1
|
Tabar MS, Parsania C, Giardina C, Feng Y, Wong ACH, Metierre C, Nagarajah R, Dhungel BP, Rasko JEJ, Bailey CG. Intrinsically Disordered Regions Define Unique Protein Interaction Networks in CHD Family Remodelers. FASEB J 2025; 39:e70632. [PMID: 40372282 PMCID: PMC12080455 DOI: 10.1096/fj.202402808rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/17/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
Chromodomain helicase DNA-binding (CHD) enzymes play a pivotal role in genome regulation. They possess highly conserved ATPase domains flanked by poorly characterized and intrinsically disordered N- and C-termini. Using mass spectrometry, we identify dozens of novel protein-protein interactions (PPIs) within the N- and C-termini of human CHD family members. We also define a highly conserved aggregation-prone region (APR) within the C-terminus of CHD4 which is critical for its interaction with the nucleosome remodeling and deacetylase (NuRD), as well as ChAHP (CHD4, activity-dependent neuroprotective protein (ADNP), and HP1γ) complexes. Further analysis reveals a regulatory role for the CHD4 APR in gene transcription during erythrocyte formation. Our results highlight that the N- and C-termini of CHD chromatin remodelers shape protein interaction networks that drive unique transcriptional programs.
Collapse
Affiliation(s)
- Mehdi Sharifi Tabar
- Faculty of Medicine & HealthThe University of SydneyCamperdownNew South WalesAustralia
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
- Centre for Rare Diseases & Gene Therapy Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
| | - Chirag Parsania
- Faculty of Medicine & HealthThe University of SydneyCamperdownNew South WalesAustralia
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
- Centre for Rare Diseases & Gene Therapy Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
| | - Caroline Giardina
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
| | - Yue Feng
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
- Centre for Rare Diseases & Gene Therapy Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
| | - Alex C. H. Wong
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
| | - Cynthia Metierre
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
- Centre for Rare Diseases & Gene Therapy Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
| | - Rajini Nagarajah
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
- Centre for Rare Diseases & Gene Therapy Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
| | - Bijay P. Dhungel
- Faculty of Medicine & HealthThe University of SydneyCamperdownNew South WalesAustralia
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
- Centre for Rare Diseases & Gene Therapy Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
| | - John E. J. Rasko
- Cell & Molecular TherapiesRoyal Prince Alfred HospitalCamperdownNew South WalesAustralia
| | - Charles G. Bailey
- Faculty of Medicine & HealthThe University of SydneyCamperdownNew South WalesAustralia
- Cancer & Gene Regulation Laboratory Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
- Centre for Rare Diseases & Gene Therapy Centenary InstituteThe University of SydneyCamperdownNew South WalesAustralia
- School of Medical Sciences, Faculty of Medicine & HealthThe University of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
2
|
Massey S, Ang CS, Davidson NM, Quigley A, Rollo B, Harris AR, Kapsa RMI, Christodoulou J, Van Bergen NJ. Novel CDKL5 targets identified in human iPSC-derived neurons. Cell Mol Life Sci 2024; 81:347. [PMID: 39136782 PMCID: PMC11335273 DOI: 10.1007/s00018-024-05389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
CDKL5 Deficiency Disorder (CDD) is a debilitating epileptic encephalopathy disorder affecting young children with no effective treatments. CDD is caused by pathogenic variants in Cyclin-Dependent Kinase-Like 5 (CDKL5), a protein kinase that regulates key phosphorylation events in neurons. For therapeutic intervention, it is essential to understand molecular pathways and phosphorylation targets of CDKL5. Using an unbiased phosphoproteomic approach we identified novel targets of CDKL5, including GTF2I, PPP1R35, GATAD2A and ZNF219 in human iPSC-derived neuronal cells. The phosphoserine residue in the target proteins lies in the CDKL5 consensus motif. We validated direct phosphorylation of GTF2I and PPP1R35 by CDKL5 using complementary approaches. GTF2I controls axon guidance, cell cycle and neurodevelopment by regulating expression of neuronal genes. PPP1R35 is critical for centriole elongation and cilia morphology, processes that are impaired in CDD. PPP1R35 interacts with CEP131, a known CDKL5 phospho-target. GATAD2A and ZNF219 belong to the Nucleosome Remodelling Deacetylase (NuRD) complex, which regulates neuronal activity-dependent genes and synaptic connectivity. In-depth knowledge of molecular pathways regulated by CDKL5 will allow a better understanding of druggable disease pathways to fast-track therapeutic development.
Collapse
Affiliation(s)
- Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Nadia M Davidson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia.
- Department of Paediatrics, University of Melbourne, c/o MCRI, 50 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
3
|
Sun Z, Cernilogar FM, Horvatic H, Yeroslaviz A, Abdullah Z, Schotta G, Hornung V. β1 integrin signaling governs necroptosis via the chromatin-remodeling factor CHD4. Cell Rep 2023; 42:113322. [PMID: 37883227 DOI: 10.1016/j.celrep.2023.113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Fibrosis, characterized by sustained activation of myofibroblasts and excessive extracellular matrix (ECM) deposition, is known to be associated with chronic inflammation. Receptor-interacting protein kinase 3 (RIPK3), the central kinase of necroptosis signaling, is upregulated in fibrosis and contributes to tumor necrosis factor (TNF)-mediated inflammation. In bile-duct-ligation-induced liver fibrosis, we found that myofibroblasts are the major cell type expressing RIPK3. Genetic ablation of β1 integrin, the major profibrotic ECM receptor in fibroblasts, not only abolished ECM fibrillogenesis but also blunted RIPK3 expression via a mechanism mediated by the chromatin-remodeling factor chromodomain helicase DNA-binding protein 4 (CHD4). While the function of CHD4 has been conventionally linked to the nucleosome-remodeling deacetylase (NuRD) and CHD4-ADNP-HP1(ChAHP) complexes, we found that CHD4 potently repressed a set of genes, including Ripk3, with high locus specificity but independent of either the NuRD or the ChAHP complex. Thus, our data uncover that β1 integrin intrinsically links fibrotic signaling to RIPK3-driven inflammation via a novel mode of action of CHD4.
Collapse
Affiliation(s)
- Zhiqi Sun
- Gene Center and Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany; Research Group Molecular Mechanisms of Inflammation, Max-Planck Institute of Biochemistry, Martinsried, Germany.
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helena Horvatic
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Assa Yeroslaviz
- Computational Biology Group, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany; Research Group Molecular Mechanisms of Inflammation, Max-Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
4
|
Yuan P, Wang S, Du T, Liu L, Chen X, Yan J, Han S, Peng B, He X, Liu W. ZNF219, a novel transcriptional repressor, inhibits transcription of the prototype foamy virus by interacting with the viral LTR promoter. Virus Res 2023; 334:199161. [PMID: 37356580 PMCID: PMC10410575 DOI: 10.1016/j.virusres.2023.199161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Prototype foamy virus (PFV) is an ancient retrovirus that infects humans with persistent latent infections and non-pathogenic consequences. Lifelong latent PFV infections can be caused by restrictive factors in the host. However, the molecular mechanisms underlying host cell regulation during PFV infection are not fully understood. The aim of the study was to investigate whether a zinc finger protein (ZFP), ZNF219, as a transcription factor, can regulate the transcriptional activity of the viral promoter. Here, using transcriptome sequencing, we found that ZNF219, is downregulated in PFV infected cells and that ZNF219 suppresses viral replication by targeting the viral 5'LTR promoter region to repress its transcription. We also found that PFV infection induced abnormal expression of miRNAs targeting the ZNF219-3'UTR to downregulate ZNF219 expression. These findings indicated that ZNF219 may be a potent antiviral factor for suppressing PFV infection, and may shed light on the mechanism of virus-host interactions.
Collapse
Affiliation(s)
- Peipei Yuan
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, Hubei Province, Shiyan 442000, China; Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Hubei Province, Shiyan 442000, China
| | - Shuang Wang
- Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Tongtong Du
- Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Luo Liu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiong Chen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Jun Yan
- Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430071, China
| | - Song Han
- Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Biwen Peng
- Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Xiaohua He
- Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China.
| |
Collapse
|
5
|
Gederaas OA, Sharma A, Mbarak S, Sporsheim B, Høgset A, Bogoeva V, Slupphaug G, Hagen L. Proteomic analysis reveals mechanisms underlying increased efficacy of bleomycin by photochemical internalization in bladder cancer cells. Mol Omics 2023; 19:585-597. [PMID: 37345535 DOI: 10.1039/d2mo00337f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Photochemical internalization (PCI) is a promising new technology for site-specific drug delivery, developed from photodynamic therapy (PDT). In PCI, light-induced activation of a photosensitizer trapped inside endosomes together with e.g. chemotherapeutics, nucleic acids or immunotoxins, allows cytosolic delivery and enhanced local therapeutic effect. Here we have evaluated the photosensitizer meso-tetraphenyl chlorine disulphonate (TPCS2a/fimaporfin) in a proteome analysis of AY-27 rat bladder cancer cells in combination with the chemotherapeutic drug bleomycin (BML). We find that BLMPCI attenuates oxidative stress responses induced by BLM alone, while concomitantly increasing transcriptional repression and DNA damage responses. BLMPCI also mediates downregulation of bleomycin hydrolase (Blmh), which is responsible for cellular degradation of BLM, as well as several factors known to be involved in fibrotic responses. PCI-mediated delivery might thus allow reduced dosage of BLM and alleviate unwanted side effects from treatment, including pulmonary fibrosis.
Collapse
Affiliation(s)
- Odrun A Gederaas
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
- Department of Natural Sciences, UiA, University of Agder, N-4630, Kristiansand, Norway.
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
- Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Saide Mbarak
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | - Bjørnar Sporsheim
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
- CMIC Cellular & Molecular Imaging Core Facility, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Anders Høgset
- PCI Biotech AS, Ullernchaussen 64, 0379 Oslo, Norway
| | - Vanya Bogoeva
- Department of Molecular Biology and Cell Cycle, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
- Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
- Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway
| |
Collapse
|
6
|
Lee K, Whedon SD, Wang ZA, Cole PA. Distinct biochemical properties of the class I histone deacetylase complexes. Curr Opin Chem Biol 2022; 70:102179. [PMID: 35803024 PMCID: PMC10786639 DOI: 10.1016/j.cbpa.2022.102179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/22/2022]
Abstract
Classical histone deacetylases (HDACs) are enzymes that can hydrolytically cleave acetyl-Lys in histones and other proteins and serve as established drug targets in some forms of cancer. Class I HDACs 1-3 typically exist in a range of multiprotein complexes inside cells and show distinct biological functions in modulating gene expression. In recent years, it has become possible to purify and analyze the structure and enzymatic properties of several of these HDAC complexes, including CoREST, MiDAC, NuRD, Sin3, SMRT, MIER, and RERE. Here, we summarize what is experimentally established and/or computationally predicted about the structure of these complexes to describe their particular catalytic activities and site-specificities with modified nucleosome substrates.
Collapse
Affiliation(s)
- Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel D Whedon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
El Abdellaoui-Soussi F, Yunes-Leites PS, López-Maderuelo D, García-Marqués F, Vázquez J, Redondo JM, Gómez-del Arco P. Interplay between the Chd4/NuRD Complex and the Transcription Factor Znf219 Control Cardiac Cell Identity. Int J Mol Sci 2022; 23:ijms23179565. [PMID: 36076959 PMCID: PMC9455175 DOI: 10.3390/ijms23179565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The sarcomere regulates striated muscle contraction. This structure is composed of several myofibril proteins, isoforms of which are encoded by genes specific to either the heart or skeletal muscle. The chromatin remodeler complex Chd4/NuRD regulates the transcriptional expression of these specific sarcomeric programs by repressing genes of the skeletal muscle sarcomere in the heart. Aberrant expression of skeletal muscle genes induced by the loss of Chd4 in the heart leads to sudden death due to defects in cardiomyocyte contraction that progress to arrhythmia and fibrosis. Identifying the transcription factors (TFs) that recruit Chd4/NuRD to repress skeletal muscle genes in the myocardium will provide important information for understanding numerous cardiac pathologies and, ultimately, pinpointing new therapeutic targets for arrhythmias and cardiomyopathies. Here, we sought to find Chd4 interactors and their function in cardiac homeostasis. We therefore describe a physical interaction between Chd4 and the TF Znf219 in cardiac tissue. Znf219 represses the skeletal-muscle sarcomeric program in cardiomyocytes in vitro and in vivo, similarly to Chd4. Aberrant expression of skeletal-muscle sarcomere proteins in mouse hearts with knocked down Znf219 translates into arrhythmias, accompanied by an increase in PR interval. These data strongly suggest that the physical and genetic interaction of Znf219 and Chd4 in the mammalian heart regulates cardiomyocyte identity and myocardial contraction.
Collapse
Affiliation(s)
- Fadoua El Abdellaoui-Soussi
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Paula S. Yunes-Leites
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Dolores López-Maderuelo
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Fernando García-Marqués
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Jesús Vázquez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Pablo Gómez-del Arco
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
8
|
Sharifi Tabar M, Parsania C, Chen H, Su XD, Bailey CG, Rasko JE. Illuminating the dark protein-protein interactome. CELL REPORTS METHODS 2022; 2:100275. [PMID: 36046620 PMCID: PMC9421580 DOI: 10.1016/j.crmeth.2022.100275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In living systems, a complex network of protein-protein interactions (PPIs) underlies most biochemical events. The human protein-protein interactome has been surveyed using yeast two-hybrid (Y2H)- and mass spectrometry (MS)-based approaches such as affinity purification coupled to MS (AP-MS). Despite decades of systematic investigations and collaborative multi-disciplinary efforts, there is no "gold standard" for documenting PPIs. A surprisingly large fraction of the human interactome remains uncharted, which we refer to as the "dark interactome." In this review, we highlight the complexity of the human interactome and discuss the current status of the human reference interactome maps. We discuss why a large proportion of the human interactome has remained refractory to traditional approaches. We propose an experimental model that can enable the identification of the dark interactome in a cell-type-specific manner. We also propose a framework to implement when embarking on studies designed to rigorously identify and characterize protein interactions.
Collapse
Affiliation(s)
- Mehdi Sharifi Tabar
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chirag Parsania
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xiao-Dong Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Charles G. Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - John E.J. Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, NSW 2006, Australia
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
9
|
Sharifi Tabar M, Francis H, Yeo D, Bailey CG, Rasko JEJ. Mapping oncogenic protein interactions for precision medicine. Int J Cancer 2022; 151:7-19. [PMID: 35113472 PMCID: PMC9306658 DOI: 10.1002/ijc.33954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/10/2022]
Abstract
Normal protein‐protein interactions (normPPIs) occur with high fidelity to regulate almost every physiological process. In cancer, this highly organised and precisely regulated network is disrupted, hijacked or reprogrammed resulting in oncogenic protein‐protein interactions (oncoPPIs). OncoPPIs, which can result from genomic alterations, are a hallmark of many types of cancers. Recent technological advances in the field of mass spectrometry (MS)‐based interactomics, structural biology and drug discovery have prompted scientists to identify and characterise oncoPPIs. Disruption of oncoPPI interfaces has become a major focus of drug discovery programs and has resulted in the use of PPI‐specific drugs clinically. However, due to several technical hurdles, studies to build a reference oncoPPI map for various cancer types have not been undertaken. Therefore, there is an urgent need for experimental workflows to overcome the existing challenges in studying oncoPPIs in various cancers and to build comprehensive reference maps. Here, we discuss the important hurdles for characterising oncoPPIs and propose a three‐phase multidisciplinary workflow to identify and characterise oncoPPIs. Systematic identification of cancer‐type‐specific oncogenic interactions will spur new opportunities for PPI‐focused drug discovery projects and precision medicine.
Collapse
Affiliation(s)
- Mehdi Sharifi Tabar
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Habib Francis
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Dannel Yeo
- Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia.,Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia.,Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
| |
Collapse
|
10
|
Helness A, Fraszczak J, Joly-Beauparlant C, Bagci H, Trahan C, Arman K, Shooshtarizadeh P, Chen R, Ayoub M, Côté JF, Oeffinger M, Droit A, Möröy T. GFI1 tethers the NuRD complex to open and transcriptionally active chromatin in myeloid progenitors. Commun Biol 2021; 4:1356. [PMID: 34857890 PMCID: PMC8639993 DOI: 10.1038/s42003-021-02889-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022] Open
Abstract
Growth factor indepdendent 1 (GFI1) is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation through molecular mechanisms and co-factors that still remain to be clearly identified. Here we show that GFI1 associates with the chromodomain helicase DNA binding protein 4 (CHD4) and other components of the Nucleosome remodeling and deacetylase (NuRD) complex. In granulo-monocytic precursors, GFI1, CHD4 or GFI1/CHD4 complexes occupy sites enriched for histone marks associated with active transcription suggesting that GFI1 recruits the NuRD complex to target genes regulated by active or bivalent promoters and enhancers. GFI1 and GFI1/CHD4 complexes occupy promoters that are either enriched for IRF1 or SPI1 consensus binding sites, respectively. During neutrophil differentiation, chromatin closure and depletion of H3K4me2 occurs at different degrees depending on whether GFI1, CHD4 or both are present, indicating that GFI1 is more efficient in depleting of H3K4me2 and -me1 marks when associated with CHD4. Our data suggest that GFI1/CHD4 complexes regulate histone modifications differentially to enable regulation of target genes affecting immune response, nucleosome organization or cellular metabolic processes and that both the target gene specificity and the activity of GFI1 during myeloid differentiation depends on the presence of chromatin remodeling complexes. Helness et al. show that GFI1/CHD4 complexes critically regulate chromatin accessibility and histone modifications to regulate target genes affecting diverse cellular processes in neutrophils. Their results provide further insight into the molecular network operated by GFI1 for neutrophil differentiation programs.
Collapse
Affiliation(s)
- Anne Helness
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada
| | - Jennifer Fraszczak
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada
| | | | - Halil Bagci
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada.,Institute for Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Christian Trahan
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada
| | - Kaifee Arman
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada
| | | | - Riyan Chen
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada
| | - Marina Ayoub
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada.,Hôpital pour Enfants, Ste Justine, Montreal, QC, Canada
| | - Jean-François Côté
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada.,Département de Biochimie, Université de Montréal, Montréal, QC, H3C 3J7, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada.,Département de Biochimie, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Arnaud Droit
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada. .,Division of Experimental Medicine, McGill University, Montreal, QC, Canada. .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
11
|
Sharifi Tabar M, Giardina C, Feng Y, Francis H, Moghaddas Sani H, Low JKK, Mackay JP, Bailey CG, Rasko JEJ. Unique protein interaction networks define the chromatin remodelling module of the NuRD complex. FEBS J 2021; 289:199-214. [PMID: 34231305 PMCID: PMC9545347 DOI: 10.1111/febs.16112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 01/13/2023]
Abstract
The combination of four proteins and their paralogues including MBD2/3, GATAD2A/B, CDK2AP1 and CHD3/4/5, which we refer to as the MGCC module, form the chromatin remodelling module of the nucleosome remodelling and deacetylase (NuRD) complex. To date, mechanisms by which the MGCC module acquires paralogue-specific function and specificity have not been addressed. Understanding the protein-protein interaction (PPI) network of the MGCC subunits is essential for defining underlying mechanisms of gene regulation. Therefore, using pulldown followed by mass spectrometry analysis (PD-MS), we report a proteome-wide interaction network of the MGCC module in a paralogue-specific manner. Our data also demonstrate that the disordered C-terminal region of CHD3/4/5 is a gateway to incorporate remodelling activity into both ChAHP (CHD4, ADNP, HP1γ) and NuRD complexes in a mutually exclusive manner. We define a short aggregation-prone region (APR) within the C-terminal segment of GATAD2B that is essential for the interaction of CHD4 and CDK2AP1 with the NuRD complex. Finally, we also report an association of CDK2AP1 with the nuclear receptor co-repressor (NCOR) complex. Overall, this study provides insight into the possible mechanisms through which the MGCC module can achieve specificity and diverse biological functions.
Collapse
Affiliation(s)
- Mehdi Sharifi Tabar
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, NSW, Australia
| | - Caroline Giardina
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Yue Feng
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Habib Francis
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | | | - Jason K K Low
- School of Life & Environmental Sciences, The University of Sydney, NSW, Australia
| | - Joel P Mackay
- School of Life & Environmental Sciences, The University of Sydney, NSW, Australia
| | - Charles G Bailey
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, NSW, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
12
|
Hart P', Hommen P, Noisier A, Krzyzanowski A, Schüler D, Porfetye AT, Akbarzadeh M, Vetter IR, Adihou H, Waldmann H. Structure Based Design of Bicyclic Peptide Inhibitors of RbAp48. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peter 't Hart
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Chemical Genomics Centre of the Max Planck Society Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Pascal Hommen
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Chemical Genomics Centre of the Max Planck Society Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Anaïs Noisier
- Medicinal Chemistry, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceutical R&D AstraZeneca Gothenburg Sweden
| | - Adrian Krzyzanowski
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Darijan Schüler
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Arthur T. Porfetye
- Department of Mechanistic Cell Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Mohammad Akbarzadeh
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Ingrid R. Vetter
- Department of Mechanistic Cell Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Hélène Adihou
- Medicinal Chemistry, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceutical R&D AstraZeneca Gothenburg Sweden
- AstraZeneca MPI Satellite Unit Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Herbert Waldmann
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| |
Collapse
|
13
|
Hart P', Hommen P, Noisier A, Krzyzanowski A, Schüler D, Porfetye AT, Akbarzadeh M, Vetter IR, Adihou H, Waldmann H. Structure Based Design of Bicyclic Peptide Inhibitors of RbAp48. Angew Chem Int Ed Engl 2021; 60:1813-1820. [PMID: 33022847 PMCID: PMC7894522 DOI: 10.1002/anie.202009749] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 12/11/2022]
Abstract
The scaffolding protein RbAp48 is part of several epigenetic regulation complexes and is overexpressed in a variety of cancers. In order to develop tool compounds for the study of RbAp48 function, we have developed peptide inhibitors targeting the protein-protein interaction interface between RbAp48 and the scaffold protein MTA1. Based on a MTA1-derived linear peptide with low micromolar affinity and informed by crystallographic analysis, a bicyclic peptide was developed that inhibits the RbAp48/MTA1 interaction with a very low nanomolar KD value of 8.56 nM, and which showed appreciable stability against cellular proteases. Design included exchange of a polar amide cyclization strategy to hydrophobic aromatic linkers enabling mono- and bicyclization by means of cysteine alkylation, which improved affinity by direct interaction of the linkers with a hydrophobic residue on RbAp48. Our results demonstrate that stepwise evolution of a structure-based design is a suitable strategy for inhibitor development targeting PPIs.
Collapse
Affiliation(s)
- Peter 't Hart
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Pascal Hommen
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Anaïs Noisier
- Medicinal Chemistry, Research and Early Development CardiovascularRenal and Metabolism, BioPharmaceutical R&DAstraZenecaGothenburgSweden
| | - Adrian Krzyzanowski
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Darijan Schüler
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Arthur T. Porfetye
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Mohammad Akbarzadeh
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Ingrid R. Vetter
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Hélène Adihou
- Medicinal Chemistry, Research and Early Development CardiovascularRenal and Metabolism, BioPharmaceutical R&DAstraZenecaGothenburgSweden
- AstraZeneca MPI Satellite UnitDepartment of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Herbert Waldmann
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| |
Collapse
|
14
|
Millard CJ, Fairall L, Ragan TJ, Savva CG, Schwabe JWR. The topology of chromatin-binding domains in the NuRD deacetylase complex. Nucleic Acids Res 2020; 48:12972-12982. [PMID: 33264408 PMCID: PMC7736783 DOI: 10.1093/nar/gkaa1121] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 01/22/2023] Open
Abstract
Class I histone deacetylase complexes play essential roles in many nuclear processes. Whilst they contain a common catalytic subunit, they have diverse modes of action determined by associated factors in the distinct complexes. The deacetylase module from the NuRD complex contains three protein domains that control the recruitment of chromatin to the deacetylase enzyme, HDAC1/2. Using biochemical approaches and cryo-electron microscopy, we have determined how three chromatin-binding domains (MTA1-BAH, MBD2/3 and RBBP4/7) are assembled in relation to the core complex so as to facilitate interaction of the complex with the genome. We observe a striking arrangement of the BAH domains suggesting a potential mechanism for binding to di-nucleosomes. We also find that the WD40 domains from RBBP4 are linked to the core with surprising flexibility that is likely important for chromatin engagement. A single MBD2 protein binds asymmetrically to the dimerisation interface of the complex. This symmetry mismatch explains the stoichiometry of the complex. Finally, our structures suggest how the holo-NuRD might assemble on a di-nucleosome substrate.
Collapse
Affiliation(s)
- Christopher J Millard
- The Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Louise Fairall
- The Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Timothy J Ragan
- The Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Christos G Savva
- The Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - John W R Schwabe
- The Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
15
|
Spruijt CG, Gräwe C, Kleinendorst SC, Baltissen MPA, Vermeulen M. Cross-linking mass spectrometry reveals the structural topology of peripheral NuRD subunits relative to the core complex. FEBS J 2020; 288:3231-3245. [PMID: 33283408 PMCID: PMC8246863 DOI: 10.1111/febs.15650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/23/2020] [Accepted: 11/27/2020] [Indexed: 01/08/2023]
Abstract
The multi‐subunit nucleosome remodeling and deacetylase (NuRD) complex consists of seven subunits, each of which comprises two or three paralogs in vertebrates. These paralogs define mutually exclusive and functionally distinct complexes. In addition, several proteins in the complex are multimeric, which complicates structural studies. Attempts to purify sufficient amounts of endogenous complex or recombinantly reconstitute the complex for structural studies have proven quite challenging. Until now, only substructures of individual domains or proteins and low‐resolution densities of (partial) complexes have been reported. In this study, we comprehensively investigated the relative orientation of different subunits within the NuRD complex using multiple cross‐link IP mass spectrometry (xIP‐MS) experiments. Our results confirm that the core of the complex is formed by MTA, RBBP, and HDAC proteins. Assembly of a copy of MBD and GATAD2 onto this core enables binding of the peripheral CHD and CDK2AP proteins. Furthermore, our experiments reveal that not only CDK2AP1 but also CDK2AP2 interacts with the NuRD complex. This interaction requires the C terminus of CHD proteins. Our data provide a more detailed understanding of the topology of the peripheral NuRD subunits relative to the core complex. Database Proteomics data are available in the PRIDE database under the accession numbers PXD017244 and PXD017378.
Collapse
Affiliation(s)
- Cornelia G Spruijt
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Cathrin Gräwe
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Simone C Kleinendorst
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Marijke P A Baltissen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Low JKK, Silva APG, Sharifi Tabar M, Torrado M, Webb SR, Parker BL, Sana M, Smits C, Schmidberger JW, Brillault L, Jackman MJ, Williams DC, Blobel GA, Hake SB, Shepherd NE, Landsberg MJ, Mackay JP. The Nucleosome Remodeling and Deacetylase Complex Has an Asymmetric, Dynamic, and Modular Architecture. Cell Rep 2020; 33:108450. [PMID: 33264611 PMCID: PMC8908386 DOI: 10.1016/j.celrep.2020.108450] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/23/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex is essential for metazoan development but has been refractory to biochemical analysis. We present an integrated analysis of the native mammalian NuRD complex, combining quantitative mass spectrometry, cross-linking, protein biochemistry, and electron microscopy to define the architecture of the complex. NuRD is built from a 2:2:4 (MTA, HDAC, and RBBP) deacetylase module and a 1:1:1 (MBD, GATAD2, and Chromodomain-Helicase-DNA-binding [CHD]) remodeling module, and the complex displays considerable structural dynamics. The enigmatic GATAD2 controls the asymmetry of the complex and directly recruits the CHD remodeler. The MTA-MBD interaction acts as a point of functional switching, with the transcriptional regulator PWWP2A competing with MBD for binding to the MTA-HDAC-RBBP subcomplex. Overall, our data address the long-running controversy over NuRD stoichiometry, provide imaging of the mammalian NuRD complex, and establish the biochemical mechanism by which PWWP2A can regulate NuRD composition. Low et al. examine the architecture of the nucleosome remodeling and deacetylase complex. They define its stoichiometry, use cross-linking mass spectrometry to define subunit locations, and use electron microscopy to reveal large-scale dynamics. They also demonstrate that PWWP2A competes with MBD3 to sequester the HDAC-MTA-RBBP module from NuRD.
Collapse
Affiliation(s)
- Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia.
| | - Ana P G Silva
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Mehdi Sharifi Tabar
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Mario Torrado
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Sarah R Webb
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Benjamin L Parker
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Maryam Sana
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | | | | | - Lou Brillault
- School of Chemistry and Molecular Biosciences, University of Queensland, QLD, Australia
| | - Matthew J Jackman
- School of Chemistry and Molecular Biosciences, University of Queensland, QLD, Australia
| | - David C Williams
- Dept of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Gerd A Blobel
- The Division of Hematology, Children's Hospital of Philadelphia, and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra B Hake
- Institute for Genetics, FB08 Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Nicholas E Shepherd
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, University of Queensland, QLD, Australia.
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia.
| |
Collapse
|
17
|
Tao D, Zhang Z, Liu X, Zhang Z, Fu Y, Zhang P, Yuan H, Liu L, Cheng J, Jiang H. LncRNA HOTAIR promotes the invasion and metastasis of oral squamous cell carcinoma through metastasis-associated gene 2. Mol Carcinog 2020; 59:353-364. [PMID: 31995261 DOI: 10.1002/mc.23159] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/05/2020] [Accepted: 01/12/2020] [Indexed: 12/18/2022]
Abstract
Despite therapeutic advancements, there has been little improvement in the survival status of patients with oral squamous cell carcinoma (OSCC). HOX antisense intergenic RNA (HOTAIR) has been shown to be dysregulated in several cancer types. However, the roles of HOTAIR in OSCC remain largely unknown. In this study, we investigated the association of HOTAIR expression with clinicopathological features in OSCC patients and the crucial roles of HOTAIR in the modulation of tumor progression. Our results showed that HOTAIR was highly expressed both in OSCC tissue samples and cell lines compared with corresponding normal oral mucosa tissues and human oral keratinocytes. Its overexpression was positively correlated with TNM (tumor-node-metastases) stage, histological grade, and regional lymph node metastasis. The knockdown of HOTAIR by short hairpin RNA significantly decreased the migration, invasion, and epithelial-mesenchymal transition of OSCC cells in vitro. Moreover, there was a negative correlation between HOTAIR and microRNA-326 expression in OSCC tissue samples and cell lines. Luciferase reporter and loss-of-function assays revealed that HOTAIR acted as a competitive endogenous RNA effectively sponging miR-326, thereby regulating the derepression of metastasis-associated gene 2 (MTA2). Finally, the expression and clinical significance of MTA2 were analyzed in another cohort of OSCC tissue samples. High MTA2 expression was significantly correlated with clinicopathological features of advanced OSCC and poor prognosis for patients with OSCC. Collectively, HOTAIR overexpression promoted the progression of OSCC. The HOTAIR-miR-326-MTA2 axis may contribute to a better understanding of OSCC pathogenesis and be a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Detao Tao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Zhenxing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ziwen Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Laikui Liu
- Department of Oral Pathology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Pierson TM, Otero MG, Grand K, Choi A, Graham JM, Young JI, Mackay JP. The NuRD complex and macrocephaly associated neurodevelopmental disorders. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:548-556. [PMID: 31737996 DOI: 10.1002/ajmg.c.31752] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex is a major regulator of gene expression involved in pluripotency, lineage commitment, and corticogenesis. This important complex is composed of seven different proteins, with mutations in CHD3, CHD4, and GATAD2B being associated with neurodevelopmental disorders presenting with macrocephaly and intellectual disability similar to other overgrowth and intellectual disability (OGID) syndromes. Pathogenic variants in CHD3 and CHD4 primarily involve disruption of enzymatic function. GATAD2B variants include loss-of-function mutations that alter protein dosage and missense variants that involve either of two conserved domains (CR1 and CR2) known to interact with other NuRD proteins. In addition to macrocephaly and intellectual disability, CHD3 variants are associated with inguinal hernias and apraxia of speech; whereas CHD4 variants are associated with skeletal anomalies, deafness, and cardiac defects. GATAD2B-associated neurodevelopmental disorder (GAND) has phenotypic overlap with both of these disorders. Of note, structural models of NuRD indicate that CHD3 and CHD4 require direct contact with the GATAD2B-CR2 domain to interact with the rest of the complex. Therefore, the phenotypic overlaps of CHD3- and CHD4-related disorders with GAND are consistent with a loss in the ability of GATAD2B to recruit CHD3 or CHD4 to the complex. The shared features of these neurodevelopmental disorders may represent a new class of OGID syndrome: the NuRDopathies.
Collapse
Affiliation(s)
- Tyler Mark Pierson
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Maria G Otero
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Katheryn Grand
- Department of Pediatrics, Medical Genetics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Andrew Choi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - John M Graham
- Department of Pediatrics, Medical Genetics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Juan I Young
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|