
Collapse
|
9
|
Martinez M, Santamaria ME, Diaz-Mendoza M, Arnaiz A, Carrillo L, Ortego F, Diaz I. Phytocystatins: Defense Proteins against Phytophagous Insects and Acari. Int J Mol Sci 2016; 17:E1747. [PMID: 27775606 PMCID: PMC5085774 DOI: 10.3390/ijms17101747] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/31/2023] Open
Abstract
This review deals with phytocystatins, focussing on their potential role as defence proteins against phytophagous arthropods. Information about the evolutionary, molecular and biochemical features and inhibitory properties of phytocystatins are presented. Cystatin ability to inhibit heterologous cysteine protease activities is commented on as well as some approaches of tailoring cystatin specificity to enhance their defence function towards pests. A general landscape on the digestive proteases of phytophagous insects and acari and the remarkable plasticity of their digestive physiology after feeding on cystatins are highlighted. Biotechnological approaches to produce recombinant cystatins to be added to artificial diets or to be sprayed as insecticide-acaricide compounds and the of use cystatins as transgenes are discussed. Multiple examples and applications are included to end with some conclusions and future perspectives.
Collapse
Affiliation(s)
- Manuel Martinez
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| | - Maria Estrella Santamaria
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| | - Mercedes Diaz-Mendoza
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| | - Ana Arnaiz
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| | - Laura Carrillo
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| | - Felix Ortego
- Departamento de Biologia Medioambiental, Centro de Investigaciones Biologicas, CSIC, Ramiro de Maeztu, 9, Madrid 28040, Spain.
| | - Isabel Diaz
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| |
Collapse
|
10
|
Cingel A, Savić J, Lazarević J, Ćosić T, Raspor M, Smigocki A, Ninković S. Extraordinary Adaptive Plasticity of Colorado Potato Beetle: "Ten-Striped Spearman" in the Era of Biotechnological Warfare. Int J Mol Sci 2016; 17:ijms17091538. [PMID: 27649141 PMCID: PMC5037813 DOI: 10.3390/ijms17091538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022] Open
Abstract
Expanding from remote areas of Mexico to a worldwide scale, the ten-striped insect, the Colorado potato beetle (CPB, Leptinotarsa decemlineata Say), has risen from being an innocuous beetle to a prominent global pest. A diverse life cycle, phenotypic plasticity, adaptation to adverse conditions, and capability to detoxify or tolerate toxins make this insect appear to be virtually “indestructible”. With increasing advances in molecular biology, tools of biotechnological warfare were deployed to combat CPB. In the last three decades, genetically modified potato has created a new challenge for the beetle. After reviewing hundreds of scientific papers dealing with CPB control, it became clear that even biotechnological means of control, if used alone, would not defeat the Colorado potato beetle. This control measure once again appears to be provoking the potato beetle to exhibit its remarkable adaptability. Nonetheless, the potential for adaptation to these techniques has increased our knowledge of this pest and thus opened possibilities for devising more sustainable CPB management programs.
Collapse
Affiliation(s)
- Aleksandar Cingel
- Plant Physiology Department, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Jelena Savić
- Plant Physiology Department, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Jelica Lazarević
- Insect Physiology and Biochemistry Department, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tatjana Ćosić
- Plant Physiology Department, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Martin Raspor
- Plant Physiology Department, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Ann Smigocki
- Molecular Plant Pathology Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | - Slavica Ninković
- Plant Physiology Department, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| |
Collapse
|