1
|
Dourlen P, Kilinc D, Landrieu I, Chapuis J, Lambert JC. BIN1 and Alzheimer's disease: the tau connection. Trends Neurosci 2025; 48:349-361. [PMID: 40268578 DOI: 10.1016/j.tins.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 04/25/2025]
Abstract
Bridging integrator 1 (BIN1) is a ubiquitously expressed protein that plays a critical role in endocytosis, trafficking and cytoskeletal dynamics. In 2010, BIN1 gene was reported as a major genetic risk factor for Alzheimer's disease (AD), which shifted the focus on its physiological and pathophysiological roles in the brain (at a time when data available were scarce). In this review, we discuss the multiple cerebral roles of BIN1, especially in regulating synaptic function, and the strong link between BIN1 and tau pathology, supported by recent evidence ranging from genetic and clinical/postmortem observations to molecular interactions.
Collapse
Affiliation(s)
- Pierre Dourlen
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Devrim Kilinc
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Isabelle Landrieu
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France; CNRS EMR9002-BSI-Integrative Structural Biology, Lille, France
| | - Julien Chapuis
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Jean-Charles Lambert
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France.
| |
Collapse
|
2
|
Zambo B, Edelweiss E, Morlet B, Negroni L, Pajkos M, Dosztanyi Z, Ostergaard S, Trave G, Laporte J, Gogl G. Uncovering the BIN1-SH3 interactome underpinning centronuclear myopathy. eLife 2024; 13:RP95397. [PMID: 38995680 PMCID: PMC11245310 DOI: 10.7554/elife.95397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.
Collapse
Affiliation(s)
- Boglarka Zambo
- Equipe Labellisee Ligue 2015, Departement de Biologie Structurale Integrative, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France
| | - Evelina Edelweiss
- Institut de Genetique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Bastien Morlet
- Institut de Genetique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Luc Negroni
- Institut de Genetique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Matyas Pajkos
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztanyi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Soren Ostergaard
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Research Park, Maaloev, Denmark
| | - Gilles Trave
- Equipe Labellisee Ligue 2015, Departement de Biologie Structurale Integrative, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Institut de Genetique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Gergo Gogl
- Equipe Labellisee Ligue 2015, Departement de Biologie Structurale Integrative, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France
| |
Collapse
|
3
|
Wang S, Xie S, Zheng Q, Zhang Z, Wang T, Zhang G. Biofluid biomarkers for Alzheimer's disease. Front Aging Neurosci 2024; 16:1380237. [PMID: 38659704 PMCID: PMC11039951 DOI: 10.3389/fnagi.2024.1380237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease, with a complex pathogenesis and an irreversible course. Therefore, the early diagnosis of AD is particularly important for the intervention, prevention, and treatment of the disease. Based on the different pathophysiological mechanisms of AD, the research progress of biofluid biomarkers are classified and reviewed. In the end, the challenges and perspectives of future research are proposed.
Collapse
Affiliation(s)
- Sensen Wang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Sitan Xie
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Qinpin Zheng
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Zhihui Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Guirong Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| |
Collapse
|
4
|
Thomas S, Prendergast GC. Gut-brain connections in neurodegenerative disease: immunotherapeutic targeting of Bin1 in inflammatory bowel disease and Alzheimer's disease. Front Pharmacol 2023; 14:1183932. [PMID: 37521457 PMCID: PMC10372349 DOI: 10.3389/fphar.2023.1183932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/13/2023] [Indexed: 08/01/2023] Open
Abstract
Longer lifespan produces risks of age-associated neurodegenerative disorders such as Alzheimer's disease (AD), which is characterized by declines in memory and cognitive function. The pathogenic causes of AD are thought to reflect a progressive aggregation in the brain of amyloid plaques composed of beta-amyloid (Aß) peptides and neurofibrillary tangles composed of phosphorylated tau protein. Recently, long-standing investigations of the Aß disease hypothesis gained support via a passive immunotherapy targeting soluble Aß protein. Tau-targeting approaches using antibodies are also being pursued as a therapeutic approach to AD. In genome-wide association studies, the disease modifier gene Bin1 has been identified as a top risk factor for late-onset AD in human populations, with recent studies suggesting that Bin1 binds tau and influences its extracellular deposition. Interestingly, before AD emerges in the brain, tau levels rise in the colon, where Bin1-a modifier of tissue barrier function and inflammation-acts to promote inflammatory bowel disease (IBD). This connection is provocative given clinical evidence of gut-brain communication in age-associated neurodegenerative disorders, including AD. In this review, we discuss a Bin1-targeting passive immunotherapy developed in our laboratory to treat IBD that may offer a strategy to indirectly reduce tau deposition and limit AD onset or progression.
Collapse
|
5
|
Latina V, Atlante A, Malerba F, La Regina F, Balzamino BO, Micera A, Pignataro A, Stigliano E, Cavallaro S, Calissano P, Amadoro G. The Cleavage-Specific Tau 12A12mAb Exerts an Anti-Amyloidogenic Action by Modulating the Endocytic and Bioenergetic Pathways in Alzheimer's Disease Mouse Model. Int J Mol Sci 2023; 24:ijms24119683. [PMID: 37298634 DOI: 10.3390/ijms24119683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Beyond deficits in hippocampal-dependent episodic memory, Alzheimer's Disease (AD) features sensory impairment in visual cognition consistent with extensive neuropathology in the retina. 12A12 is a monoclonal cleavage specific antibody (mAb) that in vivo selectively neutralizes the AD-relevant, harmful N-terminal 20-22 kDa tau fragment(s) (i.e., NH2htau) without affecting the full-length normal protein. When systemically injected into the Tg2576 mouse model overexpressing a mutant form of Amyloid Precursor Protein (APP), APPK670/671L linked to early onset familial AD, this conformation-specific tau mAb successfully reduces the NH2htau accumulating both in their brain and retina and, thus, markedly alleviates the phenotype-associated signs. By means of a combined biochemical and metabolic experimental approach, we report that 12A12mAb downregulates the steady state expression levels of APP and Beta-Secretase 1 (BACE-1) and, thus, limits the Amyloid beta (Aβ) production both in the hippocampus and retina from this AD animal model. The local, antibody-mediated anti-amyloidogenic action is paralleled in vivo by coordinated modulation of the endocytic (BIN1, RIN3) and bioenergetic (glycolysis and L-Lactate) pathways. These findings indicate for the first time that similar molecular and metabolic retino-cerebral pathways are modulated in a coordinated fashion in response to 12A12mAb treatment to tackle the neurosensorial Aβ accumulation in AD neurodegeneration.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Francesca Malerba
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Bijorn Omar Balzamino
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo 6, 00184 Rome, Italy
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo 6, 00184 Rome, Italy
| | - Annabella Pignataro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
6
|
Young-Pearse TL, Lee H, Hsieh YC, Chou V, Selkoe DJ. Moving beyond amyloid and tau to capture the biological heterogeneity of Alzheimer's disease. Trends Neurosci 2023; 46:426-444. [PMID: 37019812 PMCID: PMC10192069 DOI: 10.1016/j.tins.2023.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023]
Abstract
Alzheimer's disease (AD) manifests along a spectrum of cognitive deficits and levels of neuropathology. Genetic studies support a heterogeneous disease mechanism, with around 70 associated loci to date, implicating several biological processes that mediate risk for AD. Despite this heterogeneity, most experimental systems for testing new therapeutics are not designed to capture the genetically complex drivers of AD risk. In this review, we first provide an overview of those aspects of AD that are largely stereotyped and those that are heterogeneous, and we review the evidence supporting the concept that different subtypes of AD are important to consider in the design of agents for the prevention and treatment of the disease. We then dive into the multifaceted biological domains implicated to date in AD risk, highlighting studies of the diverse genetic drivers of disease. Finally, we explore recent efforts to identify biological subtypes of AD, with an emphasis on the experimental systems and data sets available to support progress in this area.
Collapse
Affiliation(s)
- Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Hyo Lee
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yi-Chen Hsieh
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vicky Chou
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Lasorsa A, Bera K, Malki I, Dupré E, Cantrelle FX, Merzougui H, Sinnaeve D, Hanoulle X, Hritz J, Landrieu I. Conformation and Affinity Modulations by Multiple Phosphorylation Occurring in the BIN1 SH3 Domain Binding Site of the Tau Protein Proline-Rich Region. Biochemistry 2023. [PMID: 37167199 DOI: 10.1021/acs.biochem.2c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
An increase in phosphorylation of the Tau protein is associated with Alzheimer's disease (AD) progression through unclear molecular mechanisms. In general, phosphorylation modifies the interaction of intrinsically disordered proteins, such as Tau, with other proteins; however, elucidating the structural basis of this regulation mechanism remains challenging. The bridging integrator-1 gene is an AD genetic determinant whose gene product, BIN1, directly interacts with Tau. The proline-rich motif recognized within a Tau(210-240) peptide by the SH3 domain of BIN1 (BIN1 SH3) is defined as 216PTPP219, and this interaction is modulated by phosphorylation. Phosphorylation of T217 within the Tau(210-240) peptide led to a 6-fold reduction in the affinity, while single phosphorylation at either T212, T231, or S235 had no effect on the interaction. Nonetheless, combined phosphorylation of T231 and S235 led to a 3-fold reduction in the affinity, although these phosphorylations are not within the BIN1 SH3-bound region of the Tau peptide. Using nuclear magnetic resonance (NMR) spectroscopy, these phosphorylations were shown to affect the local secondary structure and dynamics of the Tau(210-240) peptide. Models of the (un)phosphorylated peptides were obtained from molecular dynamics (MD) simulation validated by experimental data and showed compaction of the phosphorylated peptide due to increased salt bridge formation. This dynamic folding might indirectly impact the BIN1 SH3 binding by a decreased accessibility of the binding site. Regulation of the binding might thus not only be due to local electrostatic or steric effects from phosphorylation but also to the modification of the conformational properties of Tau.
Collapse
Affiliation(s)
- Alessia Lasorsa
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille F-59000, France
| | - Krishnendu Bera
- CEITEC MU, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Idir Malki
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - Elian Dupré
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille F-59000, France
| | - François-Xavier Cantrelle
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille F-59000, France
| | - Hamida Merzougui
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - Davy Sinnaeve
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille F-59000, France
| | - Xavier Hanoulle
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille F-59000, France
| | - Jozef Hritz
- CEITEC MU, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Isabelle Landrieu
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille F-59000, France
| |
Collapse
|
8
|
Kostes WW, Brafman DA. The Multifaceted Role of WNT Signaling in Alzheimer's Disease Onset and Age-Related Progression. Cells 2023; 12:1204. [PMID: 37190113 PMCID: PMC10136584 DOI: 10.3390/cells12081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The evolutionary conserved WNT signaling pathway orchestrates numerous complex biological processes during development and is critical to the maintenance of tissue integrity and homeostasis in the adult. As it relates to the central nervous system, WNT signaling plays several roles as it relates to neurogenesis, synaptic formation, memory, and learning. Thus, dysfunction of this pathway is associated with multiple diseases and disorders, including several neurodegenerative disorders. Alzheimer's disease (AD) is characterized by several pathologies, synaptic dysfunction, and cognitive decline. In this review, we will discuss the various epidemiological, clinical, and animal studies that demonstrate a precise link between aberrant WNT signaling and AD-associated pathologies. In turn, we will discuss the manner in which WNT signaling influences multiple molecular, biochemical, and cellular pathways upstream of these end-point pathologies. Finally, we will discuss how merging tools and technologies can be used to generate next generation cellular models to dissect the relationship between WNT signaling and AD.
Collapse
Affiliation(s)
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
9
|
The neuronal-specific isoform of BIN1 regulates β-secretase cleavage of APP and Aβ generation in a RIN3-dependent manner. Sci Rep 2022; 12:3486. [PMID: 35241726 PMCID: PMC8894474 DOI: 10.1038/s41598-022-07372-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/17/2022] [Indexed: 11/08/2022] Open
Abstract
Genome-wide association studies have identified BIN1 (Bridging integrator 1) and RIN3 (Ras and Rab interactor 3) as genetic risk factors for late-onset Alzheimer's disease (LOAD). The neuronal isoform of BIN1 (BIN1V1), but not the non-neuronal isoform (BIN1V9), has been shown to regulate tau-pathology and Aβ generation via RAB5-mediated endocytosis in neurons. BIN1 directly interacts with RIN3 to initiate RAB5-mediated endocytosis, which is essential for β-secretase (BACE1)-mediated β-secretase cleavage of β-amyloid precursor protein (APP) to generate Amyloid-β (Aβ), the key component of senile plaques in AD. Understanding the regulatory roles of BIN1 (neuronal BIN1V1) and RIN3 in β-secretase mediated cleavage of APP and Aβ generation is key to developing novel therapeutics to delay or prevent AD progression. Neuronal and non-neuronal isoforms of BIN1 (BIN1V1 and BIN1V9, respectively) were introduced with RIN3 into an in vitro cell-based system to test RIN3-dependent effects of neuronal BIN1V1 and non-neuronal BIN1V9 on β-secretase-mediated cleavage of APP and Aβ generation. Confocal microscopy was performed to examine RIN3-dependent subcellular localization of BIN1V1 and BIN1V9. Western blot analysis was performed to assess the effects of RIN3 and BIN1V1/BIN1V9 on β-secretase mediated processing of APP. We enriched cells expressing BIN1V1 without or with RIN3 via FACS to measure Aβ generation using Aβ ELISA assay, and to evaluate APP internalization by chasing biotinylated or antibody-labeled cell surface APP. Neuronal BIN1V1 containing the CLAP domain and non-neuronal BIN1V9 lacking the CLAP domain are the major isoforms present in the brain. Employing confocal microscopy, we showed that RIN3 differentially regulates the recruitment of both BIN1V1 and BIN1V9 into RAB5-endosomes. We further showed that BIN1V1, but not BIN1V9, downregulates β-secretase (BACE1)-mediated processing of APP in a RIN3-dependent manner. Overexpression of BIN1V1 also attenuated Aβ generation in a RIN3-dependent manner. Using cell-based internalization assays, we show BIN1V1, but not BIN1V9, delays the endocytosis of APP, but not of BACE1, into early endosomes, thereby spatially and temporally separating these two proteins into different cellular compartments, resulting in reduced cleavage of APP by BACE1 and reduced Aβ generation-all in a RIN3-dependent manner. Finally, we show that RIN3 sequesters BIN1V1 in RAB5-positive early endosomes, likely via the CLAP-domain, resulting in attenuated β-secretase processing of APP and Aβ generation by delaying endocytosis of APP. Our findings provide new mechanistic data on how two AD-associated molecules, RIN3 and BIN1 (neuronal BIN1V1), interact to govern Aβ production, implicating these two proteins as potential therapeutic targets for the prevention and treatment of AD.
Collapse
|
10
|
Lambert E, Saha O, Soares Landeira B, Melo de Farias AR, Hermant X, Carrier A, Pelletier A, Gadaut J, Davoine L, Dupont C, Amouyel P, Bonnefond A, Lafont F, Abdelfettah F, Verstreken P, Chapuis J, Barois N, Delahaye F, Dermaut B, Lambert JC, Costa MR, Dourlen P. The Alzheimer susceptibility gene BIN1 induces isoform-dependent neurotoxicity through early endosome defects. Acta Neuropathol Commun 2022; 10:4. [PMID: 34998435 PMCID: PMC8742943 DOI: 10.1186/s40478-021-01285-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023] Open
Abstract
The Bridging Integrator 1 (BIN1) gene is a major susceptibility gene for Alzheimer’s disease (AD). Deciphering its pathophysiological role is challenging due to its numerous isoforms. Here we observed in Drosophila that human BIN1 isoform1 (BIN1iso1) overexpression, contrary to human BIN1 isoform8 (BIN1iso8) and human BIN1 isoform9 (BIN1iso9), induced an accumulation of endosomal vesicles and neurodegeneration. Systematic search for endosome regulators able to prevent BIN1iso1-induced neurodegeneration indicated that a defect at the early endosome level is responsible for the neurodegeneration. In human induced neurons (hiNs) and cerebral organoids, BIN1 knock-out resulted in the narrowing of early endosomes. This phenotype was rescued by BIN1iso1 but not BIN1iso9 expression. Finally, BIN1iso1 overexpression also led to an increase in the size of early endosomes and neurodegeneration in hiNs. Altogether, our data demonstrate that the AD susceptibility gene BIN1, and especially BIN1iso1, contributes to early-endosome size deregulation, which is an early pathophysiological hallmark of AD pathology.
Collapse
|
11
|
Gao P, Ye L, Cheng H, Li H. The Mechanistic Role of Bridging Integrator 1 (BIN1) in Alzheimer's Disease. Cell Mol Neurobiol 2021; 41:1431-1440. [PMID: 32719966 PMCID: PMC11448648 DOI: 10.1007/s10571-020-00926-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/17/2020] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia. The majority of AD cases are late-onset, multifactorial cases. Genome-wide association studies have identified more than 30 loci associated with sporadic AD (SAD), one of which is Bridging integrator 1 (BIN1). For the past few years, there has been a consensus that BIN1 is second only to APOE as the strongest genetic risk factor for SAD. Therefore, many researchers have put great effort into studying the mechanism by which BIN1 might be involved in the pathogenetic process of AD. To date, plenty of evidence has shown that BIN1 may participate in several pathways in AD, including tau and amyloid pathology. In addition, BIN1 has been indicated to take part in other relevant pathways such as inflammation, apoptosis, and calcium homeostasis. In this review, we systemically summarize the research progress on how BIN1 participates in the development of AD, with the expectation of providing promising perspectives for future research.
Collapse
Affiliation(s)
- Peirong Gao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China
| | - Lingqi Ye
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China
| | - Hongrong Cheng
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China
| | - Honglei Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China.
| |
Collapse
|
12
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
13
|
Annadurai N, De Sanctis JB, Hajdúch M, Das V. Tau secretion and propagation: Perspectives for potential preventive interventions in Alzheimer's disease and other tauopathies. Exp Neurol 2021; 343:113756. [PMID: 33989658 DOI: 10.1016/j.expneurol.2021.113756] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is characterised by the accumulation of intracytoplasmic aggregates of tau protein, which are suggested to spread in a prion-like manner between interconnected brain regions. This spreading is mediated by the secretion and uptake of tau from the extracellular space or direct cell-to-cell transmission through cellular protrusions. The prion-like tau then converts the endogenous, normal tau into pathological forms, resulting in neurodegeneration. The endoplasmic reticulum/Golgi-independent tau secretion through unconventional secretory pathways involves delivering misfolded and aggregated tau to the plasma membrane and its release into the extracellular space by non-vesicular and vesicular mechanisms. Although cytoplasmic tau was thought to be released only from degenerating cells, studies now show that cells constitutively secrete tau at low levels under physiological conditions. The mechanisms of secretion of tau under physiological and pathological conditions remain unclear. Therefore, a better understanding of these pathways is essential for developing therapeutic approaches that can target prion-like tau forms to prevent neurodegeneration progression in AD. This review focuses on unconventional secretion pathways involved in the spread of tau pathology in AD and presents these pathways as prospective areas for future AD drug discovery and development.
Collapse
Affiliation(s)
- Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic.
| |
Collapse
|
14
|
Voskobiynyk Y, Roth JR, Cochran JN, Rush T, Carullo NVN, Mesina JS, Waqas M, Vollmer RM, Day JJ, McMahon LL, Roberson ED. Alzheimer's disease risk gene BIN1 induces Tau-dependent network hyperexcitability. eLife 2020; 9:e57354. [PMID: 32657270 PMCID: PMC7392604 DOI: 10.7554/elife.57354] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/12/2020] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies identified the BIN1 locus as a leading modulator of genetic risk in Alzheimer's disease (AD). One limitation in understanding BIN1's contribution to AD is its unknown function in the brain. AD-associated BIN1 variants are generally noncoding and likely change expression. Here, we determined the effects of increasing expression of the major neuronal isoform of human BIN1 in cultured rat hippocampal neurons. Higher BIN1 induced network hyperexcitability on multielectrode arrays, increased frequency of synaptic transmission, and elevated calcium transients, indicating that increasing BIN1 drives greater neuronal activity. In exploring the mechanism of these effects on neuronal physiology, we found that BIN1 interacted with L-type voltage-gated calcium channels (LVGCCs) and that BIN1-LVGCC interactions were modulated by Tau in rat hippocampal neurons and mouse brain. Finally, Tau reduction prevented BIN1-induced network hyperexcitability. These data shed light on BIN1's neuronal function and suggest that it may contribute to Tau-dependent hyperexcitability in AD.
Collapse
Affiliation(s)
- Yuliya Voskobiynyk
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer’s Disease Center, and Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at BirminghamBirminghamUnited States
| | - Jonathan R Roth
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer’s Disease Center, and Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at BirminghamBirminghamUnited States
| | - J Nicholas Cochran
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer’s Disease Center, and Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at BirminghamBirminghamUnited States
| | - Travis Rush
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer’s Disease Center, and Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at BirminghamBirminghamUnited States
| | - Nancy VN Carullo
- Department of Neurobiology, University of Alabama at BirminghamBirminghamUnited States
| | - Jacob S Mesina
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer’s Disease Center, and Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at BirminghamBirminghamUnited States
| | - Mohammad Waqas
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer’s Disease Center, and Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at BirminghamBirminghamUnited States
| | - Rachael M Vollmer
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer’s Disease Center, and Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at BirminghamBirminghamUnited States
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at BirminghamBirminghamUnited States
| | - Lori L McMahon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer’s Disease Center, and Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
15
|
Shen R, Zhao X, He L, Ding Y, Xu W, Lin S, Fang S, Yang W, Sung K, Spencer B, Rissman RA, Lei M, Ding J, Wu C. Upregulation of RIN3 induces endosomal dysfunction in Alzheimer's disease. Transl Neurodegener 2020; 9:26. [PMID: 32552912 PMCID: PMC7301499 DOI: 10.1186/s40035-020-00206-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In Alzheimer's Disease (AD), about one-third of the risk genes identified by GWAS encode proteins that function predominantly in the endocytic pathways. Among them, the Ras and Rab Interactor 3(RIN3) is a guanine nucleotide exchange factor (GEF) for the Rab5 small GTPase family and has been implicated to be a risk factor for both late onset AD (LOAD) and sporadic early onset AD (sEOAD). However, how RIN3 is linked to AD pathogenesis is currently undefined. METHODS Quantitative PCR and immunoblotting were used to measure the RIN3 expression level in mouse brain tissues and cultured basal forebrain cholinergic neuron (BFCNs). Immunostaining was used to define subcellular localization of RIN3 and to visualize endosomal changes in cultured primary BFCNs and PC12 cells. Recombinant flag-tagged RIN3 protein was purified from HEK293T cells and was used to define RIN3-interactomes by mass spectrometry. RIN3-interacting partners were validated by co-immunoprecipitation, immunofluorescence and yeast two hybrid assays. Live imaging of primary neurons was used to examine axonal transport of amyloid precursor protein (APP) and β-secretase 1 (BACE1). Immunoblotting was used to detect protein expression, processing of APP and phosphorylated forms of Tau. RESULTS We have shown that RIN3 mRNA level was significantly increased in the hippocampus and cortex of APP/PS1 mouse brain. Basal forebrain cholinergic neurons (BFCNs) cultured from E18 APP/PS1 mouse embryos also showed increased RIN3 expression accompanied by early endosome enlargement. In addition, via its proline rich domain, RIN3 recruited BIN1(bridging integrator 1) and CD2AP (CD2 associated protein), two other AD risk factors, to early endosomes. Interestingly, overexpression of RIN3 or CD2AP promoted APP cleavage to increase its carboxyl terminal fragments (CTFs) in PC12 cells. Upregulation of RIN3 or the neuronal isoform of BIN1 increased phosphorylated Tau level. Therefore, upregulation of RIN3 expression promoted accumulation of APP CTFs and increased phosphorylated Tau. These effects by RIN3 was rescued by the expression of a dominant negative Rab5 (Rab5S34N) construct. Our study has thus pointed to that RIN3 acts through Rab5 to impact endosomal trafficking and signaling. CONCLUSION RIN3 is significantly upregulated and correlated with endosomal dysfunction in APP/PS1 mouse. Through interacting with BIN1 and CD2AP, increased RIN3 expression alters axonal trafficking and procession of APP. Together with our previous studies, our current work has thus provided important insights into the role of RIN3 in regulating endosomal signaling and trafficking.
Collapse
Affiliation(s)
- Ruinan Shen
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, 197 Ruijin Er Rd., Shanghai, 200025, China.,Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Xiaobei Zhao
- Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Lu He
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, 197 Ruijin Er Rd., Shanghai, 200025, China
| | - Yongbo Ding
- Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Wei Xu
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, 197 Ruijin Er Rd., Shanghai, 200025, China.,Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Suzhen Lin
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, 197 Ruijin Er Rd., Shanghai, 200025, China.,Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Savannah Fang
- Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Wanlin Yang
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, 197 Ruijin Er Rd., Shanghai, 200025, China.,Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA.,Department of Neurology, Zhuijiang Hospital, Southern Medical University, Guangzhou, China
| | - Kijung Sung
- Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA.,San Diego VA Health System, San Diego, CA, USA
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Jianqing Ding
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, 197 Ruijin Er Rd., Shanghai, 200025, China.
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego School of Medicine, Room 312 MC-0624,9500 Gilman Drive, La Jolla, CA, 92093-0624, USA.
| |
Collapse
|
16
|
Nelson PT, Fardo DW, Katsumata Y. The MUC6/AP2A2 Locus and Its Relevance to Alzheimer's Disease: A Review. J Neuropathol Exp Neurol 2020; 79:568-584. [PMID: 32357373 PMCID: PMC7241941 DOI: 10.1093/jnen/nlaa024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
We recently reported evidence of Alzheimer's disease (AD)-linked genetic variation within the mucin 6 (MUC6) gene on chromosome 11p, nearby the adaptor-related protein complex 2 subunit alpha 2 (AP2A2) gene. This locus has interesting features related to human genomics and clinical research. MUC6 gene variants have been reported to potentially influence viral-including herpesvirus-immunity and the gut microbiome. Within the MUC6 gene is a unique variable number of tandem repeat (VNTR) region. We discovered an association between MUC6 VNTR repeat expansion and AD pathologic severity, particularly tau proteinopathy. Here, we review the relevant literature. The AD-linked VNTR polymorphism may also influence AP2A2 gene expression. AP2A2 encodes a polypeptide component of the adaptor protein complex, AP-2, which is involved in clathrin-coated vesicle function and was previously implicated in AD pathogenesis. To provide background information, we describe some key knowledge gaps in AD genetics research. The "missing/hidden heritability problem" of AD is highlighted. Extensive portions of the human genome, including the MUC6 VNTR, have not been thoroughly evaluated due to limitations of existing high-throughput sequencing technology. We present and discuss additional data, along with cautionary considerations, relevant to the hypothesis that MUC6 repeat expansion influences AD pathogenesis.
Collapse
Affiliation(s)
- Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Pathology, University of Kentucky, Lexington, Kentucky
| | - David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
17
|
Jiang X, Zhu Y, Liu H, Chen S, Zhang D. Effect of BIN1 on cardiac dysfunction and malignant arrhythmias. Acta Physiol (Oxf) 2020; 228:e13429. [PMID: 31837094 DOI: 10.1111/apha.13429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/24/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is the end-stage syndrome for most cardiac diseases, and the 5-year morbidity and mortality of HF remain high. Malignant arrhythmia is the main cause of sudden death in the progression of HF. Recently, bridging integrator 1 (BIN1) was discovered as a regulator of transverse tubule function and calcium signalling in cardiomyocytes. BIN1 downregulation is linked to abnormal cardiac contraction, and it increases the possibility of malignant arrhythmias preceding HF. Because of the detectability of cardiac BIN1 in peripheral blood, BIN1 may serve as a predictor of HF and may be useful in therapy development. However, the mechanism of BIN1 downregulation in HF and how BIN1 regulates normal cardiac function under physiological conditions remain unclear. In this review, recent progress in the biological studies of BIN1-related cardiomyocytes and the effect of cardiac dysfunction and malignant arrhythmia will be discussed.
Collapse
Affiliation(s)
- Xiao‐Xin Jiang
- Department of Cardiology Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu P. R. China
| | - Yan‐Rong Zhu
- Department of Cardiology Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu P. R. China
| | - Hong‐Ming Liu
- Department of Geriatric Cardiology The First Affiliated Hospital of Kunming Medical University Kunming Yunnan P. R. China
| | - Shao‐Liang Chen
- Department of Cardiology Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu P. R. China
| | - Dai‐Min Zhang
- Department of Cardiology Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu P. R. China
| |
Collapse
|
18
|
Glennon EB, Lau DHW, Gabriele RMC, Taylor MF, Troakes C, Opie-Martin S, Elliott C, Killick R, Hanger DP, Perez-Nievas BG, Noble W. Bridging Integrator-1 protein loss in Alzheimer's disease promotes synaptic tau accumulation and disrupts tau release. Brain Commun 2020; 2. [PMID: 32500121 PMCID: PMC7272218 DOI: 10.1093/braincomms/fcaa011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Polymorphisms associated with BIN1 (bridging integrator 1) confer the second greatest risk for developing late-onset Alzheimer’s disease. The biological consequences of this genetic variation are not fully understood; however, BIN1 is a binding partner for tau. Tau is normally a highly soluble cytoplasmic protein, but in Alzheimer’s disease, tau is abnormally phosphorylated and accumulates at synapses to exert synaptotoxicity. The purpose of this study was to determine whether alterations in BIN1 and tau in Alzheimer’s disease promote the damaging redistribution of tau to synapses, as a mechanism by which BIN1 polymorphisms may increase the risk of developing Alzheimer’s disease. We show that BIN1 is lost from the cytoplasmic fraction of Alzheimer’s disease cortex, and this is accompanied by the progressive mislocalization of phosphorylated tau to synapses. We confirmed proline 216 in tau as critical for tau interaction with the BIN1-SH3 domain and showed that the phosphorylation of tau disrupts this binding, suggesting that tau phosphorylation in Alzheimer’s disease disrupts tau–BIN1 associations. Moreover, we show that BIN1 knockdown in rat primary neurons to mimic BIN1 loss in Alzheimer’s disease brain causes the damaging accumulation of phosphorylated tau at synapses and alterations in dendritic spine morphology. We also observed reduced release of tau from neurons upon BIN1 silencing, suggesting that BIN1 loss disrupts the function of extracellular tau. Together, these data indicate that polymorphisms associated with BIN1 that reduce BIN1 protein levels in the brain likely act synergistically with increased tau phosphorylation to increase the risk of Alzheimer’s disease by disrupting cytoplasmic tau–BIN1 interactions, promoting the damaging mis-sorting of phosphorylated tau to synapses to alter synapse structure and reducing the release of physiological forms of tau to disrupt tau function.
Collapse
Affiliation(s)
- Elizabeth B Glennon
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Dawn H-W Lau
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Rebecca M C Gabriele
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Matthew F Taylor
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Claire Troakes
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK.,King's College London, MRC London Neurodegenerative Diseases Brain Bank, London, UK
| | - Sarah Opie-Martin
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Christina Elliott
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Old Age Psychiatry, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Richard Killick
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Old Age Psychiatry, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Diane P Hanger
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Beatriz G Perez-Nievas
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK
| | - Wendy Noble
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX. UK
| |
Collapse
|
19
|
Sartori M, Mendes T, Desai S, Lasorsa A, Herledan A, Malmanche N, Mäkinen P, Marttinen M, Malki I, Chapuis J, Flaig A, Vreulx AC, Ciancia M, Amouyel P, Leroux F, Déprez B, Cantrelle FX, Maréchal D, Pradier L, Hiltunen M, Landrieu I, Kilinc D, Herault Y, Laporte J, Lambert JC. BIN1 recovers tauopathy-induced long-term memory deficits in mice and interacts with Tau through Thr 348 phosphorylation. Acta Neuropathol 2019; 138:631-652. [PMID: 31065832 PMCID: PMC6778065 DOI: 10.1007/s00401-019-02017-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
The bridging integrator 1 gene (BIN1) is a major genetic risk factor for Alzheimer's disease (AD). In this report, we investigated how BIN1-dependent pathophysiological processes might be associated with Tau. We first generated a cohort of control and transgenic mice either overexpressing human MAPT (TgMAPT) or both human MAPT and BIN1 (TgMAPT;TgBIN1), which we followed-up from 3 to 15 months. In TgMAPT;TgBIN1 mice short-term memory deficits appeared earlier than in TgMAPT mice; however-unlike TgMAPT mice-TgMAPT;TgBIN1 mice did not exhibit any long-term or spatial memory deficits for at least 15 months. After killing the cohort at 18 months, immunohistochemistry revealed that BIN1 overexpression prevents both Tau mislocalization and somatic inclusion in the hippocampus, where an increase in BIN1-Tau interaction was also observed. We then sought mechanisms controlling the BIN1-Tau interaction. We developed a high-content screening approach to characterize modulators of the BIN1-Tau interaction in an agnostic way (1,126 compounds targeting multiple pathways), and we identified-among others-an inhibitor of calcineurin, a Ser/Thr phosphatase. We determined that calcineurin dephosphorylates BIN1 on a cyclin-dependent kinase phosphorylation site at T348, promoting the open conformation of the neuronal BIN1 isoform. Phosphorylation of this site increases the availability of the BIN1 SH3 domain for Tau interaction, as demonstrated by nuclear magnetic resonance experiments and in primary neurons. Finally, we observed that although the levels of the neuronal BIN1 isoform were unchanged in AD brains, phospho-BIN1(T348):BIN1 ratio was increased, suggesting a compensatory mechanism. In conclusion, our data support the idea that BIN1 modulates the AD risk through an intricate regulation of its interaction with Tau. Alteration in BIN1 expression or activity may disrupt this regulatory balance with Tau and have direct effects on learning and memory.
Collapse
Affiliation(s)
- Maxime Sartori
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404, Illkirch, France
- INSERM U1258, Illkirch, France
- CNRS UMR7104, Illkirch, France
- Strasbourg University, Illkirch, France
| | - Tiago Mendes
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
- SANOFI Neuroscience Therapeutic Area, Chilly-Mazarin, France
| | - Shruti Desai
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
| | - Alessia Lasorsa
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
- CNRS UMR8576, Lille, France
| | - Adrien Herledan
- Institut Pasteur de Lille, Lille, France
- University of Lille, EGID, Lille, France
- INSERM U1177, Drugs and Molecules for Living Systems, Lille, France
| | - Nicolas Malmanche
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Idir Malki
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
- CNRS UMR8576, Lille, France
| | - Julien Chapuis
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
| | - Amandine Flaig
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
| | - Anaïs-Camille Vreulx
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
| | - Marion Ciancia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404, Illkirch, France
- INSERM U1258, Illkirch, France
- CNRS UMR7104, Illkirch, France
- Strasbourg University, Illkirch, France
| | - Philippe Amouyel
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
| | - Florence Leroux
- Institut Pasteur de Lille, Lille, France
- University of Lille, EGID, Lille, France
- INSERM U1177, Drugs and Molecules for Living Systems, Lille, France
| | - Benoit Déprez
- Institut Pasteur de Lille, Lille, France
- University of Lille, EGID, Lille, France
- INSERM U1177, Drugs and Molecules for Living Systems, Lille, France
| | - François-Xavier Cantrelle
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
- CNRS UMR8576, Lille, France
| | - Damien Maréchal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404, Illkirch, France
- INSERM U1258, Illkirch, France
- CNRS UMR7104, Illkirch, France
- Strasbourg University, Illkirch, France
| | - Laurent Pradier
- SANOFI Neuroscience Therapeutic Area, Chilly-Mazarin, France
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Isabelle Landrieu
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
- CNRS UMR8576, Lille, France
| | - Devrim Kilinc
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404, Illkirch, France.
- INSERM U1258, Illkirch, France.
- CNRS UMR7104, Illkirch, France.
- Strasbourg University, Illkirch, France.
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404, Illkirch, France.
- INSERM U1258, Illkirch, France.
- CNRS UMR7104, Illkirch, France.
- Strasbourg University, Illkirch, France.
| | - Jean-Charles Lambert
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France.
- Institut Pasteur de Lille, Lille, France.
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France.
| |
Collapse
|
20
|
Trushina NI, Bakota L, Mulkidjanian AY, Brandt R. The Evolution of Tau Phosphorylation and Interactions. Front Aging Neurosci 2019; 11:256. [PMID: 31619983 PMCID: PMC6759874 DOI: 10.3389/fnagi.2019.00256] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022] Open
Abstract
Tau is a neuronal microtubule-associated protein (MAP) that is involved in the regulation of axonal microtubule assembly. However, as a protein with intrinsically disordered regions (IDRs), tau also interacts with many other partners in addition to microtubules. Phosphorylation at selected sites modulates tau's various intracellular interactions and regulates the properties of IDRs. In Alzheimer's disease (AD) and other tauopathies, tau exhibits pathologically increased phosphorylation (hyperphosphorylation) at selected sites and aggregates into neurofibrillary tangles (NFTs). By bioinformatics means, we tested the hypothesis that the sequence of tau has changed during the vertebrate evolution in a way that novel interactions developed and also the phosphorylation pattern was affected, which made tau prone to the development of tauopathies. We report that distinct regions of tau show functional specialization in their molecular interactions. We found that tau's amino-terminal region, which is involved in biological processes related to "membrane organization" and "regulation of apoptosis," exhibited a strong evolutionary increase in protein disorder providing the basis for the development of novel interactions. We observed that the predicted phosphorylation sites have changed during evolution in a region-specific manner, and in some cases the overall number of phosphorylation sites increased owing to the formation of clusters of phosphorylatable residues. In contrast, disease-specific hyperphosphorylated sites remained highly conserved. The data indicate that novel, non-microtubule related tau interactions developed during evolution and suggest that the biological processes, which are mediated by these interactions, are of pathological relevance. Furthermore, the data indicate that predicted phosphorylation sites in some regions of tau, including a cluster of phosphorylatable residues in the alternatively spliced exon 2, have changed during evolution. In view of the "antagonistic pleiotropy hypothesis" it may be worth to take disease-associated phosphosites with low evolutionary conservation as relevant biomarkers into consideration.
Collapse
Affiliation(s)
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Armen Y Mulkidjanian
- Department of Physics, University of Osnabrück, Osnabrück, Germany.,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany.,Center for Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany.,Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
21
|
Dourlen P, Kilinc D, Malmanche N, Chapuis J, Lambert JC. The new genetic landscape of Alzheimer's disease: from amyloid cascade to genetically driven synaptic failure hypothesis? Acta Neuropathol 2019; 138:221-236. [PMID: 30982098 PMCID: PMC6660578 DOI: 10.1007/s00401-019-02004-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 12/18/2022]
Abstract
A strong genetic predisposition (60–80% of attributable risk) is present in Alzheimer’s disease (AD). In view of this major genetic component, identification of the genetic risk factors has been a major objective in the AD field with the ultimate aim to better understand the pathological processes. In this review, we present how the genetic risk factors are involved in APP metabolism, β-amyloid peptide production, degradation, aggregation and toxicity, innate immunity, and Tau toxicity. In addition, on the basis of the new genetic landscape, resulting from the recent high-throughput genomic approaches and emerging neurobiological information, we propose an over-arching model in which the focal adhesion pathway and the related cell signalling are key elements in AD pathogenesis. The core of the focal adhesion pathway links the physiological functions of amyloid precursor protein and Tau with the pathophysiological processes they are involved in. This model includes several entry points, fitting with the different origins for the disease, and supports the notion that dysregulation of synaptic plasticity is a central node in AD. Notably, our interpretation of the latest data from genome wide association studies complements other hypotheses already developed in the AD field, i.e., amyloid cascade, cellular phase or propagation hypotheses. Genetically driven synaptic failure hypothesis will need to be further tested experimentally within the general AD framework.
Collapse
Affiliation(s)
- Pierre Dourlen
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Devrim Kilinc
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Nicolas Malmanche
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Julien Chapuis
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Jean-Charles Lambert
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France.
| |
Collapse
|
22
|
Van Acker ZP, Bretou M, Annaert W. Endo-lysosomal dysregulations and late-onset Alzheimer's disease: impact of genetic risk factors. Mol Neurodegener 2019; 14:20. [PMID: 31159836 PMCID: PMC6547588 DOI: 10.1186/s13024-019-0323-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence supports that cellular dysregulations in the degradative routes contribute to the initiation and progression of neurodegenerative diseases, including Alzheimer's disease. Autophagy and endolysosomal homeostasis need to be maintained throughout life as they are major cellular mechanisms involved in both the production of toxic amyloid peptides and the clearance of misfolded or aggregated proteins. As such, alterations in endolysosomal and autophagic flux, as a measure of degradation activity in these routes or compartments, may directly impact as well on disease-related mechanisms such as amyloid-β clearance through the blood-brain-barrier and the interneuronal spreading of amyloid-β and/or Tau seeds, affecting synaptic function, plasticity and metabolism. The emerging of several genetic risk factors for late-onset Alzheimer's disease that are functionally related to endocytic transport regulation, including cholesterol metabolism and clearance, supports the notion that in particular the autophagy/lysosomal flux might become more vulnerable during ageing thereby contributing to disease onset. In this review we discuss our current knowledge of the risk genes APOE4, BIN1, CD2AP, PICALM, PLD3 and TREM2 and their impact on endolysosomal (dys)regulations in the light of late-onset Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Zoë P. Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| | - Marine Bretou
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
23
|
Wang X, Chang C, Wang D, Hong S. Systematic profiling of SH3-mediated Tau-Partner interaction network in Alzheimer's disease by integrating in silico analysis and in vitro assay. J Mol Graph Model 2019; 90:265-272. [PMID: 31112821 DOI: 10.1016/j.jmgm.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/20/2019] [Accepted: 05/07/2019] [Indexed: 11/24/2022]
Abstract
The aberrant assembly of microtubule-associated protein Tau (τ) into insoluble aggregates is closely related to Alzheimer's disease (AD), which is elicited from Tau phosphorylation events and regulated by the specific intermolecular recognition between the proline-rich PxxP motifs of Tau and the SH3 domains of its diverse partner proteins/kinases. Here, we attempt to create a systematic interaction profile for the 10 SH3 domains of previously reported Tau partners across all the 18 Tau PxxP peptides. A number of biologically functional SH3-PxxP interaction events are identified from the profile and then tested using fluorescence spectroscopy. It is revealed that (i) the region (residues 520-560) precedent to the tubulin-binding partial repeats of Tau protein is an important target of SH3 domains, where contains the three PxxP peptides τp527-536, τp530-539 and τp547-556 that exhibit different binding profiles towards the investigated SH3 domains, (ii) as compared to τp527-536 and τp547-556, the τp530-539 peptide located between them has only a modest binding potency to most SH3 domains, suggesting that the three peptides contribute unevenly to Tau-SH3 interactions, and (iii) some other Tau PxxP peptides, particularly those within the residue range 490-510 that is neighboring to the region 520-560, can also interact effectively with several SH3 domains. The SH3 domain of the well known Tau partner kinase Fyn is determined to have high or moderate affinity for an array of Tau PxxP peptides, including τp137-146, τp493-502, τp527-536 and τp547-556 (Kd ranges 15.7-85.6 μM).
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Neurology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, 214023, China
| | - Chunyan Chang
- Center of Clinical Research, Wuxi People's Hospital, Nanjing Medical University, Wuxi, 214023, China
| | - Dongxue Wang
- Department of Cardiology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, 214023, China
| | - Shanchao Hong
- Department of Medical Clinical Laboratory, Wuxi People's Hospital, Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
24
|
The BIN1 rs744373 SNP is associated with increased tau-PET levels and impaired memory. Nat Commun 2019; 10:1766. [PMID: 30992433 PMCID: PMC6467911 DOI: 10.1038/s41467-019-09564-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/14/2019] [Indexed: 02/01/2023] Open
Abstract
The single nucleotide polymorphism (SNP) rs744373 in the bridging integrator-1 gene (BIN1) is a risk factor for Alzheimer’s disease (AD). In the brain, BIN1 is involved in endocytosis and sustaining cytoskeleton integrity. Post-mortem and in vitro studies suggest that BIN1-associated AD risk is mediated by increased tau pathology but whether rs744373 is associated with increased tau pathology in vivo is unknown. Here we find in 89 older individuals without dementia, that BIN1 rs744373 risk-allele carriers show higher AV1451 tau-PET across brain regions corresponding to Braak stages II–VI. In contrast, the BIN1 rs744373 SNP was not associated with AV45 amyloid-PET uptake. Furthermore, the rs744373 risk-allele was associated with worse memory performance, mediated by increased global tau levels. Together, our findings suggest that the BIN1 rs744373 SNP is associated with increased tau but not beta-amyloid pathology, suggesting that alterations in BIN1 may contribute to memory deficits via increased tau pathology. The BIN1 SNP rs744373 is associated with higher CSF tau and phosphorylated tau levels. Here the authors show, using PET imaging, that this SNP is associated with tau accumulation in the brain as well as impaired memory in older individuals without dementia.
Collapse
|
25
|
Fichou Y, Al-Hilaly YK, Devred F, Smet-Nocca C, Tsvetkov PO, Verelst J, Winderickx J, Geukens N, Vanmechelen E, Perrotin A, Serpell L, Hanseeuw BJ, Medina M, Buée L, Landrieu I. The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention? Acta Neuropathol Commun 2019; 7:31. [PMID: 30823892 PMCID: PMC6397507 DOI: 10.1186/s40478-019-0682-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
Insights into tau molecular structures have advanced significantly in recent years. This field has been the subject of recent breakthroughs, including the first cryo-electron microscopy structures of tau filaments from Alzheimer’s and Pick’s disease inclusions, as well as the structure of the repeat regions of tau bound to microtubules. Tau structure covers various species as the tau protein itself takes many forms. We will here address a range of studies that help to define the many facets of tau protein structures and how they translate into pathogenic forms. New results shed light on previous data that need now to be revisited in order to up-date our knowledge of tau molecular structure. Finally, we explore how these data can contribute the important medical aspects of this research - diagnosis and therapeutics.
Collapse
|
26
|
Andrew RJ, De Rossi P, Nguyen P, Kowalski HR, Recupero AJ, Guerbette T, Krause SV, Rice RC, Laury-Kleintop L, Wagner SL, Thinakaran G. Reduction of the expression of the late-onset Alzheimer's disease (AD) risk-factor BIN1 does not affect amyloid pathology in an AD mouse model. J Biol Chem 2019; 294:4477-4487. [PMID: 30692199 DOI: 10.1074/jbc.ra118.006379] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically characterized by the deposition of the β-amyloid (Aβ) peptide in senile plaques in the brain, leading to neuronal dysfunction and eventual decline in cognitive function. Genome-wide association studies have identified the bridging integrator 1 (BIN1) gene within the second most significant susceptibility locus for late-onset AD. BIN1 is a member of the amphiphysin family of proteins and has reported roles in the generation of membrane curvature and endocytosis. Endocytic dysfunction is a pathological feature of AD, and endocytosis of the amyloid precursor protein is an important step in its subsequent cleavage by β-secretase (BACE1). In vitro evidence implicates BIN1 in endosomal sorting of BACE1 and Aβ generation in neurons, but a role for BIN1 in this process in vivo is yet to be described. Here, using biochemical and immunohistochemistry analyses we report that a 50% global reduction of BIN1 protein levels resulting from a single Bin1 allele deletion in mice does not change BACE1 levels or localization in vivo, nor does this reduction alter the production of endogenous murine Aβ in nontransgenic mice. Furthermore, we found that reduction of BIN1 levels in the 5XFAD mouse model of amyloidosis does not alter Aβ deposition nor behavioral deficits associated with cerebral amyloid burden. Finally, a conditional BIN1 knockout in excitatory neurons did not alter BACE1, APP, C-terminal fragments derived from BACE1 cleavage of APP, or endogenous Aβ levels. These results indicate that BIN1 function does not regulate Aβ generation in vivo.
Collapse
Affiliation(s)
- Robert J Andrew
- From the Department of Neurobiology, The University of Chicago, Chicago, Illinois, 60637
| | - Pierre De Rossi
- From the Department of Neurobiology, The University of Chicago, Chicago, Illinois, 60637
| | - Phuong Nguyen
- Department of Neurosciences, University of California, San Diego, La Jolla, California, 92093
| | - Haley R Kowalski
- From the Department of Neurobiology, The University of Chicago, Chicago, Illinois, 60637
| | - Aleksandra J Recupero
- From the Department of Neurobiology, The University of Chicago, Chicago, Illinois, 60637
| | - Thomas Guerbette
- From the Department of Neurobiology, The University of Chicago, Chicago, Illinois, 60637
| | - Sofia V Krause
- From the Department of Neurobiology, The University of Chicago, Chicago, Illinois, 60637
| | - Richard C Rice
- From the Department of Neurobiology, The University of Chicago, Chicago, Illinois, 60637
| | | | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, California, 92093.,Veterans Affairs San Diego Healthcare System, La Jolla, California, 92161
| | - Gopal Thinakaran
- From the Department of Neurobiology, The University of Chicago, Chicago, Illinois, 60637, .,Department of Neurology, The University of Chicago, Chicago, Illinois, 60637, and.,Department of Pathology, The University of Chicago, Chicago, Illinois, 60637
| |
Collapse
|
27
|
Lasorsa A, Malki I, Cantrelle FX, Merzougui H, Boll E, Lambert JC, Landrieu I. Structural Basis of Tau Interaction With BIN1 and Regulation by Tau Phosphorylation. Front Mol Neurosci 2018; 11:421. [PMID: 30487734 PMCID: PMC6246682 DOI: 10.3389/fnmol.2018.00421] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Bridging integrator-1 (BIN1) gene is associated with an increased risk to develop Alzheimer's disease, a tauopathy characterized by intra-neuronal accumulation of phosphorylated Tau protein as paired helical filaments. Direct interaction of BIN1 and Tau proteins was demonstrated to be mediated through BIN1 SH3 C-terminal domain and Tau (210-240) peptide within Tau proline-rich domain. We previously showed that BIN1 SH3 interaction with Tau is decreased by phosphorylation within Tau proline-rich domain, of at least T231. In addition, the BIN1/Tau interaction is characterized by a dynamic equilibrium between a closed and open conformations of BIN1 isoform 1, involving an intramolecular interaction with its C-terminal BIN1 SH3 domain. However, the role of the BIN1/Tau interaction, and its potential dysregulation in Alzheimer's disease, is not yet fully understood. Here we showed that within Tau (210-240) peptide, among the two proline-rich motifs potentially recognized by SH3 domains, only motif P216TPPTR221 is bound by BIN1 SH3. A structural model of the complex between BIN1 SH3 and Tau peptide (213-229), based on nuclear magnetic resonance spectroscopy data, revealed the molecular detail of the interaction. P216 and P219 within the proline-rich motif were in direct contact with the aromatic F588 and W562 of the BIN1 SH3 domain. The contact surface is extended through electrostatic interactions between the positively charged R221 and K224 residues of Tau peptide and those negatively charged of BIN1 SH3, corresponding to E556 and E557. We next investigated the impact of multiple Tau phosphorylations within Tau (210-240) on its interaction with BIN1 isoform 1. Tau (210-240) phosphorylated at four different sites (T212, T217, T231, and S235), contrary to unphosphorylated Tau, was unable to compete with the intramolecular interaction of BIN1 SH3 domain with its CLAP domain. In accordance, the affinity of BIN1 SH3 for phosphorylated Tau (210-240) peptide was reduced, with a five-fold increase in the dissociation constant, from a Kd of 44 to 256 μM. This study highlights the complexity of the regulation of BIN1 isoform 1 with Tau. As abnormal phosphorylation of Tau is linked to the pathology development, this regulation by phosphorylation might have important functional consequences.
Collapse
Affiliation(s)
| | - Idir Malki
- CNRS UMR8576, Lille University, Lille, France
| | | | | | | | | | | |
Collapse
|