1
|
Pu Q, Ren H, Ou Q, Yang X, Wei T, Zhao L, Han Y, Lou Y, Kashyap S, Liu S. SHMT, SHMTML and PRPS1 synergize to regulate blood digestion and nutrient metabolism in Aedes aegypti mosquitoes. Int J Biol Macromol 2025; 309:143243. [PMID: 40245636 DOI: 10.1016/j.ijbiomac.2025.143243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
Mosquitoes rely on vertebrate blood for nutrients vital for ovarian development. The enzyme serine hydroxymethyltransferase (SHMT) is crucial for amino acid and one‑carbon metabolism, playing a significant role in blood digestion and nutrient use in mosquitoes, though its functional mechanism remains further investigation. Using CRISPR/Cas9 to knock out the SHMT gene, we observed impaired blood digestion, delayed ovarian development, and inability to fly in mosquitoes. Multi-omics analysis revealed that SHMT deletion affected genes and metabolites related to amino acid metabolism. Knocking down SHMT-responsive genes mitochondrial-like serine hydroxymethyltransferase (SHMTML) and ribose-phosphate pyrophosphokinase 1 (PRPS1) also hindered blood digestion and ovarian development, mirroring SHMT-deficient mosquitoes. The interaction between SHMT, SHMTML, and PRPS1 was confirmed through various experiments, including Co-IP, GST pull-down, immunofluorescence colocalization, BiFC, molecular docking, and functional studies. Further research reveals that missing any of these proteins in mosquitoes results in ammonia and reactive oxygen species buildup, leading to mitochondrial problems, midgut cell damage, and abnormal enzyme expression. This study highlights a new molecular mechanism of SHMT and emphasizes its crucial interaction with SHMTML and PRPS1 in blood digestion and nutrient metabolism in vector mosquitoes. These findings may offer a strategic foundation for the development of innovative mosquito control measures.
Collapse
Affiliation(s)
- Qian Pu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Houming Ren
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Qingshan Ou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Xiaolin Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Yujiao Han
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Yuqi Lou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Symphony Kashyap
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Jia M, Lin L, Yu H, Dong Z, Pan X, Song X. Integrative bioinformatics approach identifies novel drug targets for hyperaldosteronism, with a focus on SHMT1 as a promising therapeutic candidate. Sci Rep 2025; 15:1690. [PMID: 39799159 PMCID: PMC11724956 DOI: 10.1038/s41598-025-85900-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Primary aldosteronism (PA), characterized by autonomous aldosterone overproduction, is a major cause of secondary hypertension with significant cardiovascular complications. Current treatments mainly focus on symptom management rather than addressing underlying mechanisms. This study aims to discover novel therapeutic targets for PA using integrated bioinformatics and experimental validation approaches. We employed a systematic approach combining: gene identification through transcriptome-wide association studies (TWAS); causal inference using summary data-based Mendelian randomization (SMR) and two-sample Mendelian randomization (MR) analyses; additional analyses included phenome-wide association analysis, enrichment analysis, protein-protein interaction (PPI) networks, drug repurposing, molecular docking and clinical validation through aldosterone-producing adenomas (APAs) tissue. Through systematic screening and prioritization, we identified 163 PA-associated genes, of which seven emerged as potential drug targets: CEP104, HIP1, TONSL, ZNF100, SHMT1, and two long non-coding RNAs (AC006369.2 and MRPL23-AS1). SHMT1 was identified as the most promising target, showing significantly elevated expression in APAs compared to adjacent non-tumorous tissues. Drug repurposing analysis identified four potential SHMT1-targeting compounds (Mimosine, Pemetrexed, Leucovorin, and Irinotecan), supported by molecular docking studies. The integration of multiple bioinformatics methods and experimental validation successfully identified novel drug targets for hyperaldosteronism. SHMT1, in particular, represents a promising candidate for future therapeutic development. These findings provide new opportunities for developing causative treatments for PA, though further clinical validation is warranted.
Collapse
Affiliation(s)
- Minyue Jia
- Department of Ultrasonography, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang Province, China
| | - Liya Lin
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang Province, China
| | - Hanxiao Yu
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang Province, China
| | - Zhichao Dong
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Xin Pan
- Department of Endocrinology, The First People's Hospital of Xiaoshan District, Hangzhou, 311200, Zhejiang, China
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Shangcheng District, Hangzhou, 310000, Zhejiang Province, China
| | - Xiaoxiao Song
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Shangcheng District, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
3
|
Samarakoon V, Owuocha LF, Hammond J, Mitchum MG, Beamer LJ. Key structural role of a conserved cis-proline revealed by the P285S variant of soybean serine hydroxymethyltransferase 8. Biochem J 2024; 481:1557-1568. [PMID: 39373197 DOI: 10.1042/bcj20240338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/08/2024]
Abstract
The enzyme serine hydroxymethyltransferase (SHMT) plays a key role in folate metabolism and is conserved in all kingdoms of life. SHMT is a pyridoxal 5'-phosphate (PLP) - dependent enzyme that catalyzes the conversion of L-serine and (6S)-tetrahydrofolate to glycine and 5,10-methylene tetrahydrofolate. Crystal structures of multiple members of the SHMT family have shown that the enzyme has a single conserved cis proline, which is located near the active site. Here, we have characterized a Pro to Ser amino acid variant (P285S) that affects this conserved cis proline in soybean SHMT8. P285S was identified as one of a set of mutations that affect the resistance of soybean to the agricultural pathogen soybean cyst nematode. We find that replacement of Pro285 by serine eliminates PLP-mediated catalytic activity of SHMT8, reduces folate binding, decreases enzyme stability, and affects the dimer-tetramer ratio of the enzyme in solution. Crystal structures at 1.9-2.2 Å resolution reveal a local reordering of the polypeptide chain that extends an α-helix and shifts a turn region into the active site. This results in a dramatically perturbed PLP-binding pose, where the ring of the cofactor is flipped by ∼180° with concomitant loss of conserved enzyme-PLP interactions. A nearby region of the polypeptide becomes disordered, evidenced by missing electron density for ∼10 residues. These structural perturbations are consistent with the loss of enzyme activity and folate binding and underscore the important role of the Pro285 cis-peptide in SHMT structure and function.
Collapse
Affiliation(s)
- Vindya Samarakoon
- Department of Chemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - Luckio F Owuocha
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - Jamie Hammond
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA 30602, U.S.A
| | - Lesa J Beamer
- Department of Chemistry, University of Missouri, Columbia, MO 65211, U.S.A
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, U.S.A
| |
Collapse
|
4
|
Drago VN, Phillips RS, Kovalevsky A. Universality of critical active site glutamate as an acid-base catalyst in serine hydroxymethyltransferase function. Chem Sci 2024; 15:12827-12844. [PMID: 39148791 PMCID: PMC11323337 DOI: 10.1039/d4sc03187c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/02/2024] [Indexed: 08/17/2024] Open
Abstract
Serine hydroxymethyltransferase (SHMT) is a key enzyme in the one-carbon metabolic pathway, utilizing the vitamin B6 derivative pyridoxal 5'-phosphate (PLP) and vitamin B9 derivative tetrahydrofolate (THF) coenzymes to produce essential biomolecules. Many types of cancer utilize SHMT in metabolic reprogramming, exposing the enzyme as a compelling target for antimetabolite chemotherapies. In pursuit of elucidating the catalytic mechanism of SHMT to aid in the design of SHMT-specific inhibitors, we have used room-temperature neutron crystallography to directly determine the protonation states in a model enzyme Thermus thermophilus SHMT (TthSHMT), which exhibits a conserved active site compared to human mitochondrial SHMT2 (hSHMT2). Here we report the analysis of TthSHMT, with PLP in the internal aldimine form and bound THF-analog, folinic acid (FA), by neutron crystallography to reveal H atom positions in the active site, including PLP and FA. We observed protonated catalytic Glu53 revealing its ability to change protonation state upon FA binding. Furthermore, we obtained X-ray structures of TthSHMT-Gly/FA, TthSHMT-l-Ser/FA, and hSHMT2-Gly/FA ternary complexes with the PLP-Gly or PLP-l-Ser external aldimines to analyze the active site configuration upon PLP reaction with an amino acid substrate and FA binding. Accurate mapping of the active site protonation states together with the structural information gained from the ternary complexes allow us to suggest an essential role of the gating loop conformational changes in the SHMT function and to propose Glu53 as the universal acid-base catalyst in both THF-independent and THF-dependent activities of SHMT.
Collapse
Affiliation(s)
- Victoria N Drago
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Robert S Phillips
- Department of Chemistry, University of Georgia Athens GA 30602 USA
- Department of Biochemistry and Molecular Biology, University of Georgia Athens GA 30602 USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
5
|
Spizzichino S, Di Fonzo F, Marabelli C, Tramonti A, Chaves-Sanjuan A, Parroni A, Boumis G, Liberati FR, Paone A, Montemiglio LC, Ardini M, Jakobi AJ, Bharadwaj A, Swuec P, Tartaglia GG, Paiardini A, Contestabile R, Mai A, Rotili D, Fiorentino F, Macone A, Giorgi A, Tria G, Rinaldo S, Bolognesi M, Giardina G, Cutruzzolà F. Structure-based mechanism of riboregulation of the metabolic enzyme SHMT1. Mol Cell 2024; 84:2682-2697.e6. [PMID: 38996576 DOI: 10.1016/j.molcel.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 01/26/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs. serine. In addition, we identify the tetrameric assembly and a flap structural motif as key structural elements necessary for binding of RNA to eukaryotic SHMT1. The results presented here suggest that riboregulation may have played a role in evolution of eukaryotic SHMT1 and in compartmentalization of one-carbon metabolism. Our findings provide insights for RNA-based therapeutic strategies targeting this cancer-linked metabolic pathway.
Collapse
Affiliation(s)
- Sharon Spizzichino
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Federica Di Fonzo
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Marabelli
- Department of Molecular Medicine, University of Pavia, Via Forlanini 3, 27100 Pavia, Italy
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy; Fondazione Romeo e Enrica Invernizzi and NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Alessia Parroni
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185 Rome, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Romana Liberati
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; Department of Biochemical Sciences, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, P.le A. Moro 5, 00185 Rome, Italy
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185 Rome, Italy
| | - Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Arjen J Jakobi
- Department of Bionanoscience, Kavli Institute of Nanoscience Deft, Delft University of Technology, Van der Maasweg, 92629 HZ Delft, the Netherlands
| | - Alok Bharadwaj
- Department of Bionanoscience, Kavli Institute of Nanoscience Deft, Delft University of Technology, Van der Maasweg, 92629 HZ Delft, the Netherlands
| | - Paolo Swuec
- CryoElectron Microscopy Facility, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Gian Gaetano Tartaglia
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy; Department of Biology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Roberto Contestabile
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Giancarlo Tria
- CNR Institute of Crystallography - URT Caserta c/o Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy; Fondazione Romeo e Enrica Invernizzi and NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; Department of Biochemical Sciences, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
6
|
Malatesta M, Fornasier E, Di Salvo ML, Tramonti A, Zangelmi E, Peracchi A, Secchi A, Polverini E, Giachin G, Battistutta R, Contestabile R, Percudani R. One substrate many enzymes virtual screening uncovers missing genes of carnitine biosynthesis in human and mouse. Nat Commun 2024; 15:3199. [PMID: 38615009 PMCID: PMC11016064 DOI: 10.1038/s41467-024-47466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/26/2024] [Indexed: 04/15/2024] Open
Abstract
The increasing availability of experimental and computational protein structures entices their use for function prediction. Here we develop an automated procedure to identify enzymes involved in metabolic reactions by assessing substrate conformations docked to a library of protein structures. By screening AlphaFold-modeled vitamin B6-dependent enzymes, we find that a metric based on catalytically favorable conformations at the enzyme active site performs best (AUROC Score=0.84) in identifying genes associated with known reactions. Applying this procedure, we identify the mammalian gene encoding hydroxytrimethyllysine aldolase (HTMLA), the second enzyme of carnitine biosynthesis. Upon experimental validation, we find that the top-ranked candidates, serine hydroxymethyl transferase (SHMT) 1 and 2, catalyze the HTMLA reaction. However, a mouse protein absent in humans (threonine aldolase; Tha1) catalyzes the reaction more efficiently. Tha1 did not rank highest based on the AlphaFold model, but its rank improved to second place using the experimental crystal structure we determined at 2.26 Å resolution. Our findings suggest that humans have lost a gene involved in carnitine biosynthesis, with HTMLA activity of SHMT partially compensating for its function.
Collapse
Affiliation(s)
- Marco Malatesta
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Martino Luigi Di Salvo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Rome, Italy
| | - Erika Zangelmi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Alessio Peracchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andrea Secchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Eugenia Polverini
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences, University of Padua, Padova, Italy
| | | | - Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|
7
|
Lee SE, Park S, Yi S, Choi NR, Lim MA, Chang JW, Won HR, Kim JR, Ko HM, Chung EJ, Park YJ, Cho SW, Yu HW, Choi JY, Yeo MK, Yi B, Yi K, Lim J, Koh JY, Lee MJ, Heo JY, Yoon SJ, Kwon SW, Park JL, Chu IS, Kim JM, Kim SY, Shan Y, Liu L, Hong SA, Choi DW, Park JO, Ju YS, Shong M, Kim SK, Koo BS, Kang YE. Unraveling the role of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer by multi-omics analyses. Nat Commun 2024; 15:1163. [PMID: 38331894 PMCID: PMC10853200 DOI: 10.1038/s41467-024-45366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
The role of the serine/glycine metabolic pathway (SGP) has recently been demonstrated in tumors; however, the pathological relevance of the SGP in thyroid cancer remains unexplored. Here, we perform metabolomic profiling of 17 tumor-normal pairs; bulk transcriptomics of 263 normal thyroid, 348 papillary, and 21 undifferentiated thyroid cancer samples; and single-cell transcriptomes from 15 cases, showing the impact of mitochondrial one-carbon metabolism in thyroid tumors. High expression of serine hydroxymethyltransferase-2 (SHMT2) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is associated with low thyroid differentiation scores and poor clinical features. A subpopulation of tumor cells with high mitochondrial one-carbon pathway activity is observed in the single-cell dataset. SHMT2 inhibition significantly compromises mitochondrial respiration and decreases cell proliferation and tumor size in vitro and in vivo. Collectively, our results highlight the importance of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer and suggest that SHMT2 is a potent therapeutic target.
Collapse
Affiliation(s)
- Seong Eun Lee
- Research Center for Endocrine and Metabolic Disease, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seongyeol Park
- GENOME INSIGHT TECHNOLOGY Inc, Daejeon, Republic of Korea
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Shinae Yi
- Research Center for Endocrine and Metabolic Disease, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Na Rae Choi
- Research Center for Endocrine and Metabolic Disease, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Mi Ae Lim
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ho-Ryun Won
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Je Ryong Kim
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hye Mi Ko
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Jae Chung
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeong Won Yu
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - June Young Choi
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Min-Kyung Yeo
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Boram Yi
- GENOME INSIGHT TECHNOLOGY Inc, Daejeon, Republic of Korea
| | - Kijong Yi
- GENOME INSIGHT TECHNOLOGY Inc, Daejeon, Republic of Korea
| | - Joonoh Lim
- GENOME INSIGHT TECHNOLOGY Inc, Daejeon, Republic of Korea
| | - Jun-Young Koh
- GENOME INSIGHT TECHNOLOGY Inc, Daejeon, Republic of Korea
| | - Min Jeong Lee
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jun Young Heo
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Jun Yoon
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jong-Lyul Park
- Korea Research Institute of Bioscience and Biotechnology, Deajeon, Republic of Korea
| | - In Sun Chu
- Korea Research Institute of Bioscience and Biotechnology, Deajeon, Republic of Korea
- Department of Bioscience, University of Science and Technology (UST), Deajeon, Republic of Korea
| | - Jin Man Kim
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seon-Young Kim
- Korea Research Institute of Bioscience and Biotechnology, Deajeon, Republic of Korea
- Department of Bioscience, University of Science and Technology (UST), Deajeon, Republic of Korea
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yujuan Shan
- Department of Nutrition, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lihua Liu
- Department of Nutrition, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sung-A Hong
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Dong Wook Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, USA
| | - Young Seok Ju
- GENOME INSIGHT TECHNOLOGY Inc, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seon-Kyu Kim
- Korea Research Institute of Bioscience and Biotechnology, Deajeon, Republic of Korea.
| | - Bon Seok Koo
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Yea Eun Kang
- Research Center for Endocrine and Metabolic Disease, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Miyamoto T, Fushinobu S, Saitoh Y, Sekine M, Katane M, Sakai-Kato K, Homma H. Novel tetrahydrofolate-dependent d-serine dehydratase activity of serine hydroxymethyltransferases. FEBS J 2024; 291:308-322. [PMID: 37700610 DOI: 10.1111/febs.16953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/12/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
d-Serine plays vital physiological roles in the functional regulation of the mammalian brain, where it is produced from l-serine by serine racemase and degraded by d-amino acid oxidase. In the present study, we identified a new d-serine metabolizing activity of serine hydroxymethyltransferase (SHMT) in bacteria as well as mammals. SHMT is known to catalyze the conversion of l-serine and tetrahydrofolate (THF) to glycine and 5,10-methylenetetrahydrofolate, respectively. In addition, we found that human and Escherichia coli SHMTs have d-serine dehydratase activity, which degrades d-serine to pyruvate and ammonia. We characterized this enzymatic activity along with canonical SHMT activity. Intriguingly, SHMT required THF to catalyze d-serine dehydration and did not exhibit dehydratase activity toward l-serine. Furthermore, SHMT did not use d-serine as a substrate in the canonical hydroxymethyltransferase reaction. The d-serine dehydratase activities of two isozymes of human SHMT were inhibited in the presence of a high concentration of THF, whereas that of E. coli SHMT was increased. The pH and temperature profiles of d-serine dehydratase and serine hydroxymethyltransferase activities of these three SHMTs were partially distinct. The catalytic efficiency (kcat /Km ) of dehydratase activity was lower than that of hydroxymethyltransferase activity. Nevertheless, the d-serine dehydratase activity of SHMT was physiologically important because d-serine inhibited the growth of an SHMT deletion mutant of E. coli, ∆glyA, more than that of the wild-type strain. Collectively, these results suggest that SHMT is involved not only in l- but also in d-serine metabolism through the degradation of d-serine.
Collapse
Affiliation(s)
- Tetsuya Miyamoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| | - Yasuaki Saitoh
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masae Sekine
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masumi Katane
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Kumiko Sakai-Kato
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Hiroshi Homma
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
9
|
Ramli AH, Mohd Faudzi SM. Diarylpentanoids, the privileged scaffolds in antimalarial and anti-infectives drug discovery: A review. Arch Pharm (Weinheim) 2023; 356:e2300391. [PMID: 37806761 DOI: 10.1002/ardp.202300391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Asia is a hotspot for infectious diseases, including malaria, dengue fever, tuberculosis, and the pandemic COVID-19. Emerging infectious diseases have taken a heavy toll on public health and the economy and have been recognized as a major cause of morbidity and mortality, particularly in Southeast Asia. Infectious disease control is a major challenge, but many surveillance systems and control strategies have been developed and implemented. These include vector control, combination therapies, vaccine development, and the development of new anti-infectives. Numerous newly discovered agents with pharmacological anti-infective potential are being actively and extensively studied for their bioactivity, toxicity, selectivity, and mode of action, but many molecules lose their efficacy over time due to resistance developments. These facts justify the great importance of the search for new, effective, and safe anti-infectives. Diarylpentanoids, a curcumin derivative, have been developed as an alternative with better bioavailability and metabolism as a therapeutic agent. In this review, the mechanisms of action and potential targets of antimalarial drugs as well as the classes of antimalarial drugs are presented. The bioactivity of diarylpentanoids as a potential scaffold for a new class of anti-infectives and their structure-activity relationships are also discussed in detail.
Collapse
Affiliation(s)
- Amirah H Ramli
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti M Mohd Faudzi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
10
|
Cappello A, Zuccotti A, Mancini M, Tosetti G, Fania L, Ricci F, Melino G, Candi E. Serine and one-carbon metabolism sustain non-melanoma skin cancer progression. Cell Death Discov 2023; 9:102. [PMID: 36964165 PMCID: PMC10039038 DOI: 10.1038/s41420-023-01398-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/26/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is a tumor that arises from human keratinocytes, showing abnormal control of cell proliferation and aberrant stratification. Cutaneous basal cell carcinoma (cBCC) and cutaneous squamous cell carcinoma (cSCC) are the most common sub-types of NMSC. From a molecular point of view, we are still far from fully understanding the molecular mechanisms behind the onset and progression of NMSC and to unravel targetable vulnerabilities to leverage for their treatment, which is still essentially based on surgery. Under this assumption, it is still not elucidated how the central cellular metabolism, a potential therapeutical target, is involved in NMSC progression. Therefore, our work is based on the characterization of the serine anabolism/catabolism and/or one-carbon metabolism (OCM) role in NMSC pathogenesis. Expression and protein analysis of normal skin and NMSC samples show the alteration of the expression of two enzymes involved in the serine metabolism and OCM, the Serine Hydroxy-Methyl Transferase 2 (SHMT2) and Methylen-ThetraHydroFolate dehydrogenase/cyclohydrolase 2 (MTHFD2). Tissues analysis shows that these two enzymes are mainly expressed in the proliferative areas of cBCC and in the poorly differentiated areas of cSCC, suggesting their role in tumor proliferation maintenance. Moreover, in vitro silencing of SHMT2 and MTHFD2 impairs the proliferation of epidermoid cancer cell line. Taken together these data allow us to link the central cellular metabolism (serine and/or OCM) and NMSC proliferation and progression, offering the opportunity to modulate pharmacologically the involved enzymes activity against this type of human cancer.
Collapse
Affiliation(s)
- Angela Cappello
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy
| | | | - Mara Mancini
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy
| | - Giulia Tosetti
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Luca Fania
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy
| | - Francesco Ricci
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy.
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy.
| |
Collapse
|
11
|
Zhou X, Tian C, Cao Y, Zhao M, Wang K. The role of serine metabolism in lung cancer: From oncogenesis to tumor treatment. Front Genet 2023; 13:1084609. [PMID: 36699468 PMCID: PMC9868472 DOI: 10.3389/fgene.2022.1084609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Metabolic reprogramming is an important hallmark of malignant tumors. Serine is a non-essential amino acid involved in cell proliferation. Serine metabolism, especially the de novo serine synthesis pathway, forms a metabolic network with glycolysis, folate cycle, and one-carbon metabolism, which is essential for rapidly proliferating cells. Owing to the rapid development in metabolomics, abnormal serine metabolism may serve as a biomarker for the early diagnosis and pathological typing of tumors. Targeting serine metabolism also plays an essential role in precision and personalized cancer therapy. This article is a systematic review of de novo serine biosynthesis and the link between serine and folate metabolism in tumorigenesis, particularly in lung cancer. In addition, we discuss the potential of serine metabolism to improve tumor treatment.
Collapse
|
12
|
Ma'ruf IF, Restiawaty E, Syihab SF, Honda K. Characterization of thermostable serine hydroxymethyltransferase for β-hydroxy amino acids synthesis. Amino Acids 2023; 55:75-88. [PMID: 36528680 PMCID: PMC9876860 DOI: 10.1007/s00726-022-03205-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/21/2022] [Indexed: 12/23/2022]
Abstract
β-hydroxy amino acids, such as serine, threonine, and phenylserine, are important compounds for medical purposes. To date, there has been only limited exploration of thermostable serine hydroxylmethyltransferase (SHMT) for the synthesis of these amino acids, despite the great potential that thermostable enzymes may offer for commercial use due to their high stability and catalytic efficiencies. ITBSHMT_1 (ITB serine hydroxylmethyltransferase clone number 1) from thermophilic and methanol-tolerant bacteria Pseudoxanthomonas taiwanensis AL17 was successfully cloned. Biocomputational analysis revealed that ITBSHMT_1 contains Pyridoxal-3'-phosphate and tetrahydrofolatebinding residues. Structural comparisons show that ITBSHMT_1 has 5 additional residues VSRQG on loop near PLP-binding site as novel structural feature which distinguish this enzyme with other characterized SHMTs. In silico mutation revealed that the fragment might have very essential role in maintaining of PLP binding on structure of ITBSHMT_1. Recombinant protein was produced in Escherichia coli Rosetta 2(DE3) in soluble form and purified using NiNTA affinity chromatography. The purified protein demonstrated the best activity at 80 °C and pH 7.5 based on the retro aldol cleavage of phenylserine. Activity decreased significantly in the presence of 3 mM transition metal ions but increased in the presence of 30 mM β-mercaptoethanol. ITBSHMT_1 demonstrated Vmax, Km, Kcat, and Kcat/Km at 242 U/mg, 23.26 mM, 186/s, and 8/(mM.s), respectively. The aldol condensation reaction showed the enzyme's best activity at 80 °C for serine, threonine, or phenylserine, with serine synthesis showing the highest specific activity. Biocomputational analysis revealed that high intramolecular interaction within the 3D structure of ITBSHMT_1 might be correlated with the enzyme's high thermal stability. The above data suggest that ITBSHMT_1 is a potential and novel enzyme for the production of various β-hydroxy amino acids.
Collapse
Affiliation(s)
- Ilma Fauziah Ma'ruf
- Doctoral Program of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
| | - Elvi Restiawaty
- Chemical Engineering Process Design and Development Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Syifa Fakhomah Syihab
- Faculty of Sports and Health Education, Universitas Pendidikan Indonesia, Bandung, Indonesia
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Suita, Japan
| |
Collapse
|
13
|
Cappello A, Mancini M, Madonna S, Rinaldo S, Paone A, Scarponi C, Belardo A, Zolla L, Zuccotti A, Panatta E, Pallotta S, Annicchiarico-Petruzzelli M, Albanesi C, Cutruzzolà F, Wang L, Jia W, Melino G, Candi E. Extracellular serine empowers epidermal proliferation and psoriasis-like symptoms. SCIENCE ADVANCES 2022; 8:eabm7902. [PMID: 36525488 DOI: 10.1126/sciadv.abm7902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The contribution of nutrient availability to control epidermal cell proliferation, inflammation, and hyperproliferative diseases remains unknown. Here, we studied extracellular serine and serine/glycine metabolism using human keratinocytes, human skin biopsies, and a mouse model of psoriasis-like disease. We focused on a metabolic enzyme, serine hydroxymethyltransferase (SHMT), that converts serine into glycine and tetrahydrofolate-bound one‑carbon units to support cell growth. We found that keratinocytes are both serine and glycine auxotrophs. Metabolomic profiling and hypoxanthine supplementation indicated that SHMT silencing/inhibition reduced cell growth through purine depletion, leading to nucleotide loss. In addition, topical application of an SHMT inhibitor suppressed both keratinocyte proliferation and inflammation in the imiquimod model and resulted in a decrease in psoriasis-associated gene expression. In conclusion, our study highlights SHMT2 activity and serine/glycine availability as an important metabolic hub controlling both keratinocyte proliferation and inflammatory cell expansion in psoriasis and holds promise for additional approaches to treat skin diseases.
Collapse
Affiliation(s)
- Angela Cappello
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Mara Mancini
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Stefania Madonna
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences A.Rossi Fanelli, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences A.Rossi Fanelli, Sapienza University of Rome, 00185 Rome, Italy
| | - Claudia Scarponi
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Antonio Belardo
- Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Lello Zolla
- Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | | | - Emanuele Panatta
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | | | | | | | - Francesca Cutruzzolà
- Department of Biochemical Sciences A.Rossi Fanelli, Sapienza University of Rome, 00185 Rome, Italy
| | - Lu Wang
- Chinese Medicine and Systems Biology/School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Wei Jia
- Chinese Medicine and Systems Biology/School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy
| |
Collapse
|
14
|
Bar-Peled L, Kory N. Principles and functions of metabolic compartmentalization. Nat Metab 2022; 4:1232-1244. [PMID: 36266543 PMCID: PMC10155461 DOI: 10.1038/s42255-022-00645-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/24/2022] [Indexed: 01/20/2023]
Abstract
Metabolism has historically been studied at the levels of whole cells, whole tissues and whole organisms. As a result, our understanding of how compartmentalization-the spatial and temporal separation of pathways and components-shapes organismal metabolism remains limited. At its essence, metabolic compartmentalization fulfils three important functions or 'pillars': establishing unique chemical environments, providing protection from reactive metabolites and enabling the regulation of metabolic pathways. However, how these pillars are established, regulated and maintained at both the cellular and systemic levels remains unclear. Here we discuss how the three pillars are established, maintained and regulated within the cell and discuss the consequences of dysregulation of metabolic compartmentalization in human disease. Organelles are increasingly emerging as 'command-and-control centres' and the increased understanding of metabolic compartmentalization is revealing new aspects of metabolic homeostasis, with this knowledge being translated into therapies for the treatment of cancer and certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Liron Bar-Peled
- Center for Cancer Research, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Nora Kory
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
15
|
Wu L, Zhong Y, Wu D, Xu P, Ruan X, Yan J, Liu J, Li X. Immunomodulatory Factor TIM3 of Cytolytic Active Genes Affected the Survival and Prognosis of Lung Adenocarcinoma Patients by Multi-Omics Analysis. Biomedicines 2022; 10:biomedicines10092248. [PMID: 36140350 PMCID: PMC9496572 DOI: 10.3390/biomedicines10092248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
[Objective] Using multi-omics research methods to explore cytolytic activity-related genes through the immunoregulatory factors HAVCR2 (TIM3) affecting the survival and prognosis of lung adenocarcinoma. [Methods] We combined Cox single factor regression and lasso regression feature selection algorithm to screen out the key genes of cytolytic activity in lung adenocarcinoma, and applied multi-omics research to explore the clinical predictive value of the model, including onset risk, independent prognosis, clinical relevance, signal transduction pathways, drug sensitivity, and the correlation of immune regulatory factors, etc. TCGA data are used as the experimental group, and GEO data is used as the external data control group to verify the stability of the model. The survival curve was generated by the Kaplan–Meier method and compared by log-rank, and the Cox proportional hazard model was used for multivariate analysis. In this study, 10 fresh tissue samples of lung adenocarcinoma were collected for cellular immunohistochemical experiments to analyze the expression of immunoregulatory factors in cancer tissues, and the key immunoregulatory factors were verified and screened out. [Results] A total of 450 genes related to cytolytic activity were differentially expressed, of which 273 genes were up-regulated and 177 genes were down-regulated. A total of 91 key genes related to cytolytic activity related to the prognosis of lung adenocarcinoma were screened through Cox single factor regression. The ROC curve results showed that the AUC values of 1, 3, and 5 years in the training set and test set were all greater than 0.7, indicating that the model has a valid verification. The level of risk score is significantly related to the sensitivity of patients to AKT inhibitor VIII, Lenalidomide, and Tipifarnib. In addition, our study also found that receptor and MHC genes related to immunomodulatory, and chemokines, including HAVCR2, are more highly expressed in the low-risk group. [Conclusions] HAVCR2 (TIM3) immunoregulatory factors affect the expression of key genes that affect cytolytic activity in lung adenocarcinoma cells, and to some extent indirectly affect the survival and prognosis of patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Liusheng Wu
- Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Tsinghua university, Shenzhen 518036, China
- Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yanfeng Zhong
- Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Dingwang Wu
- Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Pengcheng Xu
- Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xin Ruan
- Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jun Yan
- Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Tsinghua university, Shenzhen 518036, China
- Correspondence: (J.Y.); (J.L.); (X.L.)
| | - Jixian Liu
- Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Correspondence: (J.Y.); (J.L.); (X.L.)
| | - Xiaoqiang Li
- Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Correspondence: (J.Y.); (J.L.); (X.L.)
| |
Collapse
|
16
|
Wang Y, Wang Q, Hou Y, Wang Y. Molecular cloning, characterization, and homology modeling of serine hydroxymethyltransferase from psychrophilic bacterium Psychrobacter sp. J Basic Microbiol 2022; 62:984-994. [PMID: 35762735 DOI: 10.1002/jobm.202100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/11/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) plays a significant role in the synthesis of l-serine, purine, and thymidylate, which could be extensively applied in the treatment of cancers and the development of antibiotics. In this study, cloned from Psychrobacter sp. ANT206, a novel cold-adapted SHMT gene (psshmt, 1257 bp) encoding a protein of 418 amino acids was expressed in Escherichia coli. The homology modeling result revealed that PsSHMT owned fewer Proline (Pro) residues and hydrogen bonds compared with its homologs from mesophilic E. coli and thermophilic Geobacillus stearothermophilus. In addition, the molecular weight of the purified recombinant PsSHMT (rPsSHMT) was identified to be 45 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis, approximately. The enzymatic characteristics of the cold-adapted rPsSHMT displayed that its optimum temperature and pH were 30°C and 7.5, respectively, and its enzymatic activity could be inhibited by Cu2+ , significantly. rPsSHMT also showed a high kcat value and low ΔG at low temperatures. Furthermore, arginine (Arg) could affect the activity of rPsSHMT and be vital to its active sites. The results of this study reflected that these characteristics of the cold-adapted rPsSHMT made it a remarkable candidate that could be utilized in multiple industrial fields under low temperatures.
Collapse
Affiliation(s)
- Yifan Wang
- Laboratory of Applied Marine Biotechnology, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, People's Republic of China
| | - Quanfu Wang
- Laboratory of Applied Marine Biotechnology, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, People's Republic of China
| | - Yanhua Hou
- Laboratory of Applied Marine Biotechnology, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, People's Republic of China
| | - Yatong Wang
- Laboratory of Applied Marine Biotechnology, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, People's Republic of China
| |
Collapse
|
17
|
Makino Y, Oe C, Iwama K, Suzuki S, Nishiyama A, Hasegawa K, Okuda H, Hirata K, Ueno M, Kawaji K, Sasano M, Usui E, Hosaka T, Yabuki Y, Shirouzu M, Katsumi M, Murayama K, Hayashi H, Kodama EN. Serine hydroxymethyltransferase as a potential target of antibacterial agents acting synergistically with one-carbon metabolism-related inhibitors. Commun Biol 2022; 5:619. [PMID: 35739195 PMCID: PMC9223267 DOI: 10.1038/s42003-022-03555-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
Serine hydroxymethyltransferase (SHMT) produces 5,10-methylenetetrahydrofolate (CH2-THF) from tetrahydrofolate with serine to glycine conversion. SHMT is a potential drug target in parasites, viruses and cancer. (+)-SHIN-1 was developed as a human SHMT inhibitor for cancer therapy. However, the potential of SHMT as an antibacterial target is unknown. Here, we show that (+)-SHIN-1 bacteriostatically inhibits the growth of Enterococcus faecium at a 50% effective concentration of 10–11 M and synergistically enhances the antibacterial activities of several nucleoside analogues. Our results, including crystal structure analysis, indicate that (+)-SHIN-1 binds tightly to E. faecium SHMT (efmSHMT). Two variable loops in SHMT are crucial for inhibitor binding, and serine binding to efmSHMT enhances the affinity of (+)-SHIN-1 by stabilising the loop structure of efmSHMT. The findings highlight the potency of SHMT as an antibacterial target and the possibility of developing SHMT inhibitors for treating bacterial, viral and parasitic infections and cancer. Structural and biophysical studies of the inhibition of bacterial serine hydroxymethyltransferase (SHMT) by a human SHMT inhibitor used for cancer therapy, (+)-SHIN-1, identify SHMT as a potent antibacterial target.
Collapse
Affiliation(s)
- Yuko Makino
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Chihiro Oe
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kazuya Iwama
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Satoshi Suzuki
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Akie Nishiyama
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kazuya Hasegawa
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, 1-1, Sayo-chou, Hyogo, Japan
| | - Haruka Okuda
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kazushige Hirata
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Division of Clinical Laboratory, Department of Clinical Laboratory Medicine, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Mariko Ueno
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kumi Kawaji
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Mina Sasano
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Emiko Usui
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Toshiaki Hosaka
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Suehiro 1-7-22, Tsurumi, Yokohama, Japan
| | - Yukako Yabuki
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Suehiro 1-7-22, Tsurumi, Yokohama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Suehiro 1-7-22, Tsurumi, Yokohama, Japan
| | - Makoto Katsumi
- Division of Clinical Laboratory, Department of Clinical Laboratory Medicine, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kazutaka Murayama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Suehiro 1-7-22, Tsurumi, Yokohama, Japan.,Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Hironori Hayashi
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan. .,Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Eiichi N Kodama
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
18
|
Oh TS, Zabalawi M, Jain S, Long D, Stacpoole PW, McCall CE, Quinn MA. Dichloroacetate improves systemic energy balance and feeding behavior during sepsis. JCI Insight 2022; 7:153944. [PMID: 35730570 PMCID: PMC9309051 DOI: 10.1172/jci.insight.153944] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to an infection. The metabolic aberrations associated with sepsis underly an acute and organism-wide hyperinflammatory response and multiple organ dysfunction; however, crosstalk between systemic metabolomic alterations and metabolic reprogramming at organ levels remains unknown. We analyzed substrate utilization by the respiratory exchange ratio, energy expenditure, metabolomic screening, and transcriptional profiling in a cecal ligation and puncture model to show that sepsis increases circulating free fatty acids and acylcarnitines but decreases levels of amino acids and carbohydrates, leading to a drastic shift in systemic fuel preference. Comparative analysis of previously published metabolomics from septic liver indicated a positive correlation with hepatic and plasma metabolites during sepsis. In particular, glycine deficiency was a common abnormality of the plasma and liver during sepsis. Interrogation of the hepatic transcriptome in septic mice suggested that the septic liver may contribute to systemic glycine deficiency by downregulating genes involved in glycine synthesis. Interestingly, intraperitoneal injection of the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate reversed sepsis-induced anorexia, energy imbalance, inflammation, dyslipidemia, hypoglycemia, and glycine deficiency. Collectively, our data indicated that PDK inhibition rescued systemic energy imbalance and metabolic dysfunction in sepsis partly through restoration of hepatic fuel metabolism.
Collapse
Affiliation(s)
- Tae Seok Oh
- Department of Pathology, Section on Comparative Medicine, and
| | - Manal Zabalawi
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Shalini Jain
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - David Long
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Peter W. Stacpoole
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Charles E. McCall
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Matthew A. Quinn
- Department of Pathology, Section on Comparative Medicine, and,Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
19
|
Spizzichino S, Boi D, Boumis G, Lucchi R, Liberati FR, Capelli D, Montanari R, Pochetti G, Piacentini R, Parisi G, Paone A, Rinaldo S, Contestabile R, Tramonti A, Paiardini A, Giardina G, Cutruzzolà F. Cytosolic localization and in vitro assembly of human de novo thymidylate synthesis complex. FEBS J 2021; 289:1625-1649. [PMID: 34694685 PMCID: PMC9299187 DOI: 10.1111/febs.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
De novo thymidylate synthesis is a crucial pathway for normal and cancer cells. Deoxythymidine monophosphate (dTMP) is synthesized by the combined action of three enzymes: serine hydroxymethyltransferase (SHMT1), dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS), with the latter two being targets of widely used chemotherapeutics such as antifolates and 5‐fluorouracil. These proteins translocate to the nucleus after SUMOylation and are suggested to assemble in this compartment into the thymidylate synthesis complex. We report the intracellular dynamics of the complex in cancer cells by an in situ proximity ligation assay, showing that it is also detected in the cytoplasm. This result indicates that the role of the thymidylate synthesis complex assembly may go beyond dTMP synthesis. We have successfully assembled the dTMP synthesis complex in vitro, employing tetrameric SHMT1 and a bifunctional chimeric enzyme comprising human thymidylate synthase and dihydrofolate reductase. We show that the SHMT1 tetrameric state is required for efficient complex assembly, indicating that this aggregation state is evolutionarily selected in eukaryotes to optimize protein–protein interactions. Lastly, our results regarding the activity of the complete thymidylate cycle in vitro may provide a useful tool with respect to developing drugs targeting the entire complex instead of the individual components.
Collapse
Affiliation(s)
- Sharon Spizzichino
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberta Lucchi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Giorgio Pochetti
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberta Piacentini
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Giacomo Parisi
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Angela Tramonti
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
20
|
Xie M, Pei DS. Serine hydroxymethyltransferase 2: a novel target for human cancer therapy. Invest New Drugs 2021; 39:1671-1681. [PMID: 34215932 DOI: 10.1007/s10637-021-01144-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
Serine and glycine are the primary sources of one-carbon units that are vital for cell proliferation. Their abnormal metabolism is known to be associated with cancer progression. As the key enzyme of serine metabolism, Serine Hydroxymethyltransferase 2 (SHMT2) has been a research hotspot in recent years. SHMT2 is a PLP-dependent tetrameric enzyme that catalyzes the reversible transition from serine to glycine, thus promoting the production of one-carbon units that are indispensable for cell growth and regulation of the redox and epigenetic states of cells. Under a hypoxic environment, SHMT2 can be upregulated and could promote the generation of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione for maintaining the redox balance. Accumulating evidence confirmed that SHMT2 facilitates cell proliferation and tumor growth and is tightly associated with poor prognosis. In this review, we present insights into the function and research development of SHMT2 and summarize the possible molecular mechanisms of SHMT2 in promoting tumor growth, in the hope that it could provide clues to more effective clinical treatment of cancer.
Collapse
Affiliation(s)
- Min Xie
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
21
|
Monti M, Guiducci G, Paone A, Rinaldo S, Giardina G, Liberati FR, Cutruzzolá F, Tartaglia GG. Modelling of SHMT1 riboregulation predicts dynamic changes of serine and glycine levels across cellular compartments. Comput Struct Biotechnol J 2021; 19:3034-3041. [PMID: 34136101 PMCID: PMC8175283 DOI: 10.1016/j.csbj.2021.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 01/15/2023] Open
Abstract
Human serine hydroxymethyltransferase (SHMT) regulates the serine-glycine one carbon metabolism and plays a role in cancer metabolic reprogramming. Two SHMT isozymes are acting in the cell: SHMT1 encoding the cytoplasmic isozyme, and SHMT2 encoding the mitochondrial one. Here we present a molecular model built on experimental data reporting the interaction between SHMT1 protein and SHMT2 mRNA, recently discovered in lung cancer cells. Using a stochastic dynamic model, we show that RNA moieties dynamically regulate serine and glycine concentration, shaping the system behaviour. For the first time we observe an active functional role of the RNA in the regulation of the serine-glycine metabolism and availability, which unravels a complex layer of regulation that cancer cells exploit to fine tune amino acids availability according to their metabolic needs. The quantitative model, complemented by an experimental validation in the lung adenocarcinoma cell line H1299, exploits RNA molecules as metabolic switches of the SHMT1 activity. Our results pave the way for the development of RNA-based molecules able to unbalance serine metabolism in cancer cells.
Collapse
Affiliation(s)
- Michele Monti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- RNA System Biology Lab, Centre for Human Technologies, Istituto Italiano di Tecnologia (IIT), Enrico Melen 83, 16152 Genova, Italy
| | - Giulia Guiducci
- Department of Biochemical Sciences “A.Rossi Fanelli”, Sapienza University of Rome, P-le A.Moro 5, 00185 Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences “A.Rossi Fanelli”, Sapienza University of Rome, P-le A.Moro 5, 00185 Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences “A.Rossi Fanelli”, Sapienza University of Rome, P-le A.Moro 5, 00185 Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences “A.Rossi Fanelli”, Sapienza University of Rome, P-le A.Moro 5, 00185 Rome, Italy
| | - Francesca Romana Liberati
- Department of Biochemical Sciences “A.Rossi Fanelli”, Sapienza University of Rome, P-le A.Moro 5, 00185 Rome, Italy
| | - Francesca Cutruzzolá
- Department of Biochemical Sciences “A.Rossi Fanelli”, Sapienza University of Rome, P-le A.Moro 5, 00185 Rome, Italy
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- RNA System Biology Lab, Centre for Human Technologies, Istituto Italiano di Tecnologia (IIT), Enrico Melen 83, 16152 Genova, Italy
- ICREA, Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, P-le A.Moro 5, 00185 Rome, Italy
| |
Collapse
|
22
|
Cuthbertson CR, Arabzada Z, Bankhead A, Kyani A, Neamati N. A Review of Small-Molecule Inhibitors of One-Carbon Enzymes: SHMT2 and MTHFD2 in the Spotlight. ACS Pharmacol Transl Sci 2021; 4:624-646. [PMID: 33860190 DOI: 10.1021/acsptsci.0c00223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Metabolic reprogramming is a key hallmark of cancer and shifts cellular metabolism to meet the demands of biomass production necessary for abnormal cell reproduction. One-carbon metabolism (1CM) contributes to many biosynthetic pathways that fuel growth and is comprised of a complex network of enzymes. Methotrexate and 5-fluorouracil were pioneering drugs in this field and are still widely used today as anticancer agents as well as for other diseases such as arthritis. Besides dihydrofolate reductase and thymidylate synthase, two other enzymes of the folate cycle arm of 1CM have not been targeted clinically: serine hydroxymethyltransferase (SHMT) and methylenetetrahydrofolate dehydrogenase (MTHFD). An increasing body of literature suggests that the mitochondrial isoforms of these enzymes (SHMT2 and MTHFD2) are clinically relevant in the context of cancer. In this review, we focused on the 1CM pathway as a target for cancer therapy and, in particular, SHMT2 and MTHFD2. The function, regulation, and clinical relevance of SHMT2 and MTHFD2 are all discussed. We expand on previous clinical studies and evaluate the prognostic significance of these critical enzymes by performing a pan-cancer analysis of patient data from the The Cancer Genome Atlas and a transcriptional coexpression network enrichment analysis. We also provide an overview of preclinical and clinical inhibitors targeting the folate pathway, the methionine cycle, and folate-dependent purine biosynthesis enzymes.
Collapse
Affiliation(s)
- Christine R Cuthbertson
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Zahra Arabzada
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Armita Kyani
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Bouzidi A, Magnifico MC, Paiardini A, Macone A, Boumis G, Giardina G, Rinaldo S, Liberati FR, Lauro C, Limatola C, Lanzillotta C, Tramutola A, Perluigi M, Sgarbi G, Solaini G, Baracca A, Paone A, Cutruzzolà F. Cytosolic serine hydroxymethyltransferase controls lung adenocarcinoma cells migratory ability by modulating AMP kinase activity. Cell Death Dis 2020; 11:1012. [PMID: 33243973 PMCID: PMC7691363 DOI: 10.1038/s41419-020-03215-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Nutrient utilization and reshaping of metabolism in cancer cells is a well-known driver of malignant transformation. Less clear is the influence of the local microenvironment on metastasis formation and choice of the final organ to invade. Here we show that the level of the amino acid serine in the cytosol affects the migratory properties of lung adenocarcinoma (LUAD) cells. Inhibition of serine or glycine uptake from the extracellular milieu, as well as knockdown of the cytosolic one-carbon metabolism enzyme serine hydroxymethyltransferase (SHMT1), abolishes migration. Using rescue experiments with a brain extracellular extract, and direct measurements, we demonstrate that cytosolic serine starvation controls cell movement by increasing reactive oxygen species formation and decreasing ATP levels, thereby promoting activation of the AMP sensor kinase (AMPK) by phosphorylation. Activation of AMPK induces remodeling of the cytoskeleton and finally controls cell motility. These results highlight that cytosolic serine metabolism plays a key role in controlling motility, suggesting that cells are able to dynamically exploit the compartmentalization of this metabolism to adapt their metabolic needs to different cell functions (movement vs. proliferation). We propose a model to explain the relevance of serine/glycine metabolism in the preferential colonization of the brain by LUAD cells and suggest that the inhibition of serine/glycine uptake and/or cytosolic SHMT1 might represent a successful strategy to limit the formation of brain metastasis from primary tumors, a major cause of death in these patients.
Collapse
Affiliation(s)
- Amani Bouzidi
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Maria Chiara Magnifico
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70121, Bari, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Francesca Romana Liberati
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Clotilde Lauro
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Gianluca Sgarbi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Giancarlo Solaini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Alessandra Baracca
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Alessio Paone
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
24
|
Abstract
Serine hydroxymethyltransferase 2 (SHMT2) converts serine plus tetrahydrofolate (THF) into glycine plus methylene-THF and is upregulated at the protein level in lung and other cancers. In order to better understand the role of SHMT2 in cancer a model system of HeLa cells engineered for inducible over-expression or knock-down of SHMT2 was characterized for cell proliferation and changes in metabolites and proteome as a function of SHMT2. Ectopic over-expression of SHMT2 increased cell proliferation in vitro and tumor growth in vivo. Knockdown of SHMT2 expression in vitro caused a state of glycine auxotrophy and accumulation of phosphoribosylaminoimidazolecarboxamide (AICAR), an intermediate of folate/1-carbon-pathway-dependent de novo purine nucleotide synthesis. Decreased glycine in the HeLa cell-based xenograft tumors with knocked down SHMT2 was potentiated by administration of the anti-hyperglycinemia agent benzoate. However, tumor growth was not affected by SHMT2 knockdown with or without benzoate treatment. Benzoate inhibited cell proliferation in vitro, but this was independent of SHMT2 modulation. The abundance of proteins of mitochondrial respiration complexes 1 and 3 was inversely correlated with SHMT2 levels. Proximity biotinylation in vivo (BioID) identified 48 mostly mitochondrial proteins associated with SHMT2 including the mitochondrial enzymes Acyl-CoA thioesterase (ACOT2) and glutamate dehydrogenase (GLUD1) along with more than 20 proteins from mitochondrial respiration complexes 1 and 3. These data provide insights into possible mechanisms through which elevated SHMT2 in cancers may be linked to changes in metabolism and mitochondrial function.
Collapse
|
25
|
Contestabile R, di Salvo ML, Bunik V, Tramonti A, Vernì F. The multifaceted role of vitamin B 6 in cancer: Drosophila as a model system to investigate DNA damage. Open Biol 2020; 10:200034. [PMID: 32208818 PMCID: PMC7125957 DOI: 10.1098/rsob.200034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A perturbed uptake of micronutrients, such as minerals and vitamins, impacts on different human diseases, including cancer and neurological disorders. Several data converge towards a crucial role played by many micronutrients in genome integrity maintenance and in the establishment of a correct DNA methylation pattern. Failure in the proper accomplishment of these processes accelerates senescence and increases the risk of developing cancer, by promoting the formation of chromosome aberrations and deregulating the expression of oncogenes. Here, the main recent evidence regarding the impact of some B vitamins on DNA damage and cancer is summarized, providing an integrated and updated analysis, mainly centred on vitamin B6. In many cases, it is difficult to finely predict the optimal vitamin rate that is able to protect against DNA damage, as this can be influenced by a given individual's genotype. For this purpose, a precious resort is represented by model organisms which allow limitations imposed by more complex systems to be overcome. In this review, we show that Drosophila can be a useful model to deeply understand mechanisms underlying the relationship between vitamin B6 and genome integrity.
Collapse
Affiliation(s)
- Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy
| | - Martino Luigi di Salvo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy
| | - Victoria Bunik
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia.,Sechenov Medical University, Sechenov University, 119048 Moscow, Russia
| | - Angela Tramonti
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Pl.e A. Moro, 5, 00185 Roma, Italy
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, Pl.e A. Moro, 5, 00185 Roma, Italy
| |
Collapse
|
26
|
Korasick DA, Kandoth PK, Tanner JJ, Mitchum MG, Beamer LJ. Impaired folate binding of serine hydroxymethyltransferase 8 from soybean underlies resistance to the soybean cyst nematode. J Biol Chem 2020; 295:3708-3718. [PMID: 32014996 PMCID: PMC7076220 DOI: 10.1074/jbc.ra119.012256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
Management of the agricultural pathogen soybean cyst nematode (SCN) relies on the use of SCN-resistant soybean cultivars, a strategy that has been failing in recent years. An underutilized source of resistance in the soybean genotype Peking is linked to two polymorphisms in serine hydroxy-methyltransferase 8 (SHMT8). SHMT is a pyridoxal 5'-phosphate-dependent enzyme that converts l-serine and (6S)-tetrahydrofolate to glycine and 5,10-methylenetetrahydrofolate. Here, we determined five crystal structures of the 1884-residue SHMT8 tetramers from the SCN-susceptible cultivar (cv.) Essex and the SCN-resistant cv. Forrest (whose resistance is derived from the SHMT8 polymorphisms in Peking); the crystal structures were determined in complex with various ligands at 1.4-2.35 Å resolutions. We find that the two Forrest-specific polymorphic substitutions (P130R and N358Y) impact the mobility of a loop near the entrance of the (6S)-tetrahydrofolate-binding site. Ligand-binding and kinetic studies indicate severely reduced affinity for folate and dramatically impaired enzyme activity in Forrest SHMT8. These findings imply widespread effects on folate metabolism in soybean cv. Forrest that have implications for combating the widespread increase in virulent SCN.
Collapse
Affiliation(s)
- David A Korasick
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Pramod K Kandoth
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211; Department of Chemistry, University of Missouri, Columbia, Missouri 65211
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Lesa J Beamer
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211; Department of Chemistry, University of Missouri, Columbia, Missouri 65211.
| |
Collapse
|
27
|
Guiducci G, Paone A, Tramonti A, Giardina G, Rinaldo S, Bouzidi A, Magnifico MC, Marani M, Menendez JA, Fatica A, Macone A, Armaos A, Tartaglia GG, Contestabile R, Paiardini A, Cutruzzolà F. The moonlighting RNA-binding activity of cytosolic serine hydroxymethyltransferase contributes to control compartmentalization of serine metabolism. Nucleic Acids Res 2019; 47:4240-4254. [PMID: 30809670 PMCID: PMC6486632 DOI: 10.1093/nar/gkz129] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/01/2019] [Accepted: 02/15/2019] [Indexed: 12/30/2022] Open
Abstract
Enzymes of intermediary metabolism are often reported to have moonlighting functions as RNA-binding proteins and have regulatory roles beyond their primary activities. Human serine hydroxymethyltransferase (SHMT) is essential for the one-carbon metabolism, which sustains growth and proliferation in normal and tumour cells. Here, we characterize the RNA-binding function of cytosolic SHMT (SHMT1) in vitro and using cancer cell models. We show that SHMT1 controls the expression of its mitochondrial counterpart (SHMT2) by binding to the 5'untranslated region of the SHMT2 transcript (UTR2). Importantly, binding to RNA is modulated by metabolites in vitro and the formation of the SHMT1-UTR2 complex inhibits the serine cleavage activity of the SHMT1, without affecting the reverse reaction. Transfection of UTR2 in cancer cells controls SHMT1 activity and reduces cell viability. We propose a novel mechanism of SHMT regulation, which interconnects RNA and metabolites levels to control the cross-talk between cytosolic and mitochondrial compartments of serine metabolism.
Collapse
Affiliation(s)
- Giulia Guiducci
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Angela Tramonti
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Amani Bouzidi
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Maria C Magnifico
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Marina Marani
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Alessandro Fatica
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, 00185 Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alexandros Armaos
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Gian G Tartaglia
- Department of Biology and Biotechnology 'C. Darwin', Sapienza University of Rome, 00185 Rome, Italy.,Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Department of Experimental and Health Sciences, 08003 Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Department of Life and Medical Sciences, 23 Passeig Lluıs Companys, 08010 Barcelona, Spain
| | - Roberto Contestabile
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Sapienza University of Rome - P. le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
28
|
Li X, Yang J, Pu Q, Peng X, Xu L, Liu S. Serine hydroxymethyltransferase controls blood-meal digestion in the midgut of Aedes aegypti mosquitoes. Parasit Vectors 2019; 12:460. [PMID: 31551071 PMCID: PMC6757384 DOI: 10.1186/s13071-019-3714-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
Background Female Aedes aegypti mosquitoes are vectors of arboviruses that cause diverse diseases of public health significance. Blood protein digestion by midgut proteases provides anautogenous mosquitoes with the nutrients essential for oocyte maturation and egg production. Midgut-specific miR-1174 affects the functions of the midgut through its target gene serine hydroxymethyltransferase (SHMT). However, less is known about SHMT-regulated processes in blood digestion by mosquitoes. Methods RNAi of SHMT was realized by injection of the double-stranded RNA at 16 h post-eclosion. The expression of SHMT at mRNA level and protein level was assayed by real-time PCR and Western blotting, respectively. Statistical analyses were performed with GraphPad7 using Student’s t-test. Results Here, we confirmed that digestion of blood was inhibited in SHMT RNAi-silenced female A. aegypti mosquitoes. Evidence is also presented that all SHMT-depleted female mosquitoes lost their flight ability and died within 48 h of a blood meal. Furthermore, most examined digestive enzymes responded differently in their transcriptional expression to RNAi depletion of SHMT, with some downregulated, some upregulated and some remaining stable. Phylogenetic analysis showed that transcriptional expression responses to SHMT silence were largely unrelated to the sequence similarity between these enzymes. Conclusions Overall, this research shows that SHMT was expressed at a low level in the midgut of Aedes aegypti mosquitoes, but blood-meal digestion was inhibited when SHMT was silenced. Transcriptional expressions of different digestive enzymes were affected in response to SHMT depletion, suggesting that SHMT is required for the blood-meal digestion in the midgut and targeting SHMT could provide an effective strategy for vector mosquito population control.
Collapse
Affiliation(s)
- Xuemei Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Jinyu Yang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China.,College of Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qian Pu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xinyue Peng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Lili Xu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Shiping Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, People's Republic of China. .,College of Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China. .,College of Life Science, China West Normal University, Nanchong, 637002, People's Republic of China.
| |
Collapse
|