1
|
Stagno J, Deme J, Dwivedi V, Lee YT, Lee HK, Yu P, Chen SY, Fan L, Degenhardt MS, Chari R, Young H, Lea S, Wang YX. Structural investigation of an RNA device that regulates PD-1 expression in mammalian cells. Nucleic Acids Res 2025; 53:gkaf156. [PMID: 40071935 PMCID: PMC11897892 DOI: 10.1093/nar/gkaf156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Synthetic RNA devices are engineered to control gene expression and offer great potential in both biotechnology and clinical applications. Here, we present multidisciplinary structural and biochemical data for a tetracycline (Tc)-responsive RNA device (D43) in both ligand-free and bound states, providing a structure-dynamical basis for signal transmission. Activation of self-cleavage is achieved via ligand-induced conformational and dynamical changes that stabilize the elongated bridging helix harboring the communication module, which drives proper coordination of the catalytic residues. We then show the utility of CRISPR-integrated D43 in EL4 lymphocytes to regulate programmed cell death protein 1 (PD-1), a key receptor of immune checkpoints. Treatment of these cells with Tc showed a dose-dependent reduction in PD-1 by immunostaining and a decrease in messenger RNA levels by quantitative PCR as compared with wild type. PD-1 expression was recoverable upon removal of Tc. These results provide mechanistic insight into RNA devices with potential for cancer immunotherapy or other applications.
Collapse
Affiliation(s)
- Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Justin C Deme
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Vibha Dwivedi
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Hyun Kyung Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Szu-Yun Chen
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility of the National Cancer Institute, Frederick, MD, 21702, United States
| | - Maximilia F S Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Howard A Young
- Cellular and Molecular Immunology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Susan M Lea
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| |
Collapse
|
2
|
Haack DB, Rudolfs B, Jin S, Khitun A, Weeks KM, Toor N. Scaffold-enabled high-resolution cryo-EM structure determination of RNA. Nat Commun 2025; 16:880. [PMID: 39837824 PMCID: PMC11751092 DOI: 10.1038/s41467-024-55699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Cryo-EM structure determination of protein-free RNAs has remained difficult with most attempts yielding low to moderate resolution and lacking nucleotide-level detail. These difficulties are compounded for small RNAs as cryo-EM is inherently more difficult for lower molecular weight macromolecules. Here we present a strategy for fusing small RNAs to a group II intron that yields high resolution structures of the appended RNA. We demonstrate this technology by determining the structures of the 86-nucleotide (nt) thiamine pyrophosphate (TPP) riboswitch aptamer domain and the recently described 210-nt raiA bacterial non-coding RNA involved in sporulation and biofilm formation. In the case of the TPP riboswitch aptamer domain, the scaffolding approach allowed visualization of the riboswitch ligand binding pocket at 2.5 Å resolution. We also determined the structure of the ligand-free apo state and observe that the aptamer domain of the riboswitch adopts an open Y-shaped conformation in the absence of ligand. Using this scaffold approach, we determined the structure of raiA at 2.5 Å in the core. Our versatile scaffolding strategy enables efficient RNA structure determination for a broad range of small to moderate-sized RNAs, which were previously intractable for high-resolution cryo-EM studies.
Collapse
Affiliation(s)
- Daniel B Haack
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Boris Rudolfs
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Shouhong Jin
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Alexandra Khitun
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Navtej Toor
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA.
| |
Collapse
|
3
|
Stagno JR, Wang YX. Riboswitch Mechanisms for Regulation of P1 Helix Stability. Int J Mol Sci 2024; 25:10682. [PMID: 39409011 PMCID: PMC11477058 DOI: 10.3390/ijms251910682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/20/2024] Open
Abstract
Riboswitches are highly structured RNA regulators of gene expression. Although found in all three domains of life, they are particularly abundant and widespread in bacteria, including many human pathogens, thus making them an attractive target for antimicrobial development. Moreover, the functional versatility of riboswitches to recognize a myriad of ligands, including ions, amino acids, and diverse small-molecule metabolites, has enabled the generation of synthetic aptamers that have been used as molecular probes, sensors, and regulatory RNA devices. Generally speaking, a riboswitch consists of a ligand-sensing aptamer domain and an expression platform, whose genetic control is achieved through the formation of mutually exclusive secondary structures in a ligand-dependent manner. For most riboswitches, this involves formation of the aptamer's P1 helix and the regulation of its stability, whose competing structure turns gene expression ON/OFF at the level of transcription or translation. Structural knowledge of the conformational changes involving the P1 regulatory helix, therefore, is essential in understanding the structural basis for ligand-induced conformational switching. This review provides a summary of riboswitch cases for which ligand-free and ligand-bound structures have been determined. Comparative analyses of these structures illustrate the uniqueness of these riboswitches, not only in ligand sensing but also in the various structural mechanisms used to achieve the same end of regulating switch helix stability. In all cases, the ligand stabilizes the P1 helix primarily through coaxial stacking interactions that promote helical continuity.
Collapse
Affiliation(s)
- Jason R. Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA;
| | | |
Collapse
|
4
|
Haack DB, Rudolfs B, Jin S, Weeks KM, Toor N. Scaffold-enabled high-resolution cryo-EM structure determination of RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598011. [PMID: 38915706 PMCID: PMC11195047 DOI: 10.1101/2024.06.10.598011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cryo-EM structure determination of protein-free RNAs has remained difficult with most attempts yielding low to moderate resolution and lacking nucleotide-level detail. These difficulties are compounded for small RNAs as cryo-EM is inherently more difficult for lower molecular weight macromolecules. Here we present a strategy for fusing small RNAs to a group II intron that yields high resolution structures of the appended RNA, which we demonstrate with the 86-nucleotide thiamine pyrophosphate (TPP) riboswitch, and visualizing the riboswitch ligand binding pocket at 2.5 Å resolution. We also determined the structure of the ligand-free apo state and observe that the aptamer domain of the riboswitch undergoes a large-scale conformational change upon ligand binding, illustrating how small molecule binding to an RNA can induce large effects on gene expression. This study both sets a new standard for cryo-EM riboswitch visualization and offers a versatile strategy applicable to a broad range of small to moderate-sized RNAs, which were previously intractable for high-resolution cryo-EM studies.
Collapse
Affiliation(s)
- Daniel B. Haack
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| | - Boris Rudolfs
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| | - Shouhong Jin
- Department of Chemistry, University of North Carolina, Chapel Hill, NC
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC
| | - Navtej Toor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| |
Collapse
|
5
|
Grieco A, Boneta S, Gavira JA, Pey AL, Basu S, Orlans J, de Sanctis D, Medina M, Martin‐Garcia JM. Structural dynamics and functional cooperativity of human NQO1 by ambient temperature serial crystallography and simulations. Protein Sci 2024; 33:e4957. [PMID: 38501509 PMCID: PMC10949395 DOI: 10.1002/pro.4957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
The human NQO1 (hNQO1) is a flavin adenine nucleotide (FAD)-dependent oxidoreductase that catalyzes the two-electron reduction of quinones to hydroquinones, being essential for the antioxidant defense system, stabilization of tumor suppressors, and activation of quinone-based chemotherapeutics. Moreover, it is overexpressed in several tumors, which makes it an attractive cancer drug target. To decipher new structural insights into the flavin reductive half-reaction of the catalytic mechanism of hNQO1, we have carried serial crystallography experiments at new ID29 beamline of the ESRF to determine, to the best of our knowledge, the first structure of the hNQO1 in complex with NADH. We have also performed molecular dynamics simulations of free hNQO1 and in complex with NADH. This is the first structural evidence that the hNQO1 functional cooperativity is driven by structural communication between the active sites through long-range propagation of cooperative effects across the hNQO1 structure. Both structural results and MD simulations have supported that the binding of NADH significantly decreases protein dynamics and stabilizes hNQO1 especially at the dimer core and interface. Altogether, these results pave the way for future time-resolved studies, both at x-ray free-electron lasers and synchrotrons, of the dynamics of hNQO1 upon binding to NADH as well as during the FAD cofactor reductive half-reaction. This knowledge will allow us to reveal unprecedented structural information of the relevance of the dynamics during the catalytic function of hNQO1.
Collapse
Grants
- P18-RT-2413 Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
- RTI2018-096246-B-I00 ERDF/Spanish Ministry of Science, Innovation and Universities-State Research Agency
- E35-23R Gobierno de Aragón
- B-BIO-84-UGR20 ERDF/Counseling of Economic Transformation, Industry, Knowledge and Universities
- CNS2022-135713 The European Union NextGenerationEU/PRTR
- 2019-T1/BMD-15552 Comunidad de Madrid
- MCIN/AEI/PID2022-136369NB-I00 MCIN/AEI/10.13039/501100011033/ERDF
- Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
- ERDF/Spanish Ministry of Science, Innovation and Universities‐State Research Agency
- Gobierno de Aragón
- ERDF/Counseling of Economic Transformation, Industry, Knowledge and Universities
- Comunidad de Madrid
- MCIN/AEI/10.13039/501100011033/ERDF
Collapse
Affiliation(s)
- Alice Grieco
- Department of Crystallography and Structural BiologyInstitute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC)MadridSpain
| | - Sergio Boneta
- Departamento de Bioquímica y Biología Molecular y Celular e Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)Universidad de ZaragozaZaragozaSpain
| | - José A. Gavira
- Laboratory of Crystallographic StudiesIACT (CSIC‐UGR)ArmillaSpain
| | - Angel L. Pey
- Departamento de Química FísicaUnidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de GranadaGranadaSpain
| | - Shibom Basu
- European Molecular Biology LaboratoryGrenobleFrance
| | | | | | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular e Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)Universidad de ZaragozaZaragozaSpain
| | - Jose Manuel Martin‐Garcia
- Department of Crystallography and Structural BiologyInstitute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC)MadridSpain
| |
Collapse
|
6
|
Henning RW, Kosheleva I, Šrajer V, Kim IS, Zoellner E, Ranganathan R. BioCARS: Synchrotron facility for probing structural dynamics of biological macromolecules. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:014301. [PMID: 38304444 PMCID: PMC10834067 DOI: 10.1063/4.0000238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
A major goal in biomedical science is to move beyond static images of proteins and other biological macromolecules to the internal dynamics underlying their function. This level of study is necessary to understand how these molecules work and to engineer new functions and modulators of function. Stemming from a visionary commitment to this problem by Keith Moffat decades ago, a community of structural biologists has now enabled a set of x-ray scattering technologies for observing intramolecular dynamics in biological macromolecules at atomic resolution and over the broad range of timescales over which motions are functionally relevant. Many of these techniques are provided by BioCARS, a cutting-edge synchrotron radiation facility built under Moffat leadership and located at the Advanced Photon Source at Argonne National Laboratory. BioCARS enables experimental studies of molecular dynamics with time resolutions spanning from 100 ps to seconds and provides both time-resolved x-ray crystallography and small- and wide-angle x-ray scattering. Structural changes can be initiated by several methods-UV/Vis pumping with tunable picosecond and nanosecond laser pulses, substrate diffusion, and global perturbations, such as electric field and temperature jumps. Studies of dynamics typically involve subtle perturbations to molecular structures, requiring specialized computational techniques for data processing and interpretation. In this review, we present the challenges in experimental macromolecular dynamics and describe the current state of experimental capabilities at this facility. As Moffat imagined years ago, BioCARS is now positioned to catalyze the scientific community to make fundamental advances in understanding proteins and other complex biological macromolecules.
Collapse
Affiliation(s)
- Robert W. Henning
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Irina Kosheleva
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Vukica Šrajer
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - In-Sik Kim
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Eric Zoellner
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Rama Ranganathan
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
7
|
Lee HK, Lee YT, Fan L, Wilt HM, Conrad CE, Yu P, Zhang J, Shi G, Ji X, Wang YX, Stagno JR. Crystal structure of Escherichia coli thiamine pyrophosphate-sensing riboswitch in the apo state. Structure 2023; 31:848-859.e3. [PMID: 37253356 PMCID: PMC10335363 DOI: 10.1016/j.str.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023]
Abstract
The thiamine pyrophosphate (TPP)-sensing riboswitch is one of the earliest discovered and most widespread riboswitches. Numerous structural studies have been reported for this riboswitch bound with various ligands. However, the ligand-free (apo) structure remains unknown. Here, we report a 3.1 Å resolution crystal structure of Escherichia coli TPP riboswitch in the apo state, which exhibits an extended, Y-shaped conformation further supported by small-angle X-ray scattering data and driven molecular dynamics simulations. The loss of ligand interactions results in helical uncoiling of P5 and disruption of the key tertiary interaction between the sensory domains. Opening of the aptamer propagates to the gene-regulatory P1 helix and generates the key conformational flexibility needed for the switching behavior. Much of the ligand-binding site at the three-way junction is unaltered, thereby maintaining a partially preformed pocket. Together, these results paint a dynamic picture of the ligand-induced conformational changes in TPP riboswitches that confer conditional gene regulation.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-Ray Scattering Core Facility of National Cancer Institute, Frederick, MD 21702, USA
| | - Haley M Wilt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Chelsie E Conrad
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Genbin Shi
- Biomolecular Structure Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Xinhua Ji
- Biomolecular Structure Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
8
|
Stagno JR, Knoska J, Chapman HN, Wang YX. Mix-and-Inject Serial Femtosecond Crystallography to Capture RNA Riboswitch Intermediates. Methods Mol Biol 2023; 2568:243-249. [PMID: 36227573 DOI: 10.1007/978-1-0716-2687-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Time-resolved structure determination of macromolecular conformations and ligand-bound intermediates is extremely challenging, particularly for RNA. With rapid technological advances in both microfluidic liquid injection and X-ray free electron lasers (XFEL), a new frontier has emerged in time-resolved crystallography whereby crystals can be mixed with ligand and then probed with X-rays (mix-and-inject) in real time and at room temperature. This chapter outlines the basic setup and procedures for mix-and-inject experiments for recording time-resolved crystallographic data of riboswitch RNA reaction states using serial femtosecond crystallography (SFX) and an XFEL.
Collapse
Affiliation(s)
- Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Juraj Knoska
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Henry N Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
- Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
9
|
Lee HK, Conrad CE, Magidson V, Heinz WF, Pauly G, Yu P, Ramakrishnan S, Stagno JR, Wang YX. Developing methods to study conformational changes in RNA crystals using a photocaged ligand. Front Mol Biosci 2022; 9:964595. [PMID: 36052167 PMCID: PMC9424638 DOI: 10.3389/fmolb.2022.964595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Crystallographic observation of structural changes in real time requires that those changes be uniform both spatially and temporally. A primary challenge with time-resolved ligand-mixing diffraction experiments is asynchrony caused by variable factors, such as efficiency of mixing, rate of diffusion, crystal size, and subsequently, conformational heterogeneity. One method of minimizing such variability is use of a photolabile caged ligand, which can fully saturate the crystal environment (spatially), and whose photoactivation can rapidly (temporally) trigger the reaction in a controlled manner. Our recently published results on a ligand-mixing experiment using time-resolved X-ray crystallography (TRX) with an X-ray free electron laser (XFEL) demonstrated that large conformational changes upon ligand binding resulted in a solid-to-solid phase transition (SSPT), while maintaining Bragg diffraction. Here we investigate this SSPT by polarized video microscopy (PVM) after light-triggered release of a photo-caged adenine (pcADE). In general, the mean transition times and transition widths of the SSPT were less dependent on crystal size than what was observed in previous PVM studies with direct ADE mixing. Instead, the photo-induced transition appears to be heavily influenced by the equilibrium between caged and uncaged ADE due to relatively low sample exposure and uncaging efficiency. Nevertheless, we successfully demonstrate a method for the characterization of phase transitions in RNA crystals that are inducible with a photocaged ligand. The transition data for three crystals of different sizes were then applied to kinetic analysis by fitting to the known four-state model associated with ligand-induced conformational changes, revealing an apparent concentration of uncaged ADE in crystal of 0.43–0.46 mM. These results provide further insight into approaches to study time-resolved ligand-induced conformational changes in crystals, and in particular, highlight the feasibility of triggering phase transitions using a light-inducible system. Developing such approaches may be paramount for the rapidly emerging field of time-resolved crystallography.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Chelsie E. Conrad
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - William F. Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Gary Pauly
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Saminathan Ramakrishnan
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Jason R. Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
- *Correspondence: Jason R. Stagno, ; Yun-Xing Wang,
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
- *Correspondence: Jason R. Stagno, ; Yun-Xing Wang,
| |
Collapse
|
10
|
Daems E, Moro G, Campos R, De Wael K. Mapping the gaps in chemical analysis for the characterisation of aptamer-target interactions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Butryn A, Simon PS, Aller P, Hinchliffe P, Massad RN, Leen G, Tooke CL, Bogacz I, Kim IS, Bhowmick A, Brewster AS, Devenish NE, Brem J, Kamps JJAG, Lang PA, Rabe P, Axford D, Beale JH, Davy B, Ebrahim A, Orlans J, Storm SLS, Zhou T, Owada S, Tanaka R, Tono K, Evans G, Owen RL, Houle FA, Sauter NK, Schofield CJ, Spencer J, Yachandra VK, Yano J, Kern JF, Orville AM. An on-demand, drop-on-drop method for studying enzyme catalysis by serial crystallography. Nat Commun 2021; 12:4461. [PMID: 34294694 PMCID: PMC8298390 DOI: 10.1038/s41467-021-24757-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/01/2021] [Indexed: 11/08/2022] Open
Abstract
Serial femtosecond crystallography has opened up many new opportunities in structural biology. In recent years, several approaches employing light-inducible systems have emerged to enable time-resolved experiments that reveal protein dynamics at high atomic and temporal resolutions. However, very few enzymes are light-dependent, whereas macromolecules requiring ligand diffusion into an active site are ubiquitous. In this work we present a drop-on-drop sample delivery system that enables the study of enzyme-catalyzed reactions in microcrystal slurries. The system delivers ligand solutions in bursts of multiple picoliter-sized drops on top of a larger crystal-containing drop inducing turbulent mixing and transports the mixture to the X-ray interaction region with temporal resolution. We demonstrate mixing using fluorescent dyes, numerical simulations and time-resolved serial femtosecond crystallography, which show rapid ligand diffusion through microdroplets. The drop-on-drop method has the potential to be widely applicable to serial crystallography studies, particularly of enzyme reactions with small molecule substrates.
Collapse
Affiliation(s)
- Agata Butryn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| | - Philipp S Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, UK
| | - Ramzi N Massad
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gabriel Leen
- PolyPico Technologies Ltd, Unit 10, Airways Technology Park, Rathmacullig West, Cork, Ireland
- Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland
| | - Catherine L Tooke
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, UK
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - In-Sik Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Jürgen Brem
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Jos J A G Kamps
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Pauline A Lang
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Patrick Rabe
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - John H Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Bradley Davy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- School of Computing, University of Leeds, Leeds, UK
| | - Ali Ebrahim
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Julien Orlans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions, Institut National des Sciences Appliquées de Lyon, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, University of Lyon, Villeurbanne, France
| | - Selina L S Storm
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Hamburg, Germany
| | - Tiankun Zhou
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| | - Shigeki Owada
- RIKEN SPring-8 Center, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, Hyogo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Robin L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Frances A Houle
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, UK
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Allen M Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK.
| |
Collapse
|
12
|
Li M. Optimization of N-hydroxysuccinimide ester coupling with aminoallyl-modified RNA for fluorescent labeling. Bioengineered 2021; 11:599-606. [PMID: 32449472 PMCID: PMC8291868 DOI: 10.1080/21655979.2020.1765487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Site-specific fluorescent labeling of RNA is crucial for obtaining the structural and dynamic information of RNAs by fluorescence techniques. Post-synthetic modification of RNA based on N-hydroxysuccinimide (NHS) coupling reaction is an economic, efficient and simple strategy to introduce fluorophore to samples. However, this strategy are not that frequently used in RNA molecules, and the reported reaction conditions and yields varied among different systems. This study results mainly focused on screening the reaction conditions (reactants concentrations, dimethylsulfoxide concentration, solution conditions, pH and reaction time) between NHS-linked fluorophore and aminoallyl-RNA (aa-RNA) to optimize the yield of fluorescent RNA up to 55%, doubled the initial yield. What's more, as low as one tenth of fluorescent reagent was used in our protocol compared with the reported protocols, greatly reducing the experimental cost. The protocol can be applied as a general guide potentially for RNA labeling by NHS-ester coupling reaction.
Collapse
Affiliation(s)
- Mengyang Li
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University , Shanghai, P. R. China
| |
Collapse
|
13
|
Ramakrishnan S, Stagno JR, Conrad CE, Ding J, Yu P, Bhandari YR, Lee YT, Pauly G, Yefanov O, Wiedorn MO, Knoska J, Oberthür D, White TA, Barty A, Mariani V, Li C, Brehm W, Heinz WF, Magidson V, Lockett S, Hunter MS, Boutet S, Zatsepin NA, Zuo X, Grant TD, Pandey S, Schmidt M, Spence JCH, Chapman HN, Wang YX. Synchronous RNA conformational changes trigger ordered phase transitions in crystals. Nat Commun 2021; 12:1762. [PMID: 33741910 PMCID: PMC7979858 DOI: 10.1038/s41467-021-21838-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/02/2020] [Indexed: 11/20/2022] Open
Abstract
Time-resolved studies of biomacromolecular crystals have been limited to systems involving only minute conformational changes within the same lattice. Ligand-induced changes greater than several angstroms, however, are likely to result in solid-solid phase transitions, which require a detailed understanding of the mechanistic interplay between conformational and lattice transitions. Here we report the synchronous behavior of the adenine riboswitch aptamer RNA in crystal during ligand-triggered isothermal phase transitions. Direct visualization using polarized video microscopy and atomic force microscopy shows that the RNA molecules undergo cooperative rearrangements that maintain lattice order, whose cell parameters change distinctly as a function of time. The bulk lattice order throughout the transition is further supported by time-resolved diffraction data from crystals using an X-ray free electron laser. The synchronous molecular rearrangements in crystal provide the physical basis for studying large conformational changes using time-resolved crystallography and micro/nanocrystals. Time-resolved crystallography (TRX) is used for monitoring only small conformational changes of biomacromolecules within the same lattice. Here, the authors report the interplay between synchronous molecular rearrangements and lattice phase transitions in RNA crystals, providing the basis for the investigation of large conformational changes using TRX.
Collapse
Affiliation(s)
| | - Jason R Stagno
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Chelsie E Conrad
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jienyu Ding
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Ping Yu
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Yuba R Bhandari
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Yun-Tzai Lee
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Gary Pauly
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Max O Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Juraj Knoska
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.,Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Thomas A White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Chufeng Li
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.,Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Wolfgang Brehm
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stephen Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Nadia A Zatsepin
- Department of Physics, Arizona State University, Tempe, AZ, USA.,Department of Chemistry and Physics, ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Victoria, Australia
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Thomas D Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, NY, USA
| | - Suraj Pandey
- Kenwood Interdisciplinary Research Complex Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Marius Schmidt
- Kenwood Interdisciplinary Research Complex Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - John C H Spence
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Henry N Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.,Department of Physics, Universität Hamburg, Hamburg, Germany.,Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany
| | - Yun-Xing Wang
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
14
|
Wu L, Liu Z, Liu Y. Thermal adaptation of structural dynamics and regulatory function of adenine riboswitch. RNA Biol 2021; 18:2007-2015. [PMID: 33573442 DOI: 10.1080/15476286.2021.1886755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Ligand binding and temperature play important roles in riboswitch RNAs' structures and functions. However, most studies focused on studying structural dynamics or gene-regulation function of riboswitches from the aspect of ligand, instead of temperature. Here we combined NMR, ITC, stopped-flow and in vivo assays to investigate the ligand-triggered switch of adenine riboswitch from 10 to 45°C. Our results demonstrated that at single-nucleotide resolution, structural regions sensed ligand and temperature diversely. Temperature had opposite effects on ligand-binding and gene-regulation of adenine riboswitch. Compared with higher temperature, the RNA bound with its cognate ligand obviously stronger, while its regulatory capacity was weakened at lower temperature. In addition, application of specific-labelled RNAs to the stopped-flow experiments identified the real-time folding of the specific positions upon ligand addition at different temperatures. The kissing loop and internal loop at the riboswitch responded to ligand and temperature differently. The distinct thermo-dynamics of adenine riboswitch exposed here may contribute to the fields of RNA sensors and drug design.
Collapse
Affiliation(s)
- Lin Wu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Liu
- National Facility for Protein Science (Shanghai), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Wilt HM, Yu P, Tan K, Wang YX, Stagno JR. Tying the knot in the tetrahydrofolate (THF) riboswitch: A molecular basis for gene regulation. J Struct Biol 2021; 213:107703. [PMID: 33571639 DOI: 10.1016/j.jsb.2021.107703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
Abstract
Effective gene regulation by the tetrahydrofolate riboswitch depends not only on ligand affinity but also on the kinetics of ligand association, which involves two cooperative binding sites. We have determined a 1.9-Å resolution crystal structure of the ligand-free THF riboswitch aptamer. The pseudoknot binding site 'unwinds' in the absence of ligand, whereby the adjacent helical domains (P1, P2, and P3) become disjointed, resulting in rotation and misalignment of the gene-regulatory P1 helix with respect to P3. In contrast, the second binding site at the three-way junction, which is the first to fold, is structurally conserved between apo and holo forms. This suggests a kinetic role for this site, in which binding of the first ligand molecule to the stably folded three-way junction promotes formation of the regulatory pseudoknot site and subsequent binding of the second molecule. As such, these findings provide a molecular basis for both conformational switching and kinetic control.
Collapse
Affiliation(s)
- Haley M Wilt
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ping Yu
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439, USA
| | - Yun-Xing Wang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason R Stagno
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
16
|
Dynamic Structural Biology Experiments at XFEL or Synchrotron Sources. Methods Mol Biol 2021; 2305:203-228. [PMID: 33950392 DOI: 10.1007/978-1-0716-1406-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macromolecular crystallography (MX) leverages the methods of physics and the language of chemistry to reveal fundamental insights into biology. Often beautifully artistic images present MX results to support profound functional hypotheses that are vital to entire life science research community. Over the past several decades, synchrotrons around the world have been the workhorses for X-ray diffraction data collection at many highly automated beamlines. The newest tools include X-ray-free electron lasers (XFELs) located at facilities in the USA, Japan, Korea, Switzerland, and Germany that deliver about nine orders of magnitude higher brightness in discrete femtosecond long pulses. At each of these facilities, new serial femtosecond crystallography (SFX) strategies exploit slurries of micron-size crystals by rapidly delivering individual crystals into the XFEL X-ray interaction region, from which one diffraction pattern is collected per crystal before it is destroyed by the intense X-ray pulse. Relatively simple adaptions to SFX methods produce time-resolved data collection strategies wherein reactions are triggered by visible light illumination or by chemical diffusion/mixing. Thus, XFELs provide new opportunities for high temporal and spatial resolution studies of systems engaged in function at physiological temperature. In this chapter, we summarize various issues related to microcrystal slurry preparation, sample delivery into the X-ray interaction region, and some emerging strategies for time-resolved SFX data collection.
Collapse
|
17
|
Wilt HM, Yu P, Tan K, Wang YX, Stagno JR. FMN riboswitch aptamer symmetry facilitates conformational switching through mutually exclusive coaxial stacking configurations. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100035. [PMID: 33103111 PMCID: PMC7573352 DOI: 10.1016/j.yjsbx.2020.100035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 11/16/2022]
Abstract
Knowledge of both apo and holo states of riboswitches aid in elucidating the various mechanisms of ligand-induced conformational “switching” that underpin their gene-regulating capabilities. Previous structural studies on the flavin mononucleotide (FMN)-binding aptamer of the FMN riboswitch, however, have revealed minimal conformational changes associated with ligand binding that do not adequately explain the basis for the switching behavior. We have determined a 2.7-Å resolution crystal structure of the ligand-free FMN riboswitch aptamer that is distinct from previously reported structures, particularly in the conformation and orientation of the P1 and P4 helices. The nearly symmetrical tertiary structure provides a mechanism by which one of two pairs of adjacent helices (P3/P4 or P1/P6) undergo collinear stacking in a mutually exclusive manner, in the absence or presence of ligand, respectively. Comparison of these structures suggests the stem-loop that includes P4 and L4 is important for maintaining a global conformational state that, in the absence of ligand, disfavors formation of the P1 regulatory helix. Together, these results provide further insight to the structural basis for conformational switching of the FMN riboswitch.
Collapse
Affiliation(s)
- Haley M Wilt
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.,Washington College, Chestertown, Maryland 21620, USA
| | - Ping Yu
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439, USA
| | - Yun-Xing Wang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason R Stagno
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
18
|
High Affinity Binding of N2-Modified Guanine Derivatives Significantly Disrupts the Ligand Binding Pocket of the Guanine Riboswitch. Molecules 2020; 25:molecules25102295. [PMID: 32414072 PMCID: PMC7287874 DOI: 10.3390/molecules25102295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Riboswitches are important model systems for the development of approaches to search for RNA-targeting therapeutics. A principal challenge in finding compounds that target riboswitches is that the effector ligand is typically almost completely encapsulated by the RNA, which severely limits the chemical space that can be explored. Efforts to find compounds that bind the guanine/adenine class of riboswitches with a high affinity have in part focused on purines modified at the C6 and C2 positions. These studies have revealed compounds that have low to sub-micromolar affinity and, in a few cases, have antimicrobial activity. To further understand how these compounds interact with the guanine riboswitch, we have performed an integrated structural and functional analysis of representative guanine derivatives with modifications at the C8, C6 and C2 positions. Our data indicate that while modifications of guanine at the C6 position are generally unfavorable, modifications at the C8 and C2 positions yield compounds that rival guanine with respect to binding affinity. Surprisingly, C2-modified guanines such as N2-acetylguanine completely disrupt a key Watson–Crick pairing interaction between the ligand and RNA. These compounds, which also modulate transcriptional termination as efficiently as guanine, open up a significant new chemical space of guanine modifications in the search for antimicrobial agents that target purine riboswitches.
Collapse
|
19
|
Abstract
The advent of the X-ray free electron laser (XFEL) in the last decade created the discipline of serial crystallography but also the challenge of how crystal samples are delivered to X-ray. Early sample delivery methods demonstrated the proof-of-concept for serial crystallography and XFEL but were beset with challenges of high sample consumption, jet clogging and low data collection efficiency. The potential of XFEL and serial crystallography as the next frontier of structural solution by X-ray for small and weakly diffracting crystals and provision of ultra-fast time-resolved structural data spawned a huge amount of scientific interest and innovation. To utilize the full potential of XFEL and broaden its applicability to a larger variety of biological samples, researchers are challenged to develop better sample delivery methods. Thus, sample delivery is one of the key areas of research and development in the serial crystallography scientific community. Sample delivery currently falls into three main systems: jet-based methods, fixed-target chips, and drop-on-demand. Huge strides have since been made in reducing sample consumption and improving data collection efficiency, thus enabling the use of XFEL for many biological systems to provide high-resolution, radiation damage-free structural data as well as time-resolved dynamics studies. This review summarizes the current main strategies in sample delivery and their respective pros and cons, as well as some future direction.
Collapse
|
20
|
Zhao FZ, Zhang B, Yan EK, Sun B, Wang ZJ, He JH, Yin DC. A guide to sample delivery systems for serial crystallography. FEBS J 2019; 286:4402-4417. [PMID: 31618529 DOI: 10.1111/febs.15099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Abstract
Crystallography has made a notable contribution to our knowledge of structural biology. For traditional crystallography experiments, the growth of crystals with large size and high quality is crucial, and it remains one of the bottlenecks. In recent years, the successful application of serial femtosecond crystallography (SFX) provides a new choice when only numerous microcrystals can be obtained. The intense pulsed radiation of X-ray free-electron lasers (XFELs) enables the data collection of small-sized crystals, making the size of crystals no longer a limiting factor. The ultrafast pulses of XFELs can achieve 'diffraction before destruction', which effectively avoids radiation damage and realizes diffraction near physiological temperatures. More recently, the SFX has been expanded to serial crystallography (SX) that can additionally employ synchrotron radiation as the light source. In addition to the traditional ones, these techniques provide complementary opportunities for structural determination. The development of SX experiments strongly relies on the advancement of hardware including the sample delivery system, the X-ray source, and the X-ray detector. Here, in this review, we categorize the existing sample delivery systems, summarize their progress, and propose their future prospectives.
Collapse
Affiliation(s)
- Feng-Zhu Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Bin Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Er-Kai Yan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Bo Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Jun Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Da-Chuan Yin
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Shenzhen Research Institute, Northwestern Polytechnical University, Shenzhen, China
| |
Collapse
|
21
|
Trachman RJ, Stagno JR, Conrad C, Jones CP, Fischer P, Meents A, Wang YX, Ferré-D’Amaré AR. Co-crystal structure of the iMango-III fluorescent RNA aptamer using an X-ray free-electron laser. Acta Crystallogr F Struct Biol Commun 2019; 75:547-551. [PMID: 31397326 PMCID: PMC6688663 DOI: 10.1107/s2053230x19010136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/15/2019] [Indexed: 11/10/2022] Open
Abstract
Turn-on aptamers are in vitro-selected RNAs that bind to conditionally fluorescent small molecules and enhance their fluorescence. Upon binding TO1-biotin, the iMango-III aptamer achieves the largest fluorescence enhancement reported for turn-on aptamers (over 5000-fold). This aptamer was generated by structure-guided engineering and functional reselection of the parental aptamer Mango-III. Structures of both Mango-III and iMango-III have previously been determined by conventional cryocrystallography using synchrotron X-radiation. Using an X-ray free-electron laser (XFEL), the room-temperature iMango-III-TO1-biotin co-crystal structure has now been determined at 3.0 Å resolution. This structural model, which was refined against a data set of ∼1300 diffraction images (each from a single crystal), is largely consistent with the structures determined from single-crystal data sets collected at 100 K. This constitutes a technical benchmark on the way to XFEL pump-probe experiments on fluorescent RNA-small molecule complexes.
Collapse
Affiliation(s)
- Robert J. Trachman
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Jason R. Stagno
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Chelsie Conrad
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Christopher P. Jones
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Pontus Fischer
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- DESY Photon Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - Alke Meents
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- DESY Photon Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - Yun-Xing Wang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Adrian R. Ferré-D’Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Larsen KP, Choi J, Prabhakar A, Puglisi EV, Puglisi JD. Relating Structure and Dynamics in RNA Biology. Cold Spring Harb Perspect Biol 2019; 11:11/7/a032474. [PMID: 31262948 DOI: 10.1101/cshperspect.a032474] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent advances in structural biology methods have enabled a surge in the number of RNA and RNA-protein assembly structures available at atomic or near-atomic resolution. These complexes are often trapped in discrete conformational states that exist along a mechanistic pathway. Single-molecule fluorescence methods provide temporal resolution to elucidate the dynamic mechanisms of processes involving complex RNA and RNA-protein assemblies, but interpretation of such data often requires previous structural knowledge. Here we highlight how single-molecule tools can directly complement structural approaches for two processes--translation and reverse transcription-to provide a dynamic view of molecular function.
Collapse
Affiliation(s)
- Kevin P Larsen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Biophysics Program, Stanford University, Stanford, California 94305
| | - Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Department of Applied Physics, Stanford University, Stanford, California 94305
| | - Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Biophysics Program, Stanford University, Stanford, California 94305
| | - Elisabetta Viani Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
23
|
Combined smFRET and NMR analysis of riboswitch structural dynamics. Methods 2019; 153:22-34. [DOI: 10.1016/j.ymeth.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
|
24
|
Sieradzan AK, Golon Ł, Liwo A. Prediction of DNA and RNA structure with the NARES-2P force field and conformational space annealing. Phys Chem Chem Phys 2018; 20:19656-19663. [PMID: 30014063 DOI: 10.1039/c8cp03018a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A physics-based method for the prediction of the structures of nucleic acids, which is based on the physics-based 2-bead NARES-2P model of polynucleotides and global-optimization Conformational Space Annealing (CSA) algorithm has been proposed. The target structure is sought as the global-energy-minimum structure, which ignores the entropy component of the free energy but spares expensive multicanonical simulations necessary to find the conformational ensemble with the lowest free energy. The CSA algorithm has been modified to optimize its performance when treating both single and multi-chain nucleic acids. It was shown that the method finds the native fold for simple RNA molecules and DNA duplexes and with limited distance restraints, which can easily be obtained from the secondary-structure-prediction servers, complex RNA folds can be treated with using moderate computer resources.
Collapse
Affiliation(s)
- Adam K Sieradzan
- Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland.
| | | | | |
Collapse
|
25
|
X-ray free electron laser: opportunities for drug discovery. Essays Biochem 2017; 61:529-542. [PMID: 29118098 DOI: 10.1042/ebc20170031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/16/2023]
Abstract
Past decades have shown the impact of structural information derived from complexes of drug candidates with their protein targets to facilitate the discovery of safe and effective medicines. Despite recent developments in single particle cryo-electron microscopy, X-ray crystallography has been the main method to derive structural information. The unique properties of X-ray free electron laser (XFEL) with unmet peak brilliance and beam focus allow X-ray diffraction data recording and successful structure determination from smaller and weaker diffracting crystals shortening timelines in crystal optimization. To further capitalize on the XFEL advantage, innovations in crystal sample delivery for the X-ray experiment, data collection and processing methods are required. This development was a key contributor to serial crystallography allowing structure determination at room temperature yielding physiologically more relevant structures. Adding the time resolution provided by the femtosecond X-ray pulse will enable monitoring and capturing of dynamic processes of ligand binding and associated conformational changes with great impact to the design of candidate drug compounds.
Collapse
|