1
|
Ochala J, Feng M, Wang Q, Chaami C, Nollet E, Lewis CTA, Hessel AL, Michels M, Bedi KC, Margulies KB, Pinto JR, Campbell KS, Kuster DWD, van der Velden J. Heterogeneous Dysregulation of Myosin Super-Relaxation and Energetics in Hypertrophic Cardiomyopathy. Circ Heart Fail 2025:e012614. [PMID: 40391807 DOI: 10.1161/circheartfailure.124.012614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 05/02/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Hypertrophic cardiomyopathy is often linked to likely pathogenic and pathogenic variants in genes encoding myofilament proteins. The exact molecular mechanisms by which these lead to cardiac dysfunction and metabolic remodeling remain incompletely understood. Hence, here, we sought to determine whether likely pathogenic and pathogenic variants in thick (MYL2) and thin (TNNI3 or TNNT2) filament genes modulate the myosin super-relaxed state, a critical molecular regulator of heart energetics. METHODS We isolated cardiac strips from the septum of 13 patients with hypertrophic cardiomyopathy with MYL2, TNNI3, or TNNT2 gene variants and 10 nonfailing donors. We performed 2'-(or-3')-O-(N-methylanthraniloyl) ATP chase experiments and X-ray diffraction as well as all-atomistic molecular dynamics simulations. RESULTS We observed that, despite preserved myofilament lattice, likely pathogenic and pathogenic variants in thick and thin filament proteins have opposite effects on cardiac myosin autoinhibition and the subsequent proportion of myosin molecules in the ATP-preserving super-relaxed state. As expected, MYL2-associated thick filament variants depressed myosin super-relaxation. However, with TNNI3- or TNNT2-related thin filament variants, myosin heads adopt an energy-saving biochemical hibernating state. Ultimately, these thin filament defects blunted the in vitro response to the hypertrophic cardiomyopathy-targeted inhibitor, mavacamten. CONCLUSIONS Our findings indicate that, in hypertrophic cardiomyopathy, cardiac myosin super-relaxed state, associated ATP consumption, and in vitro mavacamten responsiveness depend on the type of myofilament variants. Our data warrant careful analyses of variant-specific responses to myosin inhibitors in the clinic.
Collapse
Affiliation(s)
- Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Denmark (J.O., C.C., E.N., C.T.A.L.)
- Myocardial Homeostasis and Cardiac Injury Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.O.)
| | - Miao Feng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui (M.F., Q.W.)
| | - Qian Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui (M.F., Q.W.)
| | - Chahida Chaami
- Department of Biomedical Sciences, University of Copenhagen, Denmark (J.O., C.C., E.N., C.T.A.L.)
| | - Edgar Nollet
- Department of Biomedical Sciences, University of Copenhagen, Denmark (J.O., C.C., E.N., C.T.A.L.)
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
- Department of Experimental Cardiology, Amsterdam UMC, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
| | - Christopher T A Lewis
- Department of Biomedical Sciences, University of Copenhagen, Denmark (J.O., C.C., E.N., C.T.A.L.)
| | - Anthony L Hessel
- Institute of Physiology II, University of Muenster, Germany (A.L.H.)
- Accelerated Muscle Biotechnologies Consultants, Boston, MA (A.L.H.)
| | - Michelle Michels
- Erasmus Medical Center, Cardiovascular Institute, Thoraxcenter, Rotterdam, the Netherlands (M.M.)
| | - Kenneth C Bedi
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.C.B., K.B.M.)
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.C.B., K.B.M.)
| | - Jose R Pinto
- Department of Biomedical Sciences, College of Medicine, The Florida State University, Tallahassee (J.R.P.)
| | - Kenneth S Campbell
- Division of Cardiovascular Medicine, University of Kentucky College of Medicine, Lexington (K.S.C.)
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
- Department of Experimental Cardiology, Amsterdam UMC, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
- Department of Experimental Cardiology, Amsterdam UMC, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
| |
Collapse
|
2
|
Zhang J, Wang L, Kazmierczak K, Yun H, Szczesna-Cordary D, Kawai M. Hypertrophic cardiomyopathy associated E22K mutation in myosin regulatory light chain decreases calcium-activated tension and stiffness and reduces myofilament Ca 2+ sensitivity. FEBS J 2021; 288:4596-4613. [PMID: 33548158 DOI: 10.1111/febs.15753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/11/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
We investigated the mechanisms associated with E22K mutation in myosin regulatory light chain (RLC), found to cause hypertrophic cardiomyopathy (HCM) in humans and mice. Specifically, we characterized the mechanical profiles of papillary muscle fibers from transgenic mice expressing human ventricular RLC wild-type (Tg-WT) or E22K mutation (Tg-E22K). Because the two mouse models expressed different amounts of transgene, the B6SJL mouse line (NTg) was used as an additional control. Mechanical experiments were carried out on Ca2+ - and ATP-activated fibers and in rigor. Sinusoidal analysis was performed to elucidate the effect of E22K on tension and stiffness during activation/rigor, tension-pCa, and myosin cross-bridge (CB) kinetics. We found significant reductions in active tension (by 54%) and stiffness (active by 40% and rigor by 54%). A decrease in the Ca2+ sensitivity of tension (by ∆pCa ~ 0.1) was observed in Tg-E22K compared with Tg-WT fibers. The apparent (=measured) rate constant of exponential process B (2πb: force generation step) was not affected by E22K, but the apparent rate constant of exponential process C (2πc: CB detachment step) was faster in Tg-E22K compared with Tg-WT fibers. Both 2πb and 2πc were smaller in NTg than in Tg-WT fibers, suggesting a kinetic difference between the human and mouse RLC. Our results of E22K-induced reduction in myofilament stiffness and tension suggest that the main effect of this mutation was to disturb the interaction of RLC with the myosin heavy chain and impose structural abnormalities in the lever arm of myosin CB. When placed in vivo, the E22K mutation is expected to result in reduced contractility and decreased cardiac output whereby leading to HCM. SUB-DISCIPLINE Bioenergetics. DATABASE The data that support the findings of this study are available from the corresponding authors upon reasonable request. ANIMAL PROTOCOL BK20150353 (Soochow University). RESEARCH GOVERNANCE School of Nursing: Hua-Gang Hu: seuboyh@163.com; Soochow University: Chen Ge chge@suda.edu.cn.
Collapse
Affiliation(s)
- Jiajia Zhang
- School of Nursing, Medical College, Soochow University, Suzhou, China
| | - Li Wang
- School of Nursing, Medical College, Soochow University, Suzhou, China
| | | | - Hang Yun
- School of Nursing, Medical College, Soochow University, Suzhou, China
| | | | - Masataka Kawai
- Department of Anatomy and Cell Biology, University of Iowa, IA, USA
| |
Collapse
|
3
|
Awinda PO, Watanabe M, Bishaw Y, Huckabee AM, Agonias KB, Kazmierczak K, Szczesna-Cordary D, Tanner BCW. Mavacamten decreases maximal force and Ca 2+ sensitivity in the N47K-myosin regulatory light chain mouse model of hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2021; 320:H881-H890. [PMID: 33337957 PMCID: PMC8082789 DOI: 10.1152/ajpheart.00345.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 01/12/2023]
Abstract
Morbidity and mortality associated with heart disease is a growing threat to the global population, and novel therapies are needed. Mavacamten (formerly called MYK-461) is a small molecule that binds to cardiac myosin and inhibits myosin ATPase. Mavacamten is currently in clinical trials for the treatment of obstructive hypertrophic cardiomyopathy (HCM), and it may provide benefits for treating other forms of heart disease. We investigated the effect of mavacamten on cardiac muscle contraction in two transgenic mouse lines expressing the human isoform of cardiac myosin regulatory light chain (RLC) in their hearts. Control mice expressed wild-type RLC (WT-RLC), and HCM mice expressed the N47K RLC mutation. In the absence of mavacamten, skinned papillary muscle strips from WT-RLC mice produced greater isometric force than strips from N47K mice. Adding 0.3 µM mavacamten decreased maximal isometric force and reduced Ca2+ sensitivity of contraction for both genotypes, but this reduction in pCa50 was nearly twice as large for WT-RLC versus N47K. We also used stochastic length-perturbation analysis to characterize cross-bridge kinetics. The cross-bridge detachment rate was measured as a function of [MgATP] to determine the effect of mavacamten on myosin nucleotide handling rates. Mavacamten increased the MgADP release and MgATP binding rates for both genotypes, thereby contributing to faster cross-bridge detachment, which could speed up myocardial relaxation during diastole. Our data suggest that mavacamten reduces isometric tension and Ca2+ sensitivity of contraction via decreased strong cross-bridge binding. Mavacamten may become a useful therapy for patients with heart disease, including some forms of HCM.NEW & NOTEWORTHY Mavacamten is a pharmaceutical that binds to myosin, and it is under investigation as a therapy for some forms of heart disease. We show that mavacamten reduces isometric tension and Ca2+ sensitivity of contraction in skinned myocardial strips from a mouse model of hypertrophic cardiomyopathy that expresses the N47K mutation in cardiac myosin regulatory light chain. Mavacamten reduces contractility by decreasing strong cross-bridge binding, partially due to faster cross-bridge nucleotide handling rates that speed up myosin detachment.
Collapse
Affiliation(s)
- Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Marissa Watanabe
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Yemeserach Bishaw
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Anna M Huckabee
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Keinan B Agonias
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
4
|
Yadav S, Sitbon YH, Kazmierczak K, Szczesna-Cordary D. Hereditary heart disease: pathophysiology, clinical presentation, and animal models of HCM, RCM, and DCM associated with mutations in cardiac myosin light chains. Pflugers Arch 2019; 471:683-699. [PMID: 30706179 DOI: 10.1007/s00424-019-02257-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/26/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
Abstract
Genetic cardiomyopathies, a group of cardiovascular disorders based on ventricular morphology and function, are among the leading causes of morbidity and mortality worldwide. Such genetically driven forms of hypertrophic (HCM), dilated (DCM), and restrictive (RCM) cardiomyopathies are chronic, debilitating diseases that result from biomechanical defects in cardiac muscle contraction and frequently progress to heart failure (HF). Locus and allelic heterogeneity, as well as clinical variability combined with genetic and phenotypic overlap between different cardiomyopathies, have challenged proper clinical prognosis and provided an incentive for identification of pathogenic variants. This review attempts to provide an overview of inherited cardiomyopathies with a focus on their genetic etiology in myosin regulatory (RLC) and essential (ELC) light chains, which are EF-hand protein family members with important structural and regulatory roles. From the clinical discovery of cardiomyopathy-linked light chain mutations in patients to an array of exploratory studies in animals, and reconstituted and recombinant systems, we have summarized the current state of knowledge on light chain mutations and how they induce physiological disease states via biochemical and biomechanical alterations at the molecular, tissue, and organ levels. Cardiac myosin RLC phosphorylation and the N-terminus ELC have been discussed as two important emerging modalities with important implications in the regulation of myosin motor function, and thus cardiac performance. A comprehensive understanding of such triggers is absolutely necessary for the development of target-specific rescue strategies to ameliorate or reverse the effects of myosin light chain-related inherited cardiomyopathies.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Dilated/etiology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Hypertrophic/etiology
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Restrictive/etiology
- Cardiomyopathy, Restrictive/genetics
- Cardiomyopathy, Restrictive/pathology
- Disease Models, Animal
- Humans
- Mutation
- Myosin Light Chains/genetics
Collapse
Affiliation(s)
- Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA.
| |
Collapse
|