1
|
Gerasimov ES, Afonin DA, Škodová-Sveráková I, Saura A, Trusina N, Gahura O, Zakharova A, Butenko A, Baráth P, Horváth A, Opperdoes FR, Pérez-Morga D, Zimmer SL, Lukeš J, Yurchenko V. Evolutionary divergent kinetoplast genome structure and RNA editing patterns in the trypanosomatid Vickermania. Proc Natl Acad Sci U S A 2025; 122:e2426887122. [PMID: 40203041 PMCID: PMC12012515 DOI: 10.1073/pnas.2426887122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
The trypanosomatid flagellates possess in their single mitochondrion a highly complex kinetoplast (k)DNA, which is composed of interlocked circular molecules of two types. Dozens of maxicircles represent a classical mitochondrial genome, and thousands of minicircles encode guide (g)RNAs, which direct the processive and essential uridine insertion/deletion messenger RNA (mRNA) editing of maxicircle transcripts. While the details of kDNA structure and this type of RNA editing are well established, our knowledge mostly relies on a narrow foray of intensely studied human parasites of the genera Leishmania and Trypanosoma. Here, we analyzed kDNA, its expression, and RNA editing of two members of the poorly characterized genus Vickermania with very different cultivation histories. In both Vickermania species, the gRNA-containing heterogeneous large (HL)-circles are atypically large with multiple gRNAs each. Examination of Vickermania spadyakhi HL-circle loci revealed a massive redundancy of gRNAs relative to the editing needs. In comparison, the HL-circle repertoire of extensively cultivated Vickermania ingenoplastis is greatly reduced. It correlates with V. ingenoplastis-specific loss of productive editing of transcripts encoding subunits of respiratory chain complex I and corresponding lack of complex I activity. This loss in a parasite already lacking genes for subunits of complexes III and IV suggests an apparent requirement for its mitochondrial adenosine triphosphate (ATP) synthase to work in reverse to maintain membrane potential. In contrast, V. spadyakhi retains a functional complex I that allows ATP synthase to work in its standard direction.
Collapse
Affiliation(s)
- Evgeny S. Gerasimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow119991, Russia
| | - Dmitry A. Afonin
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow119991, Russia
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava710 00, Czechia
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava842 15, Slovakia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice370 05, Czechia
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava710 00, Czechia
| | - Natália Trusina
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava842 15, Slovakia
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice370 05, Czechia
| | - Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava710 00, Czechia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava710 00, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice370 05, Czechia
- Faculty of Science, University of South Bohemia, 370 05České Budějovice, Czechia
| | - Peter Baráth
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava845 38, Slovakia
- Medirex Group Academy, Nitra949 05, Slovakia
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava842 15, Slovakia
| | - Fred R. Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels1200, Belgium
| | | | - Sara L. Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN55812
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice370 05, Czechia
- Faculty of Science, University of South Bohemia, 370 05České Budějovice, Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava710 00, Czechia
| |
Collapse
|
2
|
Usey MM, Ruberto AA, Parker KV, Huet D. The Toxoplasma gondii homolog of ATPase inhibitory factor 1 is critical for mitochondrial cristae maintenance and stress response. Mol Biol Cell 2025; 36:ar6. [PMID: 39602296 PMCID: PMC11742118 DOI: 10.1091/mbc.e24-08-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
The production of energy in the form of ATP by the mitochondrial ATP synthase must be tightly controlled. One well-conserved form of regulation is mediated via ATPase inhibitory factor 1 (IF1), which governs ATP synthase activity and gene expression patterns through a cytoprotective process known as mitohormesis. In apicomplexans, the processes regulating ATP synthase activity are not fully elucidated. Using the model apicomplexan Toxoplasma gondii, we found that knockout and overexpression of TgIF1, the structural homolog of IF1, significantly affected gene expression. Additionally, TgIF1 overexpression resulted in the formation of a stable TgIF1 oligomer and increased the presence of higher order ATP synthase oligomers. We also show that parasites lacking TgIF1 exhibit reduced mitochondrial cristae density, and that while TgIF1 levels do not affect growth in conventional culture conditions, they are crucial for parasite survival under hypoxia. Interestingly, TgIF1 overexpression enhances recovery from oxidative stress, suggesting a mitohormetic function. In summary, while TgIF1 does not appear to play a role in ATP synthase regulation under conventional growth conditions, our work uncovers its potential role in adapting to the stressors faced by T. gondii and other apicomplexans throughout their intricate life cycles.
Collapse
Affiliation(s)
- Madelaine M. Usey
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602
| | - Anthony A. Ruberto
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602
| | - Kaelynn V. Parker
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602
| | - Diego Huet
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602
| |
Collapse
|
3
|
Usey MM, Ruberto AA, Huet D. The Toxoplasma gondii homolog of ATPase inhibitory factor 1 is critical for mitochondrial cristae maintenance and stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607411. [PMID: 39149366 PMCID: PMC11326266 DOI: 10.1101/2024.08.09.607411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The production of energy in the form of ATP by the mitochondrial ATP synthase must be tightly controlled. One well-conserved form of regulation is mediated via ATPase inhibitory factor 1 (IF1), which governs ATP synthase activity and gene expression patterns through a cytoprotective process known as mitohormesis. In apicomplexans, the processes regulating ATP synthase activity are not fully elucidated. Using the model apicomplexan Toxoplasma gondii, we found that knockout and overexpression of TgIF1, the structural homolog of IF1, significantly affected gene expression. Additionally, TgIF1 overexpression resulted in the formation of a stable TgIF1 oligomer that increased the presence of higher order ATP synthase oligomers. We also show that parasites lacking TgIF1 exhibit reduced mitochondrial cristae density, and that while TgIF1 levels do not affect growth in conventional culture conditions, they are crucial for parasite survival under hypoxia. Interestingly, TgIF1 overexpression enhances recovery from oxidative stress, suggesting a mitohormetic function. In summary, while TgIF1 does not appear to play a role in metabolic regulation under conventional growth conditions, our work highlights its importance for adapting to stressors faced by T. gondii and other apicomplexans throughout their intricate life cycles.
Collapse
Affiliation(s)
- Madelaine M. Usey
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Anthony A. Ruberto
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Diego Huet
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Gahura O, Mühleip A, Hierro-Yap C, Panicucci B, Jain M, Hollaus D, Slapničková M, Zíková A, Amunts A. An ancestral interaction module promotes oligomerization in divergent mitochondrial ATP synthases. Nat Commun 2022; 13:5989. [PMID: 36220811 PMCID: PMC9553925 DOI: 10.1038/s41467-022-33588-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial ATP synthase forms stable dimers arranged into oligomeric assemblies that generate the inner-membrane curvature essential for efficient energy conversion. Here, we report cryo-EM structures of the intact ATP synthase dimer from Trypanosoma brucei in ten different rotational states. The model consists of 25 subunits, including nine lineage-specific, as well as 36 lipids. The rotary mechanism is influenced by the divergent peripheral stalk, conferring a greater conformational flexibility. Proton transfer in the lumenal half-channel occurs via a chain of five ordered water molecules. The dimerization interface is formed by subunit-g that is critical for interactions but not for the catalytic activity. Although overall dimer architecture varies among eukaryotes, we find that subunit-g together with subunit-e form an ancestral oligomerization motif, which is shared between the trypanosomal and mammalian lineages. Therefore, our data defines the subunit-g/e module as a structural component determining ATP synthase oligomeric assemblies.
Collapse
Affiliation(s)
- Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Carolina Hierro-Yap
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Minal Jain
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - David Hollaus
- Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Martina Slapničková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic.
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
| |
Collapse
|
5
|
Gahura O, Hierro-Yap C, Zíková A. Redesigned and reversed: architectural and functional oddities of the trypanosomal ATP synthase. Parasitology 2021; 148:1151-1160. [PMID: 33551002 PMCID: PMC8311965 DOI: 10.1017/s0031182021000202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/23/2022]
Abstract
Mitochondrial F-type adenosine triphosphate (ATP) synthases are commonly introduced as highly conserved membrane-embedded rotary machines generating the majority of cellular ATP. This simplified view neglects recently revealed striking compositional diversity of the enzyme and the fact that in specific life stages of some parasites, the physiological role of the enzyme is to maintain the mitochondrial membrane potential at the expense of ATP rather than to produce ATP. In addition, mitochondrial ATP synthases contribute indirectly to the organelle's other functions because they belong to major determinants of submitochondrial morphology. Here, we review current knowledge about the trypanosomal ATP synthase composition and architecture in the context of recent advances in the structural characterization of counterpart enzymes from several eukaryotic supergroups. We also discuss the physiological function of mitochondrial ATP synthases in three trypanosomatid parasites, Trypanosoma cruzi, Trypanosoma brucei and Leishmania, with a focus on their disease-causing life cycle stages. We highlight the reversed proton-pumping role of the ATP synthase in the T. brucei bloodstream form, the enzyme's potential link to the regulation of parasite's glycolysis and its role in generating mitochondrial membrane potential in the absence of mitochondrial DNA.
Collapse
Affiliation(s)
- Ondřej Gahura
- Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Carolina Hierro-Yap
- Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Alena Zíková
- Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 37005, Czech Republic
| |
Collapse
|
6
|
Hierro-Yap C, Šubrtová K, Gahura O, Panicucci B, Dewar C, Chinopoulos C, Schnaufer A, Zíková A. Bioenergetic consequences of F oF 1-ATP synthase/ATPase deficiency in two life cycle stages of Trypanosoma brucei. J Biol Chem 2021; 296:100357. [PMID: 33539923 PMCID: PMC7949148 DOI: 10.1016/j.jbc.2021.100357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial ATP synthase is a reversible nanomotor synthesizing or hydrolyzing ATP depending on the potential across the membrane in which it is embedded. In the unicellular parasite Trypanosoma brucei, the direction of the complex depends on the life cycle stage of this digenetic parasite: in the midgut of the tsetse fly vector (procyclic form), the FoF1–ATP synthase generates ATP by oxidative phosphorylation, whereas in the mammalian bloodstream form, this complex hydrolyzes ATP and maintains mitochondrial membrane potential (ΔΨm). The trypanosome FoF1–ATP synthase contains numerous lineage-specific subunits whose roles remain unknown. Here, we seek to elucidate the function of the lineage-specific protein Tb1, the largest membrane-bound subunit. In procyclic form cells, Tb1 silencing resulted in a decrease of FoF1–ATP synthase monomers and dimers, rerouting of mitochondrial electron transfer to the alternative oxidase, reduced growth rate and cellular ATP levels, and elevated ΔΨm and total cellular reactive oxygen species levels. In bloodstream form parasites, RNAi silencing of Tb1 by ∼90% resulted in decreased FoF1–ATPase monomers and dimers, but it had no apparent effect on growth. The same findings were obtained by silencing of the oligomycin sensitivity-conferring protein, a conserved subunit in T. brucei FoF1–ATP synthase. However, as expected, nearly complete Tb1 or oligomycin sensitivity-conferring protein suppression was lethal because of the inability to sustain ΔΨm. The diminishment of FoF1–ATPase complexes was further accompanied by a decreased ADP/ATP ratio and reduced oxygen consumption via the alternative oxidase. Our data illuminate the often diametrically opposed bioenergetic consequences of FoF1–ATP synthase loss in insect versus mammalian forms of the parasite.
Collapse
Affiliation(s)
- Carolina Hierro-Yap
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Karolína Šubrtová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Caroline Dewar
- Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | | | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
| |
Collapse
|
7
|
Flygaard RK, Mühleip A, Tobiasson V, Amunts A. Type III ATP synthase is a symmetry-deviated dimer that induces membrane curvature through tetramerization. Nat Commun 2020; 11:5342. [PMID: 33093501 PMCID: PMC7583250 DOI: 10.1038/s41467-020-18993-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial ATP synthases form functional homodimers to induce cristae curvature that is a universal property of mitochondria. To expand on the understanding of this fundamental phenomenon, we characterized the unique type III mitochondrial ATP synthase in its dimeric and tetrameric form. The cryo-EM structure of a ciliate ATP synthase dimer reveals an unusual U-shaped assembly of 81 proteins, including a substoichiometrically bound ATPTT2, 40 lipids, and co-factors NAD and CoQ. A single copy of subunit ATPTT2 functions as a membrane anchor for the dimeric inhibitor IF1. Type III specific linker proteins stably tie the ATP synthase monomers in parallel to each other. The intricate dimer architecture is scaffolded by an extended subunit-a that provides a template for both intra- and inter-dimer interactions. The latter results in the formation of tetramer assemblies, the membrane part of which we determined to 3.1 Å resolution. The structure of the type III ATP synthase tetramer and its associated lipids suggests that it is the intact unit propagating the membrane curvature.
Collapse
Affiliation(s)
- Rasmus Kock Flygaard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Victor Tobiasson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden.
| |
Collapse
|