1
|
Wu RX, Miao BB, Han FY, Niu SF, Liang YS, Liang ZB, Wang QH. Chromosome-Level Genome Assembly Provides Insights into the Evolution of the Special Morphology and Behaviour of Lepturacanthus savala. Genes (Basel) 2023; 14:1268. [PMID: 37372448 DOI: 10.3390/genes14061268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Savalani hairtail Lepturacanthus savala is a widely distributed fish along the Indo-Western Pacific coast, and contributes substantially to trichiurid fishery resources worldwide. In this study, the first chromosome-level genome assembly of L. savala was obtained by PacBio SMRT-Seq, Illumina HiSeq, and Hi-C technologies. The final assembled L. savala genome was 790.02 Mb with contig N50 and scaffold N50 values of 19.01 Mb and 32.77 Mb, respectively. The assembled sequences were anchored to 24 chromosomes by using Hi-C data. Combined with RNA sequencing data, 23,625 protein-coding genes were predicted, of which 96.0% were successfully annotated. In total, 67 gene family expansions and 93 gene family contractions were detected in the L. savala genome. Additionally, 1825 positively selected genes were identified. Based on a comparative genomic analysis, we screened a number of candidate genes associated with the specific morphology, behaviour-related immune system, and DNA repair mechanisms in L. savala. Our results preliminarily revealed mechanisms underlying the special morphological and behavioural characteristics of L. savala from a genomic perspective. Furthermore, this study provides valuable reference data for subsequent molecular ecology studies of L. savala and whole-genome analyses of other trichiurid fishes.
Collapse
Affiliation(s)
- Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ben-Ben Miao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fang-Yuan Han
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Shan Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
2
|
Chemotherapy of HER2- and MDM2-Enriched Breast Cancer Subtypes Induces Homologous Recombination DNA Repair and Chemoresistance. Cancers (Basel) 2021; 13:cancers13184501. [PMID: 34572735 PMCID: PMC8471926 DOI: 10.3390/cancers13184501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary MDM2 is a protein responsible for negative regulation of the p53 tumor suppressor. In addition, MDM2 exhibits chaperone-like properties similar to the HSP90 molecular chaperone. Multiple studies revealed that MDM2 is deeply involved in cancer development and progression. Some recently published results indicate that the role of MDM2 in DNA repair inhibition is more complex than previously thought. We show that MDM2 is directly involved in the homologous recombination DNA repair, and its chaperone-like activity is crucial for this function. The DNA repair inhibition is a result of inefficient MDM2 dissociation from the NBN protein complex. When cancer cells are treated with chemotherapy, MDM2 can be easily released from the interaction and degraded, resulting in effective homologous recombination DNA repair, which translates into the acquisition of a chemoresistant phenotype by the tumor. This knowledge may allow for identification of the patients that are at particular risk of tumor chemoresistance. Abstract Analyzing the TCGA breast cancer database, we discovered that patients with the HER2 cancer subtype and overexpression of MDM2 exhibited decreased post-treatment survival. Inhibition of MDM2 expression in the SKBR3 cell line (HER2 subtype) diminished the survival of cancer cells treated with doxorubicin, etoposide, and camptothecin. Moreover, we demonstrated that inhibition of MDM2 expression diminished DNA repair by homologous recombination (HR) and sensitized SKBR3 cells to a PARP inhibitor, olaparib. In H1299 (TP53−/−) cells treated with neocarzinostatin (NCS), overexpression of MDM2 WT or E3-dead MDM2 C478S variant stimulated the NCS-dependent phosphorylation of ATM, NBN, and BRCA1, proteins involved in HR DNA repair. However, overexpression of chaperone-dead MDM2 K454A variant diminished phosphorylation of these proteins as well as the HR DNA repair. Moreover, we demonstrated that, upon NCS treatment, MDM2 K454A interacted with NBN more efficiently than MDM2 WT and that MDM2 WT was degraded more efficiently than MDM2 K454A. Using a proliferation assay, we showed that overexpression of MDM2 WT, but not MDM2 K454A, led to acquisition of resistance to NCS. The presented results indicate that, following chemotherapy, MDM2 WT was released from MDM2-NBN complex and efficiently degraded, hence allowing extensive HR DNA repair leading to the acquisition of chemoresistance by cancer cells.
Collapse
|
3
|
Wang Y, Chen Q, Wu D, Chen Q, Gong G, He L, Wu X. Lamin-A interacting protein Hsp90 is required for DNA damage repair and chemoresistance of ovarian cancer cells. Cell Death Dis 2021; 12:786. [PMID: 34381017 PMCID: PMC8358027 DOI: 10.1038/s41419-021-04074-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022]
Abstract
Ovarian cancer is the most malignant gynecologic cancer. Previous studies found that lamin-A was associated with DNA damage repair proteins but the underlying mechanism remains unclear. We speculate that this may be related to its interacting proteins, such as Hsp90. The aim of this study is to investigate the effects of Hsp90 on DNA damage repair and chemoresistance of ovarian cancer cells. In our research, co-immunoprecipitation (co-IP) and mass spectrometry (MS) were used to identify proteins interacting with lamin-A and the interaction domain. Next, the relationship between lamin-A and Hsp90 was explored by Western blotting (WB) and immunofluorescence staining. Then, effect of Hsp90 inhibition on DNA damage repair was assessed through detecting Rad50 and Ku80 by WB. Furthermore, to test the roles of 17-AAG on cell chemosensitivity, CCK-8 and colony formation assay were carried out. Meanwhile, IC50 of cells were calculated, followed by immunofluorescence to detect DNA damage. At last, the mouse xenograft model was used in determining the capacity of 17-AAG and DDP to suppress tumor growth and metastatic potential. The results showed that lamin-A could interact with Hsp90 via the domain of lamin-A1-430. Besides, the distribution of Hsp90 could be affected by lamin-A. After lamin-A knockdown, Hsp90 decreased in the cytoplasm and increased in the nucleus, suggesting that the interaction between lamin-A and Hsp90 may be related to the nucleocytoplasmic transport of Hsp90. Moreover, inhibition of Hsp90 led to an obvious decrease in the expression of DSBs (DNA double-strand break) repair proteins, as well as cell proliferation ability upon DDP treatment and IC50 of DDP, causing more serious DNA damage. In addition, the combination of 17-AAG and DDP restrained the growth of ovarian cancer efficiently in vivo and prolonged the survival time of tumor-bearing mice.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P. R. China
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, P. R. China
| | - Quan Chen
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, P. R. China
| | - Di Wu
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, P. R. China
| | - Qifeng Chen
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, P. R. China
| | - Guanghui Gong
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P. R. China
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, P. R. China
| | - Liuqing He
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, P. R. China
| | - Xiaoying Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P. R. China.
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, P. R. China.
| |
Collapse
|