1
|
Obsilova V, Obsil T. Look for the Scaffold: Multifaceted Regulation of Enzyme Activity by 14-3-3 Proteins. Physiol Res 2024; 73:S401-S412. [PMID: 38647170 PMCID: PMC11412345 DOI: 10.33549/physiolres.935306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Enzyme activity is regulated by several mechanisms, including phosphorylation. Phosphorylation is a key signal transduction process in all eukaryotic cells and is thus crucial for virtually all cellular processes. In addition to its direct effect on protein structure, phosphorylation also affects protein-protein interactions, such as binding to scaffolding 14-3-3 proteins, which selectively recognize phosphorylated motifs. These interactions then modulate the catalytic activity, cellular localisation and interactions of phosphorylated enzymes through different mechanisms. The aim of this mini-review is to highlight several examples of 14-3-3 protein-dependent mechanisms of enzyme regulation previously studied in our laboratory over the past decade. More specifically, we address here the regulation of the human enzymes ubiquitin ligase Nedd4-2, procaspase-2, calcium-calmodulin dependent kinases CaMKK1/2, and death-associated protein kinase 2 (DAPK2) and yeast neutral trehalase Nth1.
Collapse
Affiliation(s)
- V Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Vestec, Czech Republic. or
| | | |
Collapse
|
2
|
Chakraborty G, Patra N. Elucidating the Molecular Basis of 14-3-3 Interaction with α-Synuclein: Insights from Molecular Dynamics Simulations and the Design of a Novel Protein-Protein Interaction Inhibitor. J Phys Chem B 2024; 128:7068-7085. [PMID: 38857533 DOI: 10.1021/acs.jpcb.4c01743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Parkinson's disease is a widespread age-related neurodegenerative disorder characterized by the loss of dopaminergic neurons in the midbrain along with the appearance of protein aggregates, termed as "Lewy bodies" in the surviving neuronal cells. The components of Lewy bodies include proteins such as α-synuclein, 14-3-3, Parkin, and LRRK2, along with other cellular organelles, which, in their native state, perform a plethora of vital biological functions within the human biome. Formation of these aggregates renders these components inactive, thereby interfering with homeostasis. In this regard, the current study attempts to investigate the complexation behavior of all human-based 14-3-3 isoforms with α-synuclein via a combination of classical and enhanced sampling techniques and thereby determine the causality of these protein-protein interactions. The study indicated that upon complexation, the aggregation propensity of both 14-3-3 and α-synuclein increases, and this increment is propelled by the interfacial residues on either protein. Furthermore, mutagenesis studies revealed that Lys214 of 14-3-3 (henceforth termed K214A) is crucial for the formation of this binary complex. Principal component analysis combined with clustering studies unveiled the stability of these complexes in terms of their conformational distribution across the entire MD trajectory. For K214A, these clustered states were sparsely located, thereby making the transitions between them slightly difficult. Dynamic cross-correlation maps (DCCM) revealed the role of residues in the range 80-130 of 14-3-3 having a potential allosteric role in driving this complexation process. Finally, a novel peptide-based supramolecular inhibitor was designed, which exhibited higher proficiency in limiting the 14-3-3/α-synuclein interaction compared to the previous inhibitor model. It was also revealed that the presence of this inhibitor induces structural rigidity in α-synuclein, making changes in its conformations extremely difficult, as observed through Umbrella Sampling studies. Based on available information, the current study provides an insight into the molecular-level understanding of protein-protein interactions underlying Parkinson's disease and adds on to the methods of devising novel therapeutic approaches to treat the same.
Collapse
Affiliation(s)
- Gourav Chakraborty
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
3
|
Somsen BA, Cossar PJ, Arkin MR, Brunsveld L, Ottmann C. 14-3-3 Protein-Protein Interactions: From Mechanistic Understanding to Their Small-Molecule Stabilization. Chembiochem 2024; 25:e202400214. [PMID: 38738787 DOI: 10.1002/cbic.202400214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
Protein-protein interactions (PPIs) are of utmost importance for maintenance of cellular homeostasis. Herein, a central role can be found for 14-3-3 proteins. These hub-proteins are known to bind hundreds of interaction partners, thereby regulating their activity, localization, and/or stabilization. Due to their ability to bind a large variety of client proteins, studies of 14-3-3 protein complexes flourished over the last decades, aiming to gain greater molecular understanding of these complexes and their role in health and disease. Because of their crucial role within the cell, 14-3-3 protein complexes are recognized as highly interesting therapeutic targets, encouraging the discovery of small molecule modulators of these PPIs. We discuss various examples of 14-3-3-mediated regulation of its binding partners on a mechanistic level, highlighting the versatile and multi-functional role of 14-3-3 within the cell. Furthermore, an overview is given on the development of stabilizers of 14-3-3 protein complexes, from initially used natural products to fragment-based approaches. These studies show the potential of 14-3-3 PPI stabilizers as novel agents in drug discovery and as tool compounds to gain greater molecular understanding of the role of 14-3-3-based protein regulation.
Collapse
Affiliation(s)
- Bente A Somsen
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Peter J Cossar
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California, 94143, United States
| | - Luc Brunsveld
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Christian Ottmann
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Masaryk J, Kale D, Pohl P, Ruiz-Castilla FJ, Zimmermannová O, Obšilová V, Ramos J, Sychrová H. The second intracellular loop of the yeast Trk1 potassium transporter is involved in regulation of activity, and interaction with 14-3-3 proteins. Comput Struct Biotechnol J 2023; 21:2705-2716. [PMID: 37168872 PMCID: PMC10165143 DOI: 10.1016/j.csbj.2023.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Potassium is an essential intracellular ion, and a sufficient intracellular concentration of it is crucial for many processes; therefore it is fundamental for cells to precisely regulate K+ uptake and efflux through the plasma membrane. The uniporter Trk1 is a key player in K+ acquisition in yeasts. The TRK1 gene is expressed at a low and stable level; thus the activity of the transporter needs to be regulated at a posttranslational level. S. cerevisiae Trk1 changes its activity and affinity for potassium ion quickly and according to both internal and external concentrations of K+, as well as the membrane potential. The molecular basis of these changes has not been elucidated, though phosphorylation is thought to play an important role. In this study, we examined the role of the second, short, and highly conserved intracellular hydrophilic loop of Trk1 (IL2), and identified two phosphorylable residues (Ser882 and Thr900) as very important for 1) the structure of the loop and consequently for the targeting of Trk1 to the plasma membrane, and 2) the upregulation of the transporter's activity reaching maximal affinity under low external K+ conditions. Moreover, we identified three residues (Thr155, Ser414, and Thr900) within the Trk1 protein as strong candidates for interaction with 14-3-3 regulatory proteins, and showed, in an in vitro experiment, that phosphorylated Thr900 of the IL2 indeed binds to both isoforms of yeast 14-3-3 proteins, Bmh1 and Bmh2.
Collapse
Affiliation(s)
- Jakub Masaryk
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Membrane Transport, 14200 Prague 4, Czech Republic
| | - Deepika Kale
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Membrane Transport, 14200 Prague 4, Czech Republic
| | - Pavel Pohl
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, 25250 Vestec, Czech Republic
| | - Francisco J. Ruiz-Castilla
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 140 71 Córdoba, Spain
| | - Olga Zimmermannová
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Membrane Transport, 14200 Prague 4, Czech Republic
| | - Veronika Obšilová
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, 25250 Vestec, Czech Republic
| | - José Ramos
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 140 71 Córdoba, Spain
| | - Hana Sychrová
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Membrane Transport, 14200 Prague 4, Czech Republic
- Corresponding author.
| |
Collapse
|
5
|
Obsilova V, Obsil T. Structural insights into the functional roles of 14-3-3 proteins. Front Mol Biosci 2022; 9:1016071. [PMID: 36188227 PMCID: PMC9523730 DOI: 10.3389/fmolb.2022.1016071] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Signal transduction cascades efficiently transmit chemical and/or physical signals from the extracellular environment to intracellular compartments, thereby eliciting an appropriate cellular response. Most often, these signaling processes are mediated by specific protein-protein interactions involving hundreds of different receptors, enzymes, transcription factors, and signaling, adaptor and scaffolding proteins. Among them, 14-3-3 proteins are a family of highly conserved scaffolding molecules expressed in all eukaryotes, where they modulate the function of other proteins, primarily in a phosphorylation-dependent manner. Through these binding interactions, 14-3-3 proteins participate in key cellular processes, such as cell-cycle control, apoptosis, signal transduction, energy metabolism, and protein trafficking. To date, several hundreds of 14-3-3 binding partners have been identified, including protein kinases, phosphatases, receptors and transcription factors, which have been implicated in the onset of various diseases. As such, 14-3-3 proteins are promising targets for pharmaceutical interventions. However, despite intensive research into their protein-protein interactions, our understanding of the molecular mechanisms whereby 14-3-3 proteins regulate the functions of their binding partners remains insufficient. This review article provides an overview of the current state of the art of the molecular mechanisms whereby 14-3-3 proteins regulate their binding partners, focusing on recent structural studies of 14-3-3 protein complexes.
Collapse
Affiliation(s)
- Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Vestec, Czechia
- *Correspondence: Veronika Obsilova, ; Tomas Obsil,
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Veronika Obsilova, ; Tomas Obsil,
| |
Collapse
|
6
|
Sluchanko NN. Recent advances in structural studies of 14-3-3 protein complexes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:289-324. [PMID: 35534110 DOI: 10.1016/bs.apcsb.2021.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Being phosphopeptide-binding hubs, 14-3-3 proteins coordinate multiple cellular processes in eukaryotes, including the regulation of apoptosis, cell cycle, ion channels trafficking, transcription, signal transduction, and hormone biosynthesis. Forming constitutive α-helical dimers, 14-3-3 proteins predominantly recognize specifically phosphorylated Ser/Thr sites within their partners; this generally stabilizes phosphotarget conformation and affects its activity, intracellular distribution, dephosphorylation, degradation and interactions with other proteins. Not surprisingly, 14-3-3 complexes are involved in the development of a range of diseases and are considered promising drug targets. The wide interactome of 14-3-3 proteins encompasses hundreds of different phosphoproteins, for many of which the interaction is well-documented in vitro and in vivo but lack the structural data that would help better understand underlying regulatory mechanisms and develop new drugs. Despite obtaining structural information on 14-3-3 complexes is still lagging behind the research of 14-3-3 interactions on a proteome-wide scale, recent works provided some advances, including methodological improvements and accumulation of new interesting structural data, that are discussed in this review.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russian Federation.
| |
Collapse
|
7
|
Wing CE, Fung HYJ, Chook YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 2022; 23:307-328. [PMID: 35058649 PMCID: PMC10101760 DOI: 10.1038/s41580-021-00446-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap-cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines - the core replisome, RNA polymerase II and the ribosome - pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.
Collapse
|
8
|
Evans SR, West C, Klein-Seetharaman J. Similarity of the non-amyloid-β component and C-terminal tail of monomeric and tetrameric alpha-synuclein with 14-3-3 sigma. Comput Struct Biotechnol J 2021; 19:5348-5359. [PMID: 34667532 PMCID: PMC8495038 DOI: 10.1016/j.csbj.2021.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/28/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Alpha-synuclein (αSyn) is often described as a predominantly disordered protein that has a propensity to self-assemble into toxic oligomers that are found in patients with Parkinson's and Alzheimer's diseases. αSyn's chaperone behavior and tetrameric structure are proposed to be protective against toxic oligomerization. In this paper, we extended the previously proposed similarity between αSyn and 14-3-3 proteins to the α-helical tetrameric species of αSyn in detail. 14-3-3 proteins are a family of well-folded proteins with seven human isoforms, and function in signal transduction and as molecular chaperones. We investigated protein homology, using sequence alignment, amyloid, and disorder prediction, as well as three-dimensional visualization and protein-interaction networks. Our results show sequence homology and structural similarity between the aggregation-prone non-amyloid-β component (NAC) residues Val-52 to Gly-111 in αSyn and 14-3-3 sigma residues Leu-12 to Gly-78. We identified an additional region of sequence homology in the C-terminal region of αSyn (residues Ser-129 to Asp-135) and a C-terminal loop of 14-3-3 between helix αH and αI (residues Ser-209 to Asp-215). This data indicates αSyn shares conserved domain architecture with small heat shock proteins. We show predicted regions of high amyloidogenic propensity and intrinsic structural disorder in αSyn coincide with amyloidogenic and disordered predictions for 14-3-3 proteins. The homology in the NAC region aligns with residues involved in dimer- and tetramerization of the non-amyloidogenic 14-3-3 proteins. Because 14-3-3 proteins are generally not prone to misfolding, our results lend further support to the hypothesis that the NAC region is critical to the assembly of αSyn into the non-toxic tetrameric state.
Collapse
Key Words
- 14-3-3 proteins
- Alpha-synuclein
- BAD, BCL2 associated agonist of cell death gene name
- Homology
- IDP, Intrinsically disorder protein(s)
- MAPT, microtubule-associated protein tau gene name
- PPI, Protein-Protein interactions
- Prediction
- Protein structure
- SIP, shared interaction partner
- SNCA, alpha-synuclein gene name
- TH, tyrosine hydroxylase gene name
- Tetramer
- YWHAB, 14-3-3 protein beta isoform gene name
- YWHAE, 14-3-3 protein epsilon isoform gene name
- YWHAH, 14-3-3 protein eta isoform gene name
- pHSPB6, phosphorylated Heat Shock Protein beta-6
- sHSP, small heat shock protein
- αSyn, alpha-synuclein
Collapse
Affiliation(s)
- Sarah R. Evans
- Colorado School of Mines, Quantitative Biosciences and Engineering, 1012 14 St, Chemistry, Golden, CO 80401, USA
| | - Colista West
- Colorado School of Mines, Department of Chemistry, 1012 14 St, Chemistry, Golden, CO 80401, USA
| | - Judith Klein-Seetharaman
- Colorado School of Mines, Quantitative Biosciences and Engineering, 1012 14 St, Chemistry, Golden, CO 80401, USA
- Colorado School of Mines, Department of Chemistry, 1012 14 St, Chemistry, Golden, CO 80401, USA
| |
Collapse
|
9
|
Horvath M, Petrvalska O, Herman P, Obsilova V, Obsil T. 14-3-3 proteins inactivate DAPK2 by promoting its dimerization and protecting key regulatory phosphosites. Commun Biol 2021; 4:986. [PMID: 34413451 PMCID: PMC8376927 DOI: 10.1038/s42003-021-02518-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/03/2021] [Indexed: 01/05/2023] Open
Abstract
Death-associated protein kinase 2 (DAPK2) is a CaM-regulated Ser/Thr protein kinase, involved in apoptosis, autophagy, granulocyte differentiation and motility regulation, whose activity is controlled by autoinhibition, autophosphorylation, dimerization and interaction with scaffolding proteins 14-3-3. However, the structural basis of 14-3-3-mediated DAPK2 regulation remains unclear. Here, we structurally and biochemically characterize the full-length human DAPK2:14-3-3 complex by combining several biophysical techniques. The results from our X-ray crystallographic analysis revealed that Thr369 phosphorylation at the DAPK2 C terminus creates a high-affinity canonical mode III 14-3-3-binding motif, further enhanced by the diterpene glycoside Fusicoccin A. Moreover, concentration-dependent DAPK2 dimerization is disrupted by Ca2+/CaM binding and stabilized by 14-3-3 binding in solution, thereby protecting the DAPK2 inhibitory autophosphorylation site Ser318 against dephosphorylation and preventing Ca2+/CaM binding. Overall, our findings provide mechanistic insights into 14-3-3-mediated DAPK2 inhibition and highlight the potential of the DAPK2:14-3-3 complex as a target for anti‐inflammatory therapies. Horvath et al. structurally and biochemically characterize the full-length human DAPK2-14-3-3 complex to investigate the effects of binding to DAPK2 on its dimerization, activation by dephosphorylation of Ser318, and Ca2+/calmodulin binding. Their results provide mechanistic insights into 14- 3-3-mediated DAPK2 inhibition and highlight the potential of the DAPK2:14-3-3 complex as a target for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Matej Horvath
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Olivia Petrvalska
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Petr Herman
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic. .,Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.
| |
Collapse
|
10
|
14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains. Commun Biol 2021; 4:899. [PMID: 34294877 PMCID: PMC8298602 DOI: 10.1038/s42003-021-02419-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Neural precursor cell expressed developmentally down-regulated 4 ligase (Nedd4-2) is an E3 ubiquitin ligase that targets proteins for ubiquitination and endocytosis, thereby regulating numerous ion channels, membrane receptors and tumor suppressors. Nedd4-2 activity is regulated by autoinhibition, calcium binding, oxidative stress, substrate binding, phosphorylation and 14-3-3 protein binding. However, the structural basis of 14-3-3-mediated Nedd4-2 regulation remains poorly understood. Here, we combined several techniques of integrative structural biology to characterize Nedd4-2 and its complex with 14-3-3. We demonstrate that phosphorylated Ser342 and Ser448 are the key residues that facilitate 14-3-3 protein binding to Nedd4-2 and that 14-3-3 protein binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Overall, our findings provide the structural glimpse into the 14-3-3-mediated Nedd4-2 regulation and highlight the potential of the Nedd4-2:14-3-3 complex as a pharmacological target for Nedd4-2-associated diseases such as hypertension, epilepsy, kidney disease and cancer. Pohl et al. investigated the structural basis of Nedd4-2 regulation by 14-3-3 and found that phosphorylated Ser342 and Ser448 are the main residues that facilitate 14-3-3 binding to Nedd4-2. The authors propose that the Nedd4-2:14-3-3 complex then stimulates a structural rearrangement of Nedd4-2 through inhibiting interaction of its structured domains.
Collapse
|
11
|
Liu J, Cao S, Ding G, Wang B, Li Y, Zhao Y, Shao Q, Feng J, Liu S, Qin L, Xiao Y. The role of 14-3-3 proteins in cell signalling pathways and virus infection. J Cell Mol Med 2021; 25:4173-4182. [PMID: 33793048 PMCID: PMC8093981 DOI: 10.1111/jcmm.16490] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022] Open
Abstract
14-3-3 proteins are highly conserved in species ranging from yeast to mammals and regulate numerous signalling pathways via direct interactions with proteins carrying phosphorylated 14-3-3-binding motifs. Recent studies have shown that 14-3-3 proteins can also play a role in viral infections. This review summarizes the biological functions of 14-3-3 proteins in protein trafficking, cell-cycle control, apoptosis, autophagy and other cell signal transduction pathways, as well as the associated mechanisms. Recent findings regarding the role of 14-3-3 proteins in viral infection and innate immunity are also reviewed.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Shengliang Cao
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Guofei Ding
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Bin Wang
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Yingchao Li
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Yuzhong Zhao
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Qingyuan Shao
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Jian Feng
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Sidang Liu
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Liting Qin
- Shandong New Hope Liuhe Group Co., Ltd.QingdaoChina
- Qingdao Jiazhi Biotechnology Co., Ltd.QingdaoChina
| | - Yihong Xiao
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| |
Collapse
|
12
|
Brown-Suedel AN, Bouchier-Hayes L. Caspase-2 Substrates: To Apoptosis, Cell Cycle Control, and Beyond. Front Cell Dev Biol 2020; 8:610022. [PMID: 33425918 PMCID: PMC7785872 DOI: 10.3389/fcell.2020.610022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023] Open
Abstract
Caspase-2 belongs to the caspase family of proteins responsible for essential cellular functions including apoptosis and inflammation. Uniquely, caspase-2 has been identified as a tumor suppressor, but how it regulates this function is still unknown. For many years, caspase-2 has been considered an “orphan” caspase because, although it is able to induce apoptosis, there is an abundance of conflicting evidence that questions its necessity for apoptosis. Recent evidence supports that caspase-2 has non-apoptotic functions in the cell cycle and protection from genomic instability. It is unclear how caspase-2 regulates these opposing functions, which has made the mechanism of tumor suppression by caspase-2 difficult to determine. As a protease, caspase-2 likely exerts its functions by proteolytic cleavage of cellular substrates. This review highlights the known substrates of caspase-2 with a special focus on their functional relevance to caspase-2’s role as a tumor suppressor.
Collapse
Affiliation(s)
- Alexandra N Brown-Suedel
- Hematology-Oncology Section, Department of Pediatrics, Department of Molecular Cell Biology, Baylor College of Medicine, Houston, TX, United States.,William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| | - Lisa Bouchier-Hayes
- Hematology-Oncology Section, Department of Pediatrics, Department of Molecular Cell Biology, Baylor College of Medicine, Houston, TX, United States.,William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
13
|
Sladky VC, Villunger A. Uncovering the PIDDosome and caspase-2 as regulators of organogenesis and cellular differentiation. Cell Death Differ 2020; 27:2037-2047. [PMID: 32415279 PMCID: PMC7308375 DOI: 10.1038/s41418-020-0556-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
The PIDDosome is a multiprotein complex that drives activation of caspase-2, an endopeptidase originally implicated in apoptosis. Yet, unlike other caspases involved in cell death and inflammation, caspase-2 seems to exert additional versatile functions unrelated to cell death. These emerging roles range from control of transcription factor activity to ploidy surveillance. Thus, caspase-2 and the PIDDosome act as a critical regulatory unit controlling cellular differentiation processes during organogenesis and regeneration. These newly established functions of the PIDDosome and its downstream effector render its components attractive targets for drug-development aiming to prevent fatty liver diseases, neurodegenerative disorders or osteoporosis. ![]()
Collapse
Affiliation(s)
- Valentina C Sladky
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria. .,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria. .,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
| |
Collapse
|
14
|
Wolter M, Santo DL, Herman P, Ballone A, Centorrino F, Obsil T, Ottmann C. Interaction of an IκBα Peptide with 14-3-3. ACS OMEGA 2020; 5:5380-5388. [PMID: 32201828 PMCID: PMC7081424 DOI: 10.1021/acsomega.9b04413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Inflammatory responses mediated by the transcription factor nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) play key roles in immunity, autoimmune diseases, and cancer. NF-κB is directly regulated through protein-protein interactions, including those with IκB and 14-3-3 proteins. These two important regulatory proteins have been reported to interact with each other, although little is known about this interaction. We analyzed the inhibitor of nuclear factor kappa B α (IκBα)/14-3-3σ interaction via a peptide/protein-based approach. Structural data were acquired via X-ray crystallography, while binding affinities were measured with fluorescence polarization assays and time-resolved tryptophan fluorescence. A high-resolution crystal structure (1.13 Å) of the uncommon 14-3-3 interaction motif of IκBα (IκBαpS63) in a complex with 14-3-3σ was evaluated. This motif harbors a tryptophan that makes this crystal structure the first one with such a residue visible in the electron density at that position. We used this tryptophan to determine the binding affinity of the unlabeled IκBα peptide to 14-3-3 via tryptophan fluorescence decay measurements.
Collapse
Affiliation(s)
- Madita Wolter
- Department
of Biomedical Engineering, Laboratory of Chemical Biology and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Domenico Lentini Santo
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Petr Herman
- Institute
of Physics, Faculty of Mathematics and Physics, Charles University, Prague 12116, Czech Republic
| | - Alice Ballone
- Department
of Biomedical Engineering, Laboratory of Chemical Biology and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Federica Centorrino
- Department
of Biomedical Engineering, Laboratory of Chemical Biology and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tomas Obsil
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Christian Ottmann
- Department
of Biomedical Engineering, Laboratory of Chemical Biology and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department
of Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
15
|
Kalabova D, Filandr F, Alblova M, Petrvalska O, Horvath M, Man P, Obsil T, Obsilova V. 14-3-3 protein binding blocks the dimerization interface of caspase-2. FEBS J 2020; 287:3494-3510. [PMID: 31961068 DOI: 10.1111/febs.15215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/19/2019] [Accepted: 01/15/2020] [Indexed: 11/30/2022]
Abstract
Among all species, caspase-2 (C2) is the most evolutionarily conserved caspase required for effective initiation of apoptosis following death stimuli. C2 is activated through dimerization and autoproteolytic cleavage and inhibited through phosphorylation at Ser139 and Ser164 , within the linker between the caspase recruitment and p19 domains of the zymogen, followed by association with the adaptor protein 14-3-3, which maintains C2 in its immature form procaspase (proC2). However, the mechanism of 14-3-3-dependent inhibition of C2 activation remains unclear. Here, we report the structural characterization of the complex between proC2 and 14-3-3 by hydrogen/deuterium mass spectrometry and protein crystallography to determine the molecular basis for 14-3-3-mediated inhibition of C2 activation. Our data reveal that the 14-3-3 dimer interacts with proC2 not only through ligand-binding grooves but also through other regions outside the central channel, thus explaining the isoform-dependent specificity of 14-3-3 protein binding to proC2 and the substantially higher binding affinity of 14-3-3 protein to proC2 than to the doubly phosphorylated peptide. The formation of the complex between 14-3-3 protein and proC2 does not induce any large conformational change in proC2. Furthermore, 14-3-3 protein interacts with and masks both the nuclear localization sequence and the C-terminal region of the p12 domain of proC2 through transient interactions in which both the p19 and p12 domains of proC2 are not firmly docked onto the surface of 14-3-3. This masked region of p12 domain is involved in C2 dimerization. Therefore, 14-3-3 protein likely inhibits proC2 activation by blocking its dimerization surface. DATABASES: Structural data are available in the Protein Data Bank under the accession numbers 6SAD and 6S9K.
Collapse
Affiliation(s)
- Dana Kalabova
- Division BIOCEV, Department of Structural Biology of Signaling Proteins, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Frantisek Filandr
- Division BIOCEV, Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Miroslava Alblova
- Division BIOCEV, Department of Structural Biology of Signaling Proteins, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Olivia Petrvalska
- Division BIOCEV, Department of Structural Biology of Signaling Proteins, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Matej Horvath
- Division BIOCEV, Department of Structural Biology of Signaling Proteins, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Man
- Division BIOCEV, Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Tomas Obsil
- Division BIOCEV, Department of Structural Biology of Signaling Proteins, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Veronika Obsilova
- Division BIOCEV, Department of Structural Biology of Signaling Proteins, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic
| |
Collapse
|
16
|
The activity of Saccharomyces cerevisiae Na+, K+/H+ antiporter Nha1 is negatively regulated by 14-3-3 protein binding at serine 481. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118534. [DOI: 10.1016/j.bbamcr.2019.118534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022]
|
17
|
Velásquez E, Martins-de-Souza D, Velásquez I, Carneiro GRA, Schmitt A, Falkai P, Domont GB, Nogueira FCS. Quantitative Subcellular Proteomics of the Orbitofrontal Cortex of Schizophrenia Patients. J Proteome Res 2019; 18:4240-4253. [PMID: 31581776 DOI: 10.1021/acs.jproteome.9b00398] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Schizophrenia is a chronic disease characterized by the impairment of mental functions with a marked social dysfunction. A quantitative proteomic approach using iTRAQ labeling and SRM, applied to the characterization of mitochondria (MIT), crude nuclear fraction (NUC), and cytoplasm (CYT), can allow the observation of dynamic changes in cell compartments providing valuable insights concerning schizophrenia physiopathology. Mass spectrometry analyses of the orbitofrontal cortex from 12 schizophrenia patients and 8 healthy controls identified 655 protein groups in the MIT fraction, 1500 in NUC, and 1591 in CYT. We found 166 groups of proteins dysregulated among all enriched cellular fractions. Through the quantitative proteomic analysis, we detect as the main biological pathways those related to calcium and glutamate imbalance, cell signaling disruption of CREB activation, axon guidance, and proteins involved in the activation of NF-kB signaling along with the increase of complement protein C3. Based on our data analysis, we suggest the activation of NF-kB as a possible pathway that links the deregulation of glutamate, calcium, apoptosis, and the activation of the immune system in schizophrenia patients. All MS data are available in the ProteomeXchange Repository under the identifier PXD015356 and PXD014350.
Collapse
Affiliation(s)
- Erika Velásquez
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-909 , Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry, Institute of Biology , University of Campinas (UNICAMP) , Campinas 13083-970 , Brazil.,Experimental Medicine Research Cluster (EMRC) University of Campinas , Campinas 13083-887 , SP , Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) , Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq) , São Paulo , Brazil
| | | | - Gabriel Reis Alves Carneiro
- Laboratory of Proteomics, LADETEC, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-598 , Brazil
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy , Ludwig Maximilian University of Munich (LMU) , 80539 Munich , Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy , Ludwig Maximilian University of Munich (LMU) , 80539 Munich , Germany
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-909 , Brazil
| | - Fabio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-909 , Brazil.,Laboratory of Proteomics, LADETEC, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-598 , Brazil
| |
Collapse
|
18
|
Holmes TR, Dindu S, Hansen LA. Aberrant localization of signaling proteins in skin cancer: Implications for treatment. Mol Carcinog 2019; 58:1631-1639. [PMID: 31062427 DOI: 10.1002/mc.23036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
Aberrant subcellular localization of signaling proteins can provide cancer cells with advantages such as resistance to apoptotic cell death, increased invasiveness and more rapid proliferation. Nuclear to cytoplasmic shifts in tumor-promoting proteins can lead to worse patient outcomes, providing opportunities to target cancer-specific processes. Herein, we review the significance of dysregulated protein localization with a focus on skin cancer. Altered localization of signaling proteins controlling cell cycle progression or cell death is a common feature of cancer. In some instances, aberrant subcellular localization results in an acquired prosurvival function. Taking advantage of this knowledge reveals novel targets useful in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Thomas R Holmes
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Shravya Dindu
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| | - Laura A Hansen
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska
| |
Collapse
|
19
|
Chen Y, Cramer P. Structure of the super-elongation complex subunit AFF4 C-terminal homology domain reveals requirements for AFF homo- and heterodimerization. J Biol Chem 2019; 294:10663-10673. [PMID: 31147444 PMCID: PMC6615702 DOI: 10.1074/jbc.ra119.008577] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/27/2019] [Indexed: 12/12/2022] Open
Abstract
AF4/FMR2 family member 4 (AFF4) is the scaffold protein of the multisubunit super-elongation complex, which plays key roles in the release of RNA polymerase II from promoter-proximal pausing and in the transactivation of HIV-1 transcription. AFF4 consists of an intrinsically disordered N-terminal region that interacts with other super-elongation complex subunits and a C-terminal homology domain (CHD) that is conserved among AF4/FMR2 family proteins, including AFF1, AFF2, AFF3, and AFF4. Here, we solved the X-ray crystal structure of the CHD in human AFF4 (AFF4-CHD) to 2.2 Å resolution and characterized its biochemical properties. The structure disclosed that AFF4-CHD folds into a novel domain that consists of eight helices and is distantly related to tetratrico peptide repeat motifs. Our analyses further revealed that AFF4-CHD mediates the formation of an AFF4 homodimer or an AFF1-AFF4 heterodimer. Results from fluorescence anisotropy experiments suggested that AFF4-CHD interacts with both RNA and DNA in vitro Furthermore, we identified a surface loop region in AFF4-CHD as a substrate for the P-TEFb kinase cyclin-dependent kinase 9, which triggers release of polymerase II from promoter-proximal pausing sites. In conclusion, the AFF-CHD structure and biochemical analyses reported here reveal the molecular basis for the homo- and heterodimerization of AFF proteins and implicate the AFF4-CHD in nucleic acid interactions. The high conservation of the CHD among several other proteins suggests that our results are also relevant for understanding other CHD-containing proteins and their dimerization behavior.
Collapse
Affiliation(s)
- Ying Chen
- From the Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Patrick Cramer
- From the Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|