1
|
Robic K, Munier E, Effantin G, Lachat J, Naquin D, Gueguen E, Faure D. Dissimilar gene repertoires of Dickeya solani involved in the colonization of lesions and roots of Solanum tuberosum. FRONTIERS IN PLANT SCIENCE 2023; 14:1154110. [PMID: 37223796 PMCID: PMC10202176 DOI: 10.3389/fpls.2023.1154110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023]
Abstract
Dickeya and Pectobacterium species are necrotrophic pathogens that macerate stems (blackleg disease) and tubers (soft rot disease) of Solanum tuberosum. They proliferate by exploiting plant cell remains. They also colonize roots, even if no symptoms are observed. The genes involved in pre-symptomatic root colonization are poorly understood. Here, transposon-sequencing (Tn-seq) analysis of Dickeya solani living in macerated tissues revealed 126 genes important for competitive colonization of tuber lesions and 207 for stem lesions, including 96 genes common to both conditions. Common genes included acr genes involved in the detoxification of plant defense phytoalexins and kduD, kduI, eda (=kdgA), gudD, garK, garL, and garR genes involved in the assimilation of pectin and galactarate. In root colonization, Tn-seq highlighted 83 genes, all different from those in stem and tuber lesion conditions. They encode the exploitation of organic and mineral nutrients (dpp, ddp, dctA, and pst) including glucuronate (kdgK and yeiQ) and synthesis of metabolites: cellulose (celY and bcs), aryl polyene (ape), and oocydin (ooc). We constructed in-frame deletion mutants of bcsA, ddpA, apeH, and pstA genes. All mutants were virulent in stem infection assays, but they were impaired in the competitive colonization of roots. In addition, the ΔpstA mutant was impaired in its capacity to colonize progeny tubers. Overall, this work distinguished two metabolic networks supporting either an oligotrophic lifestyle on roots or a copiotrophic lifestyle in lesions. This work revealed novel traits and pathways important for understanding how the D. solani pathogen efficiently survives on roots, persists in the environment, and colonizes progeny tubers.
Collapse
Affiliation(s)
- Kévin Robic
- French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Euphrasie Munier
- French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
| | - Géraldine Effantin
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA Lyon, UMR5240 MAP, Lyon, France
| | - Joy Lachat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Erwan Gueguen
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA Lyon, UMR5240 MAP, Lyon, France
| | - Denis Faure
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
2
|
Diao J, Gu W, Jiang Z, Wang J, Zou H, Zong C, Ma L. Comprehensive Analysis of Universal Stress Protein Family Genes and Their Expression in Fusarium oxysporum Response of Populus davidiana × P. alba var. pyramidalis Louche Based on the Transcriptome. Int J Mol Sci 2023; 24:ijms24065405. [PMID: 36982480 PMCID: PMC10049587 DOI: 10.3390/ijms24065405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Universal stress proteins (USPs) are typical stress-inducible proteins that function directly in a variety of biotic or abiotic stresses and effectively protect plants from complex, adverse environments. However, the expression patterns of USP genes under pathogen stress and their molecular mechanisms in stress resistance have not been reported in detail. In this study, 46 USP genes were identified from Populus trichocarpa (PtrUSPs), and their biological characteristics were comprehensively analyzed based on phylogeny, physicochemical properties of proteins, and gene structures. The promoter regions of PtrUSPs contain a variety of cis-acting elements related to hormone and stress response. The results of a collinearity analysis showed that PtsrUSPs were highly conserved with homologous genes from four other representative species (Arabidopsis thaliana, Eucalyptus grandis, Glycine max, and Solanum lycopersicum). Furthermore, RNA-Seq analysis showed that the expression of 46 USPs from P. davidiana × P. alba var. pyramidalis Louche (PdpapUSPs) was significantly induced by Fusarium oxysporum. The co-expression network and gene ontology analysis of PtrUSPs showed that they participated in the response to stress and response to stimulus through precise coordination. The results of this paper systematically revealed the biological characteristics of PtrUSPs and the characteristics of their response to F. oxysporum stress, which will lay a theoretical foundation for improving genetic traits and the breeding of poplar disease-resistant varieties in subsequent studies.
Collapse
Affiliation(s)
- Jian Diao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Wei Gu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhehui Jiang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jiaqi Wang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Hongfei Zou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Cheng Zong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Correspondence: (C.Z.); (L.M.)
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin 150040, China
- Correspondence: (C.Z.); (L.M.)
| |
Collapse
|
3
|
Cigna J, Robic K, Dewaegeneire P, Hélias V, Beury A, Faure D. Efficacy of Soft-Rot Disease Biocontrol Agents in the Inhibition of Production Field Pathogen Isolates. Microorganisms 2023; 11:microorganisms11020372. [PMID: 36838337 PMCID: PMC9961933 DOI: 10.3390/microorganisms11020372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The Dickeya and Pectobacterium bacterial species cause blackleg and soft-rot diseases on potato plants and tubers. Prophylactic actions are essential to conserve a high quality of seed potato tubers. Biocontrol approaches are emerging, but we need to know how efficient biocontrol agents are when facing the natural diversity of pathogens. In this work, we sampled 16 production fields, which were excluded from the seed tuber certification scheme, as well as seven experimental parcels, which were planted with seed tubers from those production fields. We collected and characterized 669 Dickeya and Pectobacterium isolates, all characterized using nucleotide sequence of the gapA gene. This deep sampling effort highlighted eleven Dickeya and Pectobacterium species, including four dominant species namely D. solani, D. dianthicola, P. atrosepticum and P. parmentieri. Variations in the relative abundance of pathogens revealed different diversity patterns at a field or parcel level. The Dickeya-enriched patterns were maintained in parcels planted with rejected seed tubers, suggesting a vertical transmission of the pathogen consortium. Then, we retained 41 isolates representing the observed species diversity of pathogens and we tested each of them against six biocontrol agents. From this work, we confirmed the importance of prophylactic actions to discard contaminated seed tubers. We also identified a couple of biocontrol agents of the Pseudomonas genus that were efficient against a wide range of pathogen species.
Collapse
Affiliation(s)
- Jérémy Cigna
- French Federation of Seed Potato Growers (FN3PT/inov3PT), 75008 Paris, France
- Correspondence: (J.C.); (D.F.)
| | - Kévin Robic
- French Federation of Seed Potato Growers (FN3PT/inov3PT), 75008 Paris, France
- Institute for Integrative Biology of the Cell (I2BC), Paris-Saclay University, CEA, CNRS, 91190 Gif-sur-Yvette, France
| | | | - Valérie Hélias
- French Federation of Seed Potato Growers (FN3PT/inov3PT), 75008 Paris, France
| | - Amélie Beury
- French Federation of Seed Potato Growers (FN3PT/inov3PT), 75008 Paris, France
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), Paris-Saclay University, CEA, CNRS, 91190 Gif-sur-Yvette, France
- Correspondence: (J.C.); (D.F.)
| |
Collapse
|
4
|
Carbon catabolite repression in pectin digestion by the phytopathogen Dickeya dadantii. J Biol Chem 2021; 298:101446. [PMID: 34826421 PMCID: PMC8688573 DOI: 10.1016/j.jbc.2021.101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
The catabolism of pectin from plant cell walls plays a crucial role in the virulence of the phytopathogen Dickeya dadantii. In particular, the timely expression of pel genes encoding major pectate lyases is essential to circumvent the plant defense systems and induce massive pectinolytic activity during the maceration phase. Previous studies identified the role of a positive feedback loop specific to the pectin-degradation pathway, whereas the precise signals controlling the dynamics of pectate lyase expression were unclear. Here, we show that the latter is controlled by a metabolic switch involving both glucose and pectin. We measured the HPLC concentration profiles of the key metabolites related to these two sources of carbon, cAMP and 2-keto-3-deoxygluconate, and developed a dynamic and quantitative model of the process integrating the associated regulators, cAMP receptor protein and KdgR. The model describes the regulatory events occurring at the promoters of two major pel genes, pelE and pelD. It highlights that their activity is controlled by a mechanism of carbon catabolite repression, which directly controls the virulence of D. dadantii. The model also shows that quantitative differences in the binding properties of common regulators at these two promoters resulted in a qualitatively different role of pelD and pelE in the metabolic switch, and also likely in conditions of infection, justifying their evolutionary conservation as separate genes in this species.
Collapse
|
5
|
Blin P, Robic K, Khayi S, Cigna J, Munier E, Dewaegeneire P, Laurent A, Jaszczyszyn Y, Hong KW, Chan KG, Beury A, Reverchon S, Giraud T, Hélias V, Faure D. Pattern and causes of the establishment of the invasive bacterial potato pathogen Dickeya solani and of the maintenance of the resident pathogen D. dianthicola. Mol Ecol 2020; 30:608-624. [PMID: 33226678 DOI: 10.1111/mec.15751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022]
Abstract
Invasive pathogens can be a threat when they affect human health, food production or ecosystem services, by displacing resident species, and we need to understand the cause of their establishment. We studied the patterns and causes of the establishment of the pathogen Dickeya solani that recently invaded potato agrosystems in Europe by assessing its invasion dynamics and its competitive ability against the closely related resident D. dianthicola species. Epidemiological records over one decade in France revealed the establishment of D. solani and the maintenance of the resident D. dianthicola in potato fields exhibiting blackleg symptoms. Using experimentations, we showed that D. dianthicola caused a higher symptom incidence on aerial parts of potato plants than D. solani, while D. solani was more aggressive on tubers (i.e. with more severe symptoms). In co-infection assays, D. dianthicola outcompeted D. solani in aerial parts, while the two species co-existed in tubers. A comparison of 76 D. solani genomes (56 of which have been sequenced here) revealed balanced frequencies of two previously uncharacterized alleles, VfmBPro and VfmBSer , at the vfmB virulence gene. Experimental inoculations showed that the VfmBSer population was more aggressive on tubers, while the VfmBPro population outcompeted the VfmBSer population in stem lesions, suggesting an important role of the vfmB virulence gene in the ecology of the pathogens. This study thus brings novel insights allowing a better understanding of the pattern and causes of the D.solani invasion into potato production agrosystems, and the reasons why the endemic D. dianthicola nevertheless persisted.
Collapse
Affiliation(s)
- Pauline Blin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Kévin Robic
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France.,French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
| | - Slimane Khayi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France.,Biotechnology Research Unit, National Institute for Agronomic Research (INRA), Rabat, Morocco
| | - Jérémy Cigna
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France.,French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
| | - Euphrasie Munier
- French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
| | | | - Angélique Laurent
- French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Kar-Wai Hong
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China.,Division of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Amélie Beury
- French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
| | - Sylvie Reverchon
- Microbiologie Adaptation et Pathogénie (MAP), UMR5240, CNRS, INSA-Lyon, Univ. Lyon, Université Claude Bernard, Lyon 1, Villeurbanne, France
| | - Tatiana Giraud
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Valérie Hélias
- French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Duprey A, Groisman EA. DNA supercoiling differences in bacteria result from disparate DNA gyrase activation by polyamines. PLoS Genet 2020; 16:e1009085. [PMID: 33125364 PMCID: PMC7598504 DOI: 10.1371/journal.pgen.1009085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/27/2020] [Indexed: 11/19/2022] Open
Abstract
DNA supercoiling is essential for all living cells because it controls all processes involving DNA. In bacteria, global DNA supercoiling results from the opposing activities of topoisomerase I, which relaxes DNA, and DNA gyrase, which compacts DNA. These enzymes are widely conserved, sharing >91% amino acid identity between the closely related species Escherichia coli and Salmonella enterica serovar Typhimurium. Why, then, do E. coli and Salmonella exhibit different DNA supercoiling when experiencing the same conditions? We now report that this surprising difference reflects disparate activation of their DNA gyrases by the polyamine spermidine and its precursor putrescine. In vitro, Salmonella DNA gyrase activity was sensitive to changes in putrescine concentration within the physiological range, whereas activity of the E. coli enzyme was not. In vivo, putrescine activated the Salmonella DNA gyrase and spermidine the E. coli enzyme. High extracellular Mg2+ decreased DNA supercoiling exclusively in Salmonella by reducing the putrescine concentration. Our results establish the basis for the differences in global DNA supercoiling between E. coli and Salmonella, define a signal transduction pathway regulating DNA supercoiling, and identify potential targets for antibacterial agents.
Collapse
Affiliation(s)
- Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States of America
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States of America
- Yale Microbial Sciences Institute, West Haven, CT, United States of America
| |
Collapse
|
7
|
Martis B S, Forquet R, Reverchon S, Nasser W, Meyer S. DNA Supercoiling: an Ancestral Regulator of Gene Expression in Pathogenic Bacteria? Comput Struct Biotechnol J 2019; 17:1047-1055. [PMID: 31452857 PMCID: PMC6700405 DOI: 10.1016/j.csbj.2019.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022] Open
Abstract
DNA supercoiling acts as a global and ancestral regulator of bacterial gene expression. In this review, we advocate that it plays a pivotal role in host-pathogen interactions by transducing environmental signals to the bacterial chromosome and coordinating its transcriptional response. We present available evidence that DNA supercoiling is modulated by environmental stress conditions relevant to the infection process according to ancestral mechanisms, in zoopathogens as well as phytopathogens. We review the results of transcriptomics studies obtained in widely distant bacterial species, showing that such structural transitions of the chromosome are associated to a complex transcriptional response affecting a large fraction of the genome. Mechanisms and computational models of the transcriptional regulation by DNA supercoiling are then discussed, involving both basal interactions of RNA Polymerase with promoter DNA, and more specific interactions with regulatory proteins. A final part is specifically focused on the regulation of virulence genes within pathogenicity islands of several pathogenic bacterial species.
Collapse
Affiliation(s)
- Shiny Martis B
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Raphaël Forquet
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Sylvie Reverchon
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - William Nasser
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Sam Meyer
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| |
Collapse
|
8
|
Duprey A, Taib N, Leonard S, Garin T, Flandrois JP, Nasser W, Brochier-Armanet C, Reverchon S. The phytopathogenic nature of Dickeya aquatica 174/2 and the dynamic early evolution of Dickeya pathogenicity. Environ Microbiol 2019; 21:2809-2835. [PMID: 30969462 DOI: 10.1111/1462-2920.14627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022]
Abstract
Dickeya is a genus of phytopathogenic enterobacterales causing soft rot in a variety of plants (e.g. potato, chicory, maize). Among the species affiliated to this genus, Dickeya aquatica, described in 2014, remained particularly mysterious because it had no known host. Furthermore, while D. aquatica was proposed to represent a deep-branching species among Dickeya genus, its precise phylogenetic position remained elusive. Here, we report the complete genome sequence of the D. aquatica type strain 174/2. We demonstrate the affinity of D. aquatica strain 174/2 for acidic fruits such as tomato and cucumber and show that exposure of this bacterium to acidic pH induces twitching motility. An in-depth phylogenomic analysis of all available Dickeya proteomes pinpoints D. aquatica as the second deepest branching lineage within this genus and reclassifies two lineages that likely correspond to new genomospecies (gs.): Dickeya gs. poaceaephila (Dickeya sp NCPPB 569) and Dickeya gs. undicola (Dickeya sp 2B12), together with a new putative genus, tentatively named Prodigiosinella. Finally, from comparative analyses of Dickeya proteomes, we infer the complex evolutionary history of this genus, paving the way to study the adaptive patterns and processes of Dickeya to different environmental niches and hosts. In particular, we hypothesize that the lack of xylanases and xylose degradation pathways in D. aquatica could reflect adaptation to aquatic charophyte hosts which, in contrast to land plants, do not contain xyloglucans.
Collapse
Affiliation(s)
- Alexandre Duprey
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Najwa Taib
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Simon Leonard
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Tiffany Garin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Jean-Pierre Flandrois
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - William Nasser
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Céline Brochier-Armanet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Sylvie Reverchon
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| |
Collapse
|
9
|
Raoul des Essarts Y, Pédron J, Blin P, Van Dijk E, Faure D, Van Gijsegem F. Common and distinctive adaptive traits expressed in
Dickeya dianthicola
and
Dickeya solani
pathogens when exploiting potato plant host. Environ Microbiol 2019; 21:1004-1018. [DOI: 10.1111/1462-2920.14519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Yannick Raoul des Essarts
- Institut for Integrative Biology of the Cell (I2BC)CNRS CEA Univ. Paris‐Sud, Université Paris‐Saclay Avenue de la Terrasse, 91198, Gif‐sur‐Yvette Cedex France
- Research & DevelopmentPromotion of Seed Potatoes ‐ French Federation of Seed Potato Growers (RD3PT‐FN3PT) 43‐45 Rue de Naples, 75008, Paris France
| | - Jacques Pédron
- Sorbonne Université, INRA, Institute of Ecology and Environmental sciences‐Paris 4 place Jussieu, F‐75252, Paris France
| | - Pauline Blin
- Institut for Integrative Biology of the Cell (I2BC)CNRS CEA Univ. Paris‐Sud, Université Paris‐Saclay Avenue de la Terrasse, 91198, Gif‐sur‐Yvette Cedex France
| | - Erwin Van Dijk
- Institut for Integrative Biology of the Cell (I2BC)CNRS CEA Univ. Paris‐Sud, Université Paris‐Saclay Avenue de la Terrasse, 91198, Gif‐sur‐Yvette Cedex France
| | - Denis Faure
- Institut for Integrative Biology of the Cell (I2BC)CNRS CEA Univ. Paris‐Sud, Université Paris‐Saclay Avenue de la Terrasse, 91198, Gif‐sur‐Yvette Cedex France
| | - Frédérique Van Gijsegem
- Sorbonne Université, INRA, Institute of Ecology and Environmental sciences‐Paris 4 place Jussieu, F‐75252, Paris France
| |
Collapse
|
10
|
Esx Paralogs Are Functionally Equivalent to ESX-1 Proteins but Are Dispensable for Virulence in Mycobacterium marinum. J Bacteriol 2018; 200:JB.00726-17. [PMID: 29555701 DOI: 10.1128/jb.00726-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/11/2018] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium marinum is a nontuberculous pathogen of poikilothermic fish and an opportunistic human pathogen. Like tuberculous mycobacteria, the M. marinum M strain requires the ESX-1 (ESAT-6 system 1) secretion system for virulence in host cells. EsxB and EsxA, two major virulence factors exported by the ESX-1 system, are encoded by the esxBA genes within the ESX-1 locus. Deletion of the esxBA genes abrogates ESX-1 export and attenuates M. marinum in ex vivo and in vivo models of infection. Interestingly, there are several duplications of the esxB and esxA genes (esxB_1, esxB_2, esxA_1, esxA_2, and esxA_3) in the M. marinum M genome located outside the ESX-1 locus. We sought to understand if this region, known as ESX-6, contributes to ESX-1-mediated virulence. We found that deletion of the esxB_1 gene alone or the entire ESX-6 locus did not impact ESX-1 export or function, supporting the idea that the esxBA genes present at the ESX-1 locus are the primary contributors to ESX-1-mediated virulence. Nevertheless, overexpression of the esxB_1 locus complemented ESX-1 function in the ΔesxBA strain, signifying that the two loci are functionally equivalent. Our findings raise questions about why duplicate versions of the esxBA genes are maintained in the M. marinum M genome and how these proteins, which are functionally equivalent to virulence factors, contribute to mycobacterial biology.IMPORTANCEMycobacterium tuberculosis is the causative agent of the human disease tuberculosis (TB). There are 10.4 million cases and 1.7 million TB-associated deaths annually, making TB a leading cause of death globally. Nontuberculous mycobacteria (NTM) cause chronic human infections that are acquired from the environment. Despite differences in disease etiology, both tuberculous and NTM pathogens use the ESX-1 secretion system to cause disease. The nontubercular mycobacterial species, Mycobacterium marinum, has additional copies of specific ESX-1 genes. Our findings demonstrate that the duplicated genes do not contribute to virulence but can substitute for virulence factors in M. marinum These findings suggest that the duplicated genes may play a specific role in NTM biology.
Collapse
|
11
|
Yuan X, Tian F, He C, Severin GB, Waters CM, Zeng Q, Liu F, Yang C. The diguanylate cyclase GcpA inhibits the production of pectate lyases via the H-NS protein and RsmB regulatory RNA in Dickeya dadantii. MOLECULAR PLANT PATHOLOGY 2018; 19:1873-1886. [PMID: 29390166 PMCID: PMC6070445 DOI: 10.1111/mpp.12665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/01/2018] [Accepted: 01/29/2018] [Indexed: 05/08/2023]
Abstract
Dickeya dadantii 3937 secretes pectate lyases (Pels) to degrade plant cell walls. Previously, we have demonstrated that EGcpB and EcpC function as bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP)-specific phosphodiesterases (PDEs) to positively regulate Pel production. However, the diguanylate cyclase (DGC) responsible for the synthesis of c-di-GMP and the dichotomous regulation of Pel has remained a mystery. Here, we identified GcpA as the dominant DGC to negatively regulate Pel production by the specific repression of pelD gene expression. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays revealed that the expression levels of histone-like, nucleoid-structuring protein encoding gene hns and post-transcriptional regulator encoding genes rsmA and rsmB were significantly affected by GcpA. Deletion of hns or rsmB in the gcpAD418A site-directed mutant restored its Pel production and pelD expression, demonstrating that H-NS and RsmB contribute to the GcpA-dependent regulation of Pel in D. dadantii. In addition, RsmB expression was subject to positive regulation by H-NS. Thus, we propose a novel pathway consisting of GcpA-H-NS-RsmB-RsmA-pelD that controls Pel production in D. dadantii. Furthermore, we showed that H-NS and RsmB are responsible for the GcpA-dependent regulation of motility and type III secretion system (T3SS) gene expression, respectively. Of the two PDEs involved in the regulation of Pels, only EGcpB regulates pelD expression through the same pathway as GcpA.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Institute of Plant Protection, Jiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Food Quality and Safety‐State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjing 210014China
- Department of Biological SciencesUniversity of WisconsinMilwaukeeWI 53211USA
| | - Fang Tian
- Department of Biological SciencesUniversity of WisconsinMilwaukeeWI 53211USA
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing 100193China
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing 100193China
| | - Geoffrey B. Severin
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI 48824USA
| | - Christopher M. Waters
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMI 48824USA
| | - Quan Zeng
- Department of Plant Pathology and EcologyThe Connecticut Agricultural Experiment StationNew HavenCT 06511USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Food Quality and Safety‐State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjing 210014China
| | - Ching‐Hong Yang
- Department of Biological SciencesUniversity of WisconsinMilwaukeeWI 53211USA
| |
Collapse
|
12
|
Leonard S, Hommais F, Nasser W, Reverchon S. Plant-phytopathogen interactions: bacterial responses to environmental and plant stimuli. Environ Microbiol 2017; 19:1689-1716. [DOI: 10.1111/1462-2920.13611] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Simon Leonard
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Florence Hommais
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - William Nasser
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Sylvie Reverchon
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| |
Collapse
|