1
|
Marques S, Slanska M, Chmelova K, Chaloupkova R, Marek M, Clark S, Damborsky J, Kool ET, Bednar D, Prokop Z. Mechanism-Based Strategy for Optimizing HaloTag Protein Labeling. JACS AU 2022; 2:1324-1337. [PMID: 35783171 PMCID: PMC9241015 DOI: 10.1021/jacsau.2c00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
HaloTag labeling technology has introduced unrivaled potential in protein chemistry and molecular and cellular biology. A wide variety of ligands have been developed to meet the specific needs of diverse applications, but only a single protein tag, DhaAHT, is routinely used for their incorporation. Following a systematic kinetic and computational analysis of different reporters, a tetramethylrhodamine- and three 4-stilbazolium-based fluorescent ligands, we showed that the mechanism of incorporating different ligands depends both on the binding step and the efficiency of the chemical reaction. By studying the different haloalkane dehalogenases DhaA, LinB, and DmmA, we found that the architecture of the access tunnels is critical for the kinetics of both steps and the ligand specificity. We showed that highly efficient labeling with specific ligands is achievable with natural dehalogenases. We propose a simple protocol for selecting the optimal protein tag for a specific ligand from the wide pool of available enzymes with diverse access tunnel architectures. The application of this protocol eliminates the need for expensive and laborious protein engineering.
Collapse
Affiliation(s)
- Sérgio
M. Marques
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Michaela Slanska
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Klaudia Chmelova
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- Enantis
Ltd., Biotechnology Incubator INBIT, 625 00 Brno, Czech Republic
| | - Martin Marek
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Spencer Clark
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Eric T. Kool
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - David Bednar
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| |
Collapse
|
2
|
Abstract
HaloTag is a modified haloalkane dehalogenase used for many applications in chemical biology including protein purification, cell-based imaging, and cytosolic penetration assays. While working with purified, recombinant HaloTag protein, we discovered that HaloTag forms an internal disulfide bond under oxidizing conditions. In this work, we describe this internal disulfide formation and the conditions under which it occurs, and we identify the relevant cysteine residues. Further, we develop a mutant version of HaloTag, HaloTag8, that maintains activity while avoiding internal disulfide formation altogether. While there is no evidence that HaloTag is prone to disulfide formation in intracellular environments, researchers using recombinant HaloTag, HaloTag expressed on the cell surface, or HaloTag in the extracellular space might consider using HaloTag8 to avoid intramolecular disulfide formation.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
3
|
Planas-Iglesias J, Marques SM, Pinto GP, Musil M, Stourac J, Damborsky J, Bednar D. Computational design of enzymes for biotechnological applications. Biotechnol Adv 2021; 47:107696. [PMID: 33513434 DOI: 10.1016/j.biotechadv.2021.107696] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Enzymes are the natural catalysts that execute biochemical reactions upholding life. Their natural effectiveness has been fine-tuned as a result of millions of years of natural evolution. Such catalytic effectiveness has prompted the use of biocatalysts from multiple sources on different applications, including the industrial production of goods (food and beverages, detergents, textile, and pharmaceutics), environmental protection, and biomedical applications. Natural enzymes often need to be improved by protein engineering to optimize their function in non-native environments. Recent technological advances have greatly facilitated this process by providing the experimental approaches of directed evolution or by enabling computer-assisted applications. Directed evolution mimics the natural selection process in a highly accelerated fashion at the expense of arduous laboratory work and economic resources. Theoretical methods provide predictions and represent an attractive complement to such experiments by waiving their inherent costs. Computational techniques can be used to engineer enzymatic reactivity, substrate specificity and ligand binding, access pathways and ligand transport, and global properties like protein stability, solubility, and flexibility. Theoretical approaches can also identify hotspots on the protein sequence for mutagenesis and predict suitable alternatives for selected positions with expected outcomes. This review covers the latest advances in computational methods for enzyme engineering and presents many successful case studies.
Collapse
Affiliation(s)
- Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Gaspar P Pinto
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Milos Musil
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic; IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 61266 Brno, Czech Republic
| | - Jan Stourac
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic.
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
| |
Collapse
|
4
|
Wang L, Hiblot J, Popp C, Xue L, Johnsson K. Environmentally Sensitive Color-Shifting Fluorophores for Bioimaging. Angew Chem Int Ed Engl 2020; 59:21880-21884. [PMID: 32762146 PMCID: PMC7756609 DOI: 10.1002/anie.202008357] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 02/04/2023]
Abstract
We introduce color-shifting fluorophores that reversibly switch between a green and red fluorescent form through intramolecular spirocyclization. The equilibrium of the spirocyclization is environmentally sensitive and can be directly measured by determining the ratio of red to green fluorescence, thereby enabling the generation of ratiometric fluorescent probes and biosensors. Specifically, we developed a ratiometric biosensor for imaging calcium ions (Ca2+ ) in living cells, ratiometric probes for different proteins, and a bioassay for the quantification of nicotinamide adenine dinucleotide phosphate.
Collapse
Affiliation(s)
- Lu Wang
- Department of Chemical BiologyMax Planck Institute for Medical ResearchJahnstrasse 2969120HeidelbergGermany
| | - Julien Hiblot
- Department of Chemical BiologyMax Planck Institute for Medical ResearchJahnstrasse 2969120HeidelbergGermany
- Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Christoph Popp
- Department of Chemical BiologyMax Planck Institute for Medical ResearchJahnstrasse 2969120HeidelbergGermany
| | - Lin Xue
- Department of Chemical BiologyMax Planck Institute for Medical ResearchJahnstrasse 2969120HeidelbergGermany
| | - Kai Johnsson
- Department of Chemical BiologyMax Planck Institute for Medical ResearchJahnstrasse 2969120HeidelbergGermany
- Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|
5
|
Wang L, Hiblot J, Popp C, Xue L, Johnsson K. Environmentally Sensitive Color‐Shifting Fluorophores for Bioimaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lu Wang
- Department of Chemical Biology Max Planck Institute for Medical Research Jahnstrasse 29 69120 Heidelberg Germany
| | - Julien Hiblot
- Department of Chemical Biology Max Planck Institute for Medical Research Jahnstrasse 29 69120 Heidelberg Germany
- Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Christoph Popp
- Department of Chemical Biology Max Planck Institute for Medical Research Jahnstrasse 29 69120 Heidelberg Germany
| | - Lin Xue
- Department of Chemical Biology Max Planck Institute for Medical Research Jahnstrasse 29 69120 Heidelberg Germany
| | - Kai Johnsson
- Department of Chemical Biology Max Planck Institute for Medical Research Jahnstrasse 29 69120 Heidelberg Germany
- Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
6
|
Stourac J, Vavra O, Kokkonen P, Filipovic J, Pinto G, Brezovsky J, Damborsky J, Bednar D. Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res 2020; 47:W414-W422. [PMID: 31114897 PMCID: PMC6602463 DOI: 10.1093/nar/gkz378] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/24/2019] [Accepted: 05/05/2019] [Indexed: 12/29/2022] Open
Abstract
Caver Web 1.0 is a web server for comprehensive analysis of protein tunnels and channels, and study of the ligands’ transport through these transport pathways. Caver Web is the first interactive tool allowing both the analyses within a single graphical user interface. The server is built on top of the abundantly used tunnel detection tool Caver 3.02 and CaverDock 1.0 enabling the study of the ligand transport. The program is easy-to-use as the only required inputs are a protein structure for a tunnel identification and a list of ligands for the transport analysis. The automated guidance procedures assist the users to set up the calculation in a way to obtain biologically relevant results. The identified tunnels, their properties, energy profiles and trajectories for ligands’ passages can be calculated and visualized. The tool is very fast (2–20 min per job) and is applicable even for virtual screening purposes. Its simple setup and comprehensive graphical user interface make the tool accessible for a broad scientific community. The server is freely available at https://loschmidt.chemi.muni.cz/caverweb.
Collapse
Affiliation(s)
- Jan Stourac
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Ondrej Vavra
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Piia Kokkonen
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiri Filipovic
- Institute of Computer Science, Masaryk University, Brno, Czech Republic
| | - Gaspar Pinto
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
7
|
Sheldon RA, Brady D, Bode ML. The Hitchhiker's guide to biocatalysis: recent advances in the use of enzymes in organic synthesis. Chem Sci 2020; 11:2587-2605. [PMID: 32206264 PMCID: PMC7069372 DOI: 10.1039/c9sc05746c] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enzymes are excellent catalysts that are increasingly being used in industry and academia. This perspective is primarily aimed at synthetic organic chemists with limited experience using enzymes and provides a general and practical guide to enzymes and their synthetic potential, with particular focus on recent applications.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
- Department of Biotechnology , Delft University of Technology , Delft , The Netherlands
| | - Dean Brady
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
| | - Moira L Bode
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
| |
Collapse
|
8
|
Beier A, Damborsky J, Prokop Z. Transhalogenation Catalysed by Haloalkane Dehalogenases Engineered to Stop Natural Pathway at Intermediate. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andy Beier
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk University Kamenice 5 A 625 00 Brno Czech Republic
- International Clinical Research CenterSt. Anne's University Hospital Pekarska 53 656 91 Brno Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk University Kamenice 5 A 625 00 Brno Czech Republic
- International Clinical Research CenterSt. Anne's University Hospital Pekarska 53 656 91 Brno Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk University Kamenice 5 A 625 00 Brno Czech Republic
- International Clinical Research CenterSt. Anne's University Hospital Pekarska 53 656 91 Brno Czech Republic
| |
Collapse
|
9
|
Kaushik S, Marques SM, Khirsariya P, Paruch K, Libichova L, Brezovsky J, Prokop Z, Chaloupkova R, Damborsky J. Impact of the access tunnel engineering on catalysis is strictly ligand‐specific. FEBS J 2018; 285:1456-1476. [DOI: 10.1111/febs.14418] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Shubhangi Kaushik
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
| | - Sérgio M. Marques
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Prashant Khirsariya
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
- Department of Chemistry CZ‐OPENSCREEN Faculty of Science Masaryk University Brno Czech Republic
| | - Kamil Paruch
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
- Department of Chemistry CZ‐OPENSCREEN Faculty of Science Masaryk University Brno Czech Republic
| | - Lenka Libichova
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| |
Collapse
|