1
|
Dermawan D, Alotaiq N. Computational analysis of antimicrobial peptides targeting key receptors in infection-related cardiovascular diseases: molecular docking and dynamics insights. Sci Rep 2025; 15:8896. [PMID: 40087360 PMCID: PMC11909139 DOI: 10.1038/s41598-025-93683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
Infection-related cardiovascular diseases (CVDs) pose a significant health challenge, driving the need for novel therapeutic strategies to target key receptors involved in inflammation and infection. Antimicrobial peptides (AMPs) show the potential to disrupt pathogenic processes and offer a promising approach to CVD treatment. This study investigates the binding potential of selected AMPs with critical receptors implicated in CVDs, aiming to explore their therapeutic potential. A comprehensive computational approach was employed to assess AMP interactions with CVD-related receptors, including ACE2, CRP, MMP9, NLRP3, and TLR4. Molecular docking studies identified AMPs with high binding affinities to these targets, notably Tachystatin, Pleurocidin, and Subtilisin A, which showed strong interactions with ACE2, CRP, and MMP9. Following docking, 100 ns molecular dynamics (MD) simulations confirmed the stability of AMP-receptor complexes, and MM/PBSA calculations provided quantitative insights into binding energies, underscoring the potential of these AMPs to modulate receptor activity in infection and inflammation contexts. The study highlights the therapeutic potential of Tachystatin, Pleurocidin, and Subtilisin A in targeting infection-related pathways in CVDs. These AMPs demonstrate promising receptor binding properties and stability in computational models. Future research should focus on in vitro and in vivo studies to confirm their efficacy and safety, paving the way for potential clinical applications in managing infection-related cardiovascular conditions.
Collapse
Affiliation(s)
- Doni Dermawan
- Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, 00-661, Poland
| | - Nasser Alotaiq
- Health Sciences Research Center (HSRC), Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317, Saudi Arabia.
| |
Collapse
|
2
|
Fuchsbauer HL. Approaching transglutaminase from Streptomyces bacteria over three decades. FEBS J 2021; 289:4680-4703. [PMID: 34102019 DOI: 10.1111/febs.16060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022]
Abstract
Transglutaminases are protein cross-linking and protein-modifying enzymes that have attracted considerable interest due to their causal involvement in various diseases and versatility in industrial applications. In particular, microbial transglutaminases (MTG) from Streptomyces bacteria have managed in recent years to evolve from simple food additives to specialized enzymes for the site-directed modification of therapeutic proteins. The review summarizes relevant studies from the beginning dealing with the occurrence, production, structure, catalysis, and substrate molecules of MTG enzymes. It also addresses biotechnological procedures with MTG from S. mobaraensis (SmMTG) as the most prominent representative in focus. Reassessment of the available data revealed unexpected insights into catalysis of SmMTG and other transglutaminases, suggesting selection of glutamine donor proteins by subsites at the front vestibule and the existence of distinct lysine pockets. Flexibility of the SmMTG-accessible glutamine donor substrate regions seems to be more important than the glutamine environment. Nevertheless, residues in close vicinity to glutamines also determine interaction with the SmMTG subsites. The apparent lack of subsites for lysine donor proteins suggests self-assembly of the substrate proteins prior to enzymatic cross-linking. The study of natural substrate proteins, especially their mutual interaction, is proposed to further illuminate catalysis of SmMTG. To this end, structure and function of the characterized substrate proteins from S. mobaraensis are discussed in conclusion.
Collapse
Affiliation(s)
- Hans-Lothar Fuchsbauer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| |
Collapse
|
3
|
Juettner NE, Bogen JP, Bauer TA, Knapp S, Pfeifer F, Huettenhain SH, Meusinger R, Kraemer A, Fuchsbauer HL. Decoding the Papain Inhibitor from Streptomyces mobaraensis as Being Hydroxylated Chymostatin Derivatives: Purification, Structure Analysis, and Putative Biosynthetic Pathway. JOURNAL OF NATURAL PRODUCTS 2020; 83:2983-2995. [PMID: 32998509 DOI: 10.1021/acs.jnatprod.0c00201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Streptomyces mobaraensis produces the papain inhibitor SPI consisting of a 12 kDa protein and small active compounds (SPIac). Purification of the papain inhibitory compounds resulted in four diverse chymostatin derivatives that were characterized by NMR and MS analysis. Chymostatins are hydrophobic tetrapeptide aldehydes from streptomycetes, e.g., S. lavendulae and S. hygroscopicus, that reverse chymosin-mediated angiotensin activation and inhibit other serine and cysteine proteases. Chymotrypsin and papain were both inhibited by the SPIac compounds in the low nanomolar range. SPIac differs from the characterized chymostatins by the exchange of phenylalanine for tyrosine. The crystal structure of one of these chymostatin variants confirmed its molecular structure and revealed a S-configured hemithioacetal bond with the catalytic Cys25 thiolate as well as close interactions with hydrophobic S1 and S2 subsite amino acids. A model for chymostatin biosynthesis is provided based on the discovery of clustered genes encoding several putative nonribosomal peptide synthetases; among them, there is the unusual CstF enzyme that accommodates two canonical amino acid activation domains as well as three peptide carrier protein domains.
Collapse
Affiliation(s)
- Norbert E Juettner
- The Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295 Darmstadt, Germany
- The Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Jan P Bogen
- The Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295 Darmstadt, Germany
| | - Tobias A Bauer
- The Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295 Darmstadt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Felicitas Pfeifer
- The Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Stefan H Huettenhain
- The Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295 Darmstadt, Germany
| | - Reinhard Meusinger
- The Department of Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Andreas Kraemer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Hans-Lothar Fuchsbauer
- The Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295 Darmstadt, Germany
| |
Collapse
|
4
|
Dissecting capture and twisting of aureolysin and pseudolysin: functional amino acids of the Dispase autolysis-inducing protein. Biochem J 2020; 477:2595-2606. [PMID: 32602533 DOI: 10.1042/bcj20200407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022]
Abstract
The Dispase autolysis-inducing protein (DAIP) from Streptomyces mobaraensis attracts M4 metalloproteases, which results in inhibition and autolysis of bacillolysin (BL) and thermolysin (TL). The present study shows that aureolysin (AL) from Staphylococcus aureus and pseudolysin (LasB) from Pseudomonas aeruginosa are likewise impaired by DAIP. Complete inhibition occurred when DAIP significantly exceeded the amount of the target protease. At low DAIP concentrations, AL and BL performed autolysis, while LasB and TL degradation required reductants or detergents that break intramolecular disulfide bonds or change the protein structure. Site directed mutagenesis of DAIP and removal of an exposed protein loop either influenced binding or inhibition of AL and TL but had no effect on LasB and BL. The Y170A and Δ239-248 variants had completely lost affinity for TL and AL. The exchange of Asn-275 also impaired the interaction of DAIP with AL. In contrast, DAIP Phe-297 substitution abolished inhibition and autolysis of both target proteases but still allowed complex formation. Our results give rise to the conclusion that other, yet unknown DAIP amino acids inactivate LasB and BL. Obviously, various bacteria in the same habitat caused Streptomyces mobaraensis to continuously optimize DAIP in inactivating the tackling metalloproteases.
Collapse
|
5
|
Juettner NE, Schmelz S, Anderl A, Colin F, Classen M, Pfeifer F, Scrima A, Fuchsbauer HL. The N-terminal peptide of the transglutaminase-activating metalloprotease inhibitor from Streptomyces mobaraensis accommodates both inhibition and glutamine cross-linking sites. FEBS J 2019; 287:708-720. [PMID: 31420998 DOI: 10.1111/febs.15044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/01/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022]
Abstract
Streptomyces mobaraensis is a key player for the industrial production of the protein cross-linking enzyme microbial transglutaminase (MTG). Extra-cellular activation of MTG by the transglutaminase-activating metalloprotease (TAMP) is regulated by the TAMP inhibitory protein SSTI that belongs to the large Streptomyces subtilisin inhibitor (SSI) family. Despite decades of SSI research, the binding site for metalloproteases such as TAMP remained elusive in most of the SSI proteins. Moreover, SSTI is a MTG substrate, and the preferred glutamine residues for SSTI cross-linking are not determined. To address both issues, that is, determination of the TAMP and the MTG glutamine binding sites, SSTI was modified by distinct point mutations as well as elongation or truncation of the N-terminal peptide by six and three residues respectively. Structural integrity of the mutants was verified by the determination of protein melting points and supported by unimpaired subtilisin inhibitory activity. While exchange of single amino acids could not disrupt decisively the SSTI TAMP interaction, the N-terminally shortened variants clearly indicated the highly conserved Leu40-Tyr41 as binding motif for TAMP. Moreover, enzymatic biotinylation revealed that an adjacent glutamine pair, upstream from Leu40-Tyr41 in the SSTI precursor protein, is the preferred binding site of MTG. This extension peptide disturbs the interaction with TAMP. The structure of SSTI was furthermore determined by X-ray crystallography. While no structural data could be obtained for the N-terminal peptide due to flexibility, the core structure starting from Tyr41 could be determined and analysed, which superposes well with SSI-family proteins. ENZYMES: Chymotrypsin, EC3.4.21.1; griselysin (SGMPII, SgmA), EC3.4.24.27; snapalysin (ScNP), EC3.4.24.77; streptogrisin-A (SGPA), EC3.4.21.80; streptogrisin-B (SGPB), EC3.4.21.81; subtilisin BPN', EC3.4.21.62; transglutaminase, EC2.3.2.13; transglutaminase-activating metalloprotease (TAMP), EC3.4.-.-; tri-/tetrapeptidyl aminopeptidase, EC3.4.11.-; trypsin, EC3.4.21.4. DATABASES: The atomic coordinates and structure factors (PDB 6I0I) have been deposited in the Protein Data Bank (http://www.rcsb.org).
Collapse
Affiliation(s)
- Norbert E Juettner
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany.,Department of Biology, Technische Universität Darmstadt, Germany
| | - Stefan Schmelz
- Structural Biology of Autophagy Group, Department Structure and Function of Proteins, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Anita Anderl
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| | - Felix Colin
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| | - Moritz Classen
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| | | | - Andrea Scrima
- Structural Biology of Autophagy Group, Department Structure and Function of Proteins, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Hans-Lothar Fuchsbauer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| |
Collapse
|
6
|
Anderl A, Ferlemann C, Muth M, Henkel-Gupalo A, Ebenig A, Brenner-Weiß G, Kolmar H, Fuchsbauer HL. Biochemical study of sortase E2 from Streptomyces mobaraensis and determination of transglutaminase cross-linking sites. FEBS Lett 2019; 593:1944-1956. [PMID: 31155711 DOI: 10.1002/1873-3468.13466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
Distinct streptomycetes such as Streptomyces mobaraensis produce the protein cross-linking enzyme transglutaminase. Bioinformatic analysis predicted the occurrence of seven sortases exerting transpeptidation reactions similarly to transglutaminase. Here, we report the production and characterization of sortase E2 (Sm-SrtE2) solubilized by removal of its membrane anchor domain. Sm-SrtE2 activity was measured using pentapeptides predicted to be cell wall sorting signals of putative sortase substrate proteins. Preferred linkage to Gly3 by Sm-SrtE2 was in the order LAETG>>LAHTG>>LAQTG~LANTG>LARTG. Chaplin 1 from S. mobaraensis was further demonstrated to be an excellent substrate of both the intrinsic Sm-SrtE2 and transglutaminase. The unexpected discovery showing Gln-62 and Gln-65 of Δ1-50 -Sm-SrtE2 as transglutaminase cross-linking sites suggests that low enzyme stability might be due to anchor domain truncation and a disordered N terminus.
Collapse
Affiliation(s)
- Anita Anderl
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany.,Department of Chemistry, Technische Universität Darmstadt, Germany
| | - Cathrin Ferlemann
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| | - Marius Muth
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany.,Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Germany
| | - Antonina Henkel-Gupalo
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| | - Aileen Ebenig
- Department of Chemistry, Technische Universität Darmstadt, Germany
| | - Gerald Brenner-Weiß
- Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Germany
| | - Harald Kolmar
- Department of Chemistry, Technische Universität Darmstadt, Germany
| | - Hans-Lothar Fuchsbauer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| |
Collapse
|
7
|
Streptomyces: implications and interactions in plant growth promotion. Appl Microbiol Biotechnol 2018; 103:1179-1188. [PMID: 30594952 PMCID: PMC6394478 DOI: 10.1007/s00253-018-09577-y] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/25/2022]
Abstract
With the impending increase of the world population by 2050, more activities have been directed toward the improvement of crop yield and a safe environment. The need for chemical-free agricultural practices is becoming eminent due to the effects of these chemicals on the environment and human health. Actinomycetes constitute a significant percentage of the soil microbial community. The Streptomyces genus, which is the most abundant and arguably the most important actinomycetes, is a good source of bioactive compounds, antibiotics, and extracellular enzymes. These genera have shown over time great potential in improving the future of agriculture. This review highlights and buttresses the agricultural importance of Streptomyces through its biocontrol and plant growth-promoting activities. These activities are highlighted and discussed in this review. Some biocontrol products from this genus are already being marketed while work is still ongoing on this productive genus. Compared to more focus on its biocontrol ability, less work has been done on it as a biofertilizer until recently. This genus is as efficient as a biofertilizer as it is as a biocontrol.
Collapse
|