1
|
Li J, Yong T, Chen Y, Zeng T, Zhang K, Wang S, Zhang Y. Targeting PCNA/PARP1 axis inhibits the malignant progression of hepatocellular carcinoma. Front Pharmacol 2025; 16:1571786. [PMID: 40313621 PMCID: PMC12043649 DOI: 10.3389/fphar.2025.1571786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction Proliferating cell nuclear antigen (PCNA) is associated with the proliferation and recurrence of various cancers, and its high expression is associated with poor prognosis in hepatocellular carcinoma (HCC) patients. However, the mechanistic role of PCNA in HCC progression remains poorly understood. This study aimed to investigate how PCNA regulates DNA damage repair and cell cycle progression in HCC, with a focus on its interaction with poly (ADP-ribose) polymerase 1 (PARP1) and therapeutic implications. Methods PCNA was targeted genetically and pharmacologically in HCC cells to assess its effects on DNA damage repair and cell cycle arrest. Protein-protein interactions between PCNA and PARP1 were validated through co-immunoprecipitation and functional assays. The sensitivity of HCC cells to the PARP1 inhibitor Olaparib was evaluated under PCNA inhibition. Synergistic effects of AOH1160 (a PCNA inhibitor) and Olaparib were tested in vitro and in vivo using proliferation assays, DNA damage quantification, and cell cycle analysis. Prognostic relevance of PCNA expression was analyzed using TCGA datasets. Results Targeting PCNA suppressed DNA damage repair and induced cell cycle arrest in HCC cells. Mechanistically, PARP1 was identified as a downstream target of PCNA and directly interacted with PCNA. Inhibiting the expression or activity of PCNA increased the sensitivity of HCC cells to the PARP1 inhibitor, Olaparib. In addition, AOH1160 and Olaparib synergistically inhibited the proliferation, DNA damage repair and cell cycle progression of HCC cells. Elevated PCNA levels correlated with unfavorable HCC prognosis, supporting its role as a therapeutic biomarker. In vivo experiments also confirmed that repression of the PCNA/PARP1 axis significantly reduced HCC tumor growth. Discussion This study elucidates the relationship between PCNA and PARP1 in regulating the malignant progression of HCC, and highlight the pivotal role of PCNA/PARP1 axis in DNA damage repair and cell cycle progression. The correlation between elevated PCNA levels and unfavorable prognosis underscores its potential as a therapeutic biomarker. Repression of PCNA/PARP1 axis significantly inhibits the malignant proliferation of HCC cells both in vitro and in vivo. Collectively, the study provides a mechanistic foundation for therapies targeting PCNA/PARP1 axis.
Collapse
Affiliation(s)
- Jipin Li
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Tao Yong
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yali Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Tingyu Zeng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Kaifeng Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Shuping Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Youcheng Zhang
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Huang H, Zhang M, Lu H, Chen Y, Sun W, Zhu J, Chen Z. Identification and evaluation of plasma exosome RNA biomarkers for non-invasive diagnosis of hepatocellular carcinoma using RNA-seq. BMC Cancer 2024; 24:1552. [PMID: 39696145 DOI: 10.1186/s12885-024-13332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Non-invasive diagnostic methods, including medical imaging techniques and blood biomarkers such as alpha-fetoprotein (AFP), have been crucial in detecting hepatocellular carcinoma (HCC). However, imaging techniques are only effective for tumor size larger than 2 cm. AFP measurement remains unsatisfactory due to high rate of misdiagnosis and underdiagnosis. Therefore, new reliable biomarkers and better non-invasive diagnostic approach are necessary for HCC identification. METHODS The differentially expressed genes were identified using multiple public RNA-seq data of liver tissues from healthy individuals and HCC patients including peritumoral and tumor tissues. The hub genes for HCC diagnosis were identified combining pathway enrichment analysis and protein-protein interaction network analysis. The performance of hub genes for non-invasive HCC diagnosis was analyzed in plasma of healthy individuals, HBV infected patients, and HCC patients based on exosomal RNA-seq data. A multi-layer perceptron (MLP) model based on exosomal hub genes was developed for non-invasive HCC diagnosis. RESULTS Through differential gene expression and pathway enrichment analysis on multiple public RNA-seq datasets, we first identified 30 dysregulated genes in HCC tissues. Protein-protein interaction analysis further narrowed down this list to 10 key genes: BRCA2, CDK1, MCM4, PLK1, DNA2, BLM, PCNA, POLD1, BRCA1 and FEN1. By further evaluation using additional public HCC tissue datasets, POLD1 and MCM4 were excluded from consideration as potential biomarkers due to their suboptimal performance. Notably, CDK1, FEN1, and PCNA gene were found to be significantly elevated in the plasma exosomes of HCC patients compared to non-HCC individuals, including those with HBV-infected hepatitis and healthy controls. The MLP model, based on three biomarkers, showed an area under the curve (AUC) of 0.85 and 0.84 in training and test dataset respectively, after adjusting for the covariates sex and age. CONCLUSION We identified three key genes, CDK1, FEN1, and PCNA, as exosomal biomarkers for non-invasive diagnosis of HCC. The MLP model utilizing three biomarkers showed good differentiation between non-HCC individuals and HCC patients, which exhibits promising potential as a non-invasive diagnostic tool for detecting HCC. Additional validation with a larger sample size is essential to thoroughly assess the reliability of the biomarkers and the model's performance.
Collapse
Affiliation(s)
- Heqing Huang
- Infectious Disease Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Min Zhang
- BamRock Research Department, Suzhou BamRock Biotechnology Ltd., Suzhou, Jiangsu Province, China
| | - Hong Lu
- Infectious Disease Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yiling Chen
- Infectious Disease Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Weijie Sun
- Ulink College of Shanghai, Shanghai, China
| | - Jinghan Zhu
- Infectious Disease Department, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Zutao Chen
- Infectious Disease Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
- Infectious Disease Department, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
3
|
Sun C, Pan Q, Du M, Zheng J, Bai M, Sun W. Decoding the roles of heat shock proteins in liver cancer. Cytokine Growth Factor Rev 2024; 75:81-92. [PMID: 38182465 DOI: 10.1016/j.cytogfr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common gastrointestinal malignancies, characterized by insidious onset and high propensity for metastasis and recurrence. Apart from surgical resection, there are no effective curative methods for HCC in recent years, due to resistance to radiotherapy and chemotherapy. Heat shock proteins (HSP) play a crucial role in maintaining cellular homeostasis and normal organism development as molecular chaperones for intracellular proteins. Both basic research and clinical data have shown that HSPs are crucial participants in the HCC microenvironment, as well as the occurrence, development, metastasis, and resistance to radiotherapy and chemotherapy in various malignancies, particularly liver cancer. This review aims to discuss the molecular mechanisms and potential clinical value of HSPs in HCC, which may provide new insights for HSP-based therapeutic interventions for HCC.
Collapse
Affiliation(s)
- Chen Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qi Pan
- Department of Hepatobiliary Surgery and Organ Transplantation, First Hospital of China Medical University, Shenyang 110004, China
| | - Mingyang Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jiahe Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ming Bai
- Second Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China.
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Packard JE, Williams MR, Fromuth DP, Dembowski JA. Proliferating cell nuclear antigen inhibitors block distinct stages of herpes simplex virus infection. PLoS Pathog 2023; 19:e1011539. [PMID: 37486931 PMCID: PMC10399828 DOI: 10.1371/journal.ppat.1011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/03/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) forms a homotrimer that encircles replicating DNA and is bound by DNA polymerases to add processivity to cellular DNA synthesis. In addition, PCNA acts as a scaffold to recruit DNA repair and chromatin remodeling proteins to replicating DNA via its interdomain connecting loop (IDCL). Despite encoding a DNA polymerase processivity factor UL42, it was previously found that PCNA associates with herpes simplex virus type 1 (HSV-1) replication forks and is necessary for productive HSV-1 infection. To define the role that PCNA plays during viral DNA replication or a replication-coupled process, we investigated the effects that two mechanistically distinct PCNA inhibitors, PCNA-I1 and T2AA, have on the HSV-1 infectious cycle. PCNA-I1 binds at the interface between PCNA monomers, stabilizes the homotrimer, and may interfere with protein-protein interactions. T2AA inhibits select protein-protein interactions within the PCNA IDCL. Here we demonstrate that PCNA-I1 treatment results in reduced HSV-1 DNA replication, late gene expression, and virus production, while T2AA treatment results in reduced late viral gene expression and infectious virus production. To pinpoint the mechanisms by which PCNA inhibitors affect viral processes and protein recruitment to replicated viral DNA, we performed accelerated native isolation of proteins on nascent DNA (aniPOND). Results indicate that T2AA inhibits recruitment of the viral uracil glycosylase UL2 and transcription regulatory factors to viral DNA, likely leading to a defect in viral base excision repair and the observed defect in late viral gene expression and infectious virus production. In addition, PCNA-I1 treatment results in decreased association of the viral DNA polymerase UL30 and known PCNA-interacting proteins with viral DNA, consistent with the observed block in viral DNA replication and subsequent processes. Together, we conclude that inhibitors of cellular PCNA block recruitment of key viral and cellular factors to viral DNA to inhibit viral DNA synthesis and coupled processes.
Collapse
Affiliation(s)
- Jessica E. Packard
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Maya R. Williams
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Daniel P. Fromuth
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Jill A. Dembowski
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
5
|
Hu T, Niu Y, Fu J, Dong Z, He D, Liu J. Antisense lncRNA PCNA-AS1 promotes esophageal squamous cell carcinoma progression through the miR-2467-3p/PCNA axis. Open Med (Wars) 2022; 17:1483-1494. [PMID: 36213440 PMCID: PMC9490863 DOI: 10.1515/med-2022-0552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/24/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Multiple studies have indicated that long non-coding RNAs are aberrantly expressed in cancers and are pivotal in developing various tumors. No studies have investigated the expression and function of long non-coding antisense RNA PCNA-AS1 in esophageal squamous cell carcinoma (ESCC). In this study, the expression of PCNA-AS1 was identified by qRT–PCR. Cell function assays were used to explore the potential effect of PCNA-AS1 on ESCC progression. A prediction website was utilized to discover the relationships among PCNA-AS1, miR-2467-3p and proliferating cell nuclear antigen (PCNA). Dual luciferase reporter gene and RNA immunoprecipitation (RIP) assays were executed to verify the binding activity between PCNA-AS1, miR-2467-3p and PCNA. As a result, PCNA-AS1 was highly expressed in ESCC and was associated with patient prognosis. PCNA-AS1 overexpression strongly contributed to ESCC cell proliferation, invasion and migration. PCNA-AS1 and PCNA were positively correlated in ESCC. Bioinformatics analysis, RIP and luciferase reporter gene assays revealed that PCNA-AS1 could act as a competitive endogenous RNA to sponge miR-2467-3p, thus upregulating PCNA. In conclusion, the current outcome demonstrates that PCNA-AS1 may be a star molecule in the treatment of ESCC.
Collapse
Affiliation(s)
- Tao Hu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Yunfeng Niu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Jianfeng Fu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Zhiming Dong
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Dongwei He
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Junfeng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| |
Collapse
|
6
|
Lin H, Peng J, Zhu T, Xiong M, Zhang R, Lei L. Exosomal miR-4800-3p Aggravates the Progression of Hepatocellular Carcinoma via Regulating the Hippo Signaling Pathway by Targeting STK25. Front Oncol 2022; 12:759864. [PMID: 35756606 PMCID: PMC9214204 DOI: 10.3389/fonc.2022.759864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background Emerging evidence has shown that exosome microRNAs (miRNAs) regulate the development of hepatocellular carcinoma (HCC). Here, the influences of miR-4800-3p on the progression of HCC were explored. Materials and Methods The expression of miR-4800-3p in the exosome derived by transforming growth factor beta 1 (TGF-β1)-treated HCC cells and the serum exosome isolated from HCC patients were identified by real-time PCR. The effects of TGF-β1 and the influences of Huh7-secreted exosomes and the effects of miR-4800-3p combined with/without STK25 on cell functions were explored using the EdU assay cloning experiments, wound healing assay, and Transwell assay. The corresponding molecular mechanisms were further detected using Western blot and real-time PCR assays. The combination of miR-4800-3p and STK25 was verified by the dual-luciferase and RNA pulldown assays. The influences of miR-4800-3p on the growth and epithelial–mesenchymal transformation (EMT) of implanted tumors were tested in vivo and further confirmed by Western blot. Results The miR-4800-3p expression was highly expressed in both exosomes derived by TGF-β1-treated HCC cells and the serum exosomes of HCC patients. In the cases of treatment with both Huh7-derived exosomes, the level of miR-4800-3p expression was highest, and the treatment of TGF-β1 could greatly promote the proliferation, stemness, migration, and invasion of HCC cells via upregulating the markers of stemness and EMT, including CD44, CD133, OCT4, N-cadherin, E-cadherin, and ZO-1. Similar results could be obtained when miR-4800-3p was overexpressed in HCC cells. Furthermore, downregulation of STK25 expression, a direct target gene of miR-4800-3p, could greatly rescue the malignant biological behaviors aggravated by overexpression of miR-4800-3p. This was achieved by suppressing the expression of CD44, CD133, OCT4, N-cadherin, and PCNA and activating the Hippo pathway while increasing E-cadherin and ZO-1. Similar results were also obtained in vivo that knockdown of miR-4800-3p expression suppressed tumor growth induced by Huh7-derived exosomes by mediating the EMT markers and the Hippo signaling pathway. Conclusion Exosomal miR-4800-3p could accelerate HCC development by regulating the Hippo signal by targeting STK25, which could be used as a new therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Haoming Lin
- Department of HBP Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jicai Peng
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Taifeng Zhu
- Department of HBP Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meihong Xiong
- Department of HBP Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Zhang
- Department of HBP Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liming Lei
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Laboratory of South China Structural Heart Disease, Guangzhou, China
| |
Collapse
|
7
|
HSPA12A Stimulates p38/ERK-AP-1 Signaling to Promote Angiogenesis and Is Required for Functional Recovery Postmyocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2333848. [PMID: 35783189 PMCID: PMC9247843 DOI: 10.1155/2022/2333848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Angiogenesis plays a critical role in wound healing postmyocardial infarction (MI). However, there is still a lack of ideal angiogenic therapeutics for rescuing ischemic hearts clinically, suggesting that a more understanding regarding angiogenesis regulation is urgently needed. Heat shock protein A12A (HSPA12A) is an atypical member of the HSP70 family. Here, we demonstrated that HSPA12A was upregulated during endothelial tube formation, a characteristic of in vitro angiogenesis. Intriguingly, overexpression of HSPA12A promoted in vitro angiogenic characteristics including proliferation, migration, and tube formation of endothelial cells. By contrast, deficiency of HSPA12A impaired myocardial angiogenesis and worsened cardiac dysfunction post-MI in mice. The expression of genes related to angiogenesis (VEGF, VEGFR2, and Ang-1) was decreased by HSPA12A deficiency in MI hearts of mice, whereas their expression was increased by HSPA12A overexpression in endothelial cells. HSPA12A overexpression in endothelial cells increased phosphorylation levels and nuclear localization of AP-1, a transcription factor dominating angiogenic gene expression. Also, HSPA12A increased p38 and ERK phosphorylation levels, whereas inhibition of p38 or ERKs diminished the HSPA12A-promoted AP-1 phosphorylation and nuclear localization, as well as VEGF and VEGFR2 expression in endothelial cells. Notably, inhibition of either p38 or ERKs diminished the HSPA12A-promoted in vitro angiogenesis characteristics. The findings identified HSPA12A as a novel angiogenesis activator, and HSPA12A might represent a viable strategy for the management of myocardial healing in patients with ischemic heart diseases.
Collapse
|
8
|
Long non-coding RNA PAARH promotes hepatocellular carcinoma progression and angiogenesis via upregulating HOTTIP and activating HIF-1α/VEGF signaling. Cell Death Dis 2022; 13:102. [PMID: 35110549 PMCID: PMC8810756 DOI: 10.1038/s41419-022-04505-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading lethal malignancies and a hypervascular tumor. Although some long non-coding RNAs (lncRNAs) have been revealed to be involved in HCC. The contributions of lncRNAs to HCC progression and angiogenesis are still largely unknown. In this study, we identified a HCC-related lncRNA, CMB9-22P13.1, which was highly expressed and correlated with advanced stage, vascular invasion, and poor survival in HCC. We named this lncRNA Progression and Angiogenesis Associated RNA in HCC (PAARH). Gain- and loss-of function assays revealed that PAARH facilitated HCC cellular growth, migration, and invasion, repressed HCC cellular apoptosis, and promoted HCC tumor growth and angiogenesis in vivo. PAARH functioned as a competing endogenous RNA to upregulate HOTTIP via sponging miR-6760-5p, miR-6512-3p, miR-1298-5p, miR-6720-5p, miR-4516, and miR-6782-5p. The expression of PAARH was significantly positively associated with HOTTIP in HCC tissues. Functional rescue assays verified that HOTTIP was a critical mediator of the roles of PAARH in modulating HCC cellular growth, apoptosis, migration, and invasion. Furthermore, PAARH was found to physically bind hypoxia inducible factor-1 subunit alpha (HIF-1α), facilitate the recruitment of HIF-1α to VEGF promoter, and activate VEGF expression under hypoxia, which was responsible for the roles of PAARH in promoting angiogenesis. The expression of PAARH was positively associated with VEGF expression and microvessel density in HCC tissues. In conclusion, these findings demonstrated that PAARH promoted HCC progression and angiogenesis via upregulating HOTTIP and activating HIF-1α/VEGF signaling. PAARH represents a potential prognostic biomarker and therapeutic target for HCC.
Collapse
|
9
|
Min X, Cheng H, Cao X, Chen Z, Zhang X, Li Y, Mao Q, Xue B, Fang L, Liu L, Ding Z. Heat shock protein A12A activates migration of hepatocellular carcinoma cells in a monocarboxylate transporter 4-dependent manner. Cell Stress Chaperones 2022; 27:83-95. [PMID: 35050463 PMCID: PMC8821763 DOI: 10.1007/s12192-021-01251-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022] Open
Abstract
Metastasis is responsible for most of the hepatocellular carcinoma (HCC)-associated death. However, its underlying mechanism has yet to be fully elucidated. Glycolysis-derived lactate has been shown to be a powerful regulator of cancer metastasis. Heat shock protein A12A (HSPA12A) encodes a novel member of HSP70 family. We have recently demonstrated that heat shock protein A12A (HSPA12A) inhibited renal cancer cell migration by suppressing lactate output and glycolytic activity, which were mediated by unstabilizing CD147 and promoting its degradation. By striking contrast, here we demonstrated that HSPA12A promoted migration of human HCC cells. Extracellular acidification, lactate export, and glycolytic activity in HCC cells were also promoted following HSPA12A overexpression. Further analysis revealed that HSPA12A interacted with MCT4 and increased its membrane localization, thereby promoting export of lactate generated from glycolysis; this led, ultimately, to HCC cell migration. Our results revealed the opposite effect of HSPA12A on migration of renal cancer cells and that of HCC cells. Of note, in contrast to the inhibitory effect on CD147 expression in renal cancer cells, we found that HSPA12A increased CD147 expression in HCC cells, indicating that the expression of CD147 might exist heterogeneity in different cancer cell types. Taken together, we identified HSPA12A as an activator of HCC migration, a role opposite to that of renal cancer cells. Inhibiting HSPA12A might be a potential therapeutic intervention for HCC metastasis.
Collapse
Affiliation(s)
- Xinxu Min
- Department of Anesthesiology, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Rd 300, Nanjing, 210029, China
| | - Hao Cheng
- Department of Anesthesiology, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Rd 300, Nanjing, 210029, China
- Department of Anesthesiology, The First Affiliated Hospital With Wannan Medical College, Wuhu, 241001, China
| | - Xiaofei Cao
- Department of Anesthesiology, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Rd 300, Nanjing, 210029, China
| | - Ziyang Chen
- Department of Anesthesiology, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Rd 300, Nanjing, 210029, China
| | - Xiaojin Zhang
- Department of Geriatrics, First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Yunfan Li
- Department of Anesthesiology, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Rd 300, Nanjing, 210029, China
| | - Qian Mao
- Department of Anesthesiology, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Rd 300, Nanjing, 210029, China
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Zhengnian Ding
- Department of Anesthesiology, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Rd 300, Nanjing, 210029, China.
| |
Collapse
|
10
|
Dai Y, Liu J, Zhang X, Min X, Wu J, Du S, Li T, Liu L, Ding Z. HSPA12A improves endothelial integrity to attenuate lung injury during endotoxemia through activating ERKs and Akt-dependent signaling. Int Immunopharmacol 2021; 99:107987. [PMID: 34343936 DOI: 10.1016/j.intimp.2021.107987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Acute lung injury (ALI) is a critical manifestation of sepsis/septic shock. Disruption of endothelial barrier function is critical for ALI pathogenesis; however, the regulation of endothelial barrier integrity remains largely unclear. Heat shock protein A12A (HSPA12A) is an atypical member of HSP70 family. We have recently demonstrated that hepatocyte HSPA12A attenuated the bacteria endotoxin (lipopolysaccharide, LPS)-induced liver injury. However, the role of HSPA12A in endothelial barrier function and ALI is unknown. Here in this study, HSPA12A showed upregulation in lungs of mice during bacteria endotoxin (lipopolysaccharide, LPS)-induced lung injury in vivo and in primary human umbilical vein endothelial cells (HUVECs) during LPS-induced barrier disruption in vitro. Knockout of HSPA12A in mice exacerbated LPS-induced ALI. Intriguingly, overexpression of HSPA12A in HUVECs attenuated the LPS-induced endothelial hyperpermeability. In line with this, HSPA12A overexpression increased VE-cadherin and decreased VEGF expression following LPS treatment in HUVECs. Also, knockout of HSPA12A enhanced the LPS-evoked pulmonary endothelial cell apoptosis in mice whereas overexpression of HSPA12A inhibited the LPS-induced death of HUVECs. The levels of ERKs and Akt phosphorylation in HUVECs were promoted by HSPA12A overexpression when cells exposed to LPS. Importantly, inhibition of either ERKs or Akt diminished the HSPA12A-induced protection from LPS-induced endothelial hyperpermeability and death. Taken together, these findings indicated that HSPA12A is a novel regulator of endothelial barrier function through both ERKs and Akt-mediated signaling. HSPA12A might represent a viable strategy for the pulmonary protection against endotoxemia challenge.
Collapse
Affiliation(s)
- Yuan Dai
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiali Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinxu Min
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Wu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuya Du
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tingting Li
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
11
|
Min X, Zhang X, Li Y, Cao X, Cheng H, Li Y, Li C, Kong Q, Mao Q, Peng P, Ni Y, Li J, Duan Y, Liu L, Ding Z. HSPA12A unstabilizes CD147 to inhibit lactate export and migration in human renal cell carcinoma. Am J Cancer Res 2020; 10:8573-8590. [PMID: 32754264 PMCID: PMC7392002 DOI: 10.7150/thno.44321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Metastasis accounts for 90% of cancer-associated mortality in patients with renal cell carcinoma (RCC). However, the clinical management of RCC metastasis is challenging. Lactate export is known to play an important role in cancer cell migration. This study investigated the role of heat shock protein A12A (HSPA12A) in RCC migration. Methods: HSPA12A expression was examined in 82 pairs of matched RCC tumors and corresponding normal kidney tissues from patients by immunoblotting and immunofluorescence analyses. The proliferation of RCC cells was analyzed using MTT and EdU incorporation assays. The migration of RCC cells was evaluated by wound healing and Transwell migration assays. Extracellular acidification was examined using Seahorse technology. Protein stability was determined following treatment with protein synthesis inhibitor cycloheximide and proteasome inhibitor MG132. Mass spectrometry, immunoprecipitation, and immunoblotting were employed to examine protein-protein interactions. Results: RCC tumors from patients showed downregulation of HSPA12A, which was associated with advanced tumor node metastasis stage. Intriguingly, overexpression of HSPA12A in RCC cells inhibited migration, whereas HSPA12A knockdown had the opposite effect. Lactate export, glycolysis rate, and CD147 protein abundance were also inhibited by HSPA12A overexpression but promoted by HSPA12A knockdown. An interaction of HSPA12A with HRD1 ubiquitin E3 ligase was detected in RCC cells. Further studies demonstrated that CD147 ubiquitination and proteasomal degradation were promoted by HSPA12A overexpression whereas inhibited by HSPA12A knockdown. Notably, the HSPA12A overexpression-induced inhibition of lactate export and migration were abolished by CD147 overexpression. Conclusion: Human RCC shows downregulation of HSPA12A. Overexpression of HSPA12A in RCC cells unstabilizes CD147 through increasing its ubiquitin-proteasome degradation, thereby inhibits lactate export and glycolysis, and ultimately suppresses RCC cell migration. Our results demonstrate that overexpression of HSPA12A might represent a viable strategy for managing RCC metastasis.
Collapse
|