1
|
Wang Y, Shen F, Zhao C, Li J, Wang W, Li Y, Gan J, Zhang H, Chen X, Chen Q, Wang F, Liu Y, Zhou Y. Homeodomain protein PRRX1 anchors the Ku heterodimers at DNA double-strand breaks to promote nonhomologous end-joining. Nucleic Acids Res 2025; 53:gkaf200. [PMID: 40114375 PMCID: PMC11925728 DOI: 10.1093/nar/gkaf200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/26/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) complex plays a critical role in nonhomologous end-joining (NHEJ), a template-independent pathway for repairing DNA double-strand breaks (DSBs). The association of Ku70/80 with DSB ends facilitates the assembly of the DNA-PK holoenzyme. However, key mechanisms underlying the attachment and stabilization of DNA-PK at broken DNA ends remain unclear. Here, we identify PRRX1, a homeodomain-containing protein, as a mediator of chromatin localization and subsequent activation of DNA-PK. PRRX1 oligomerizes to simultaneously bind to double-strand DNA and the SAP (SAF-A/B, Acinus, and PIAS) domain of Ku70, thereby enhancing Ku anchoring at DSBs and stabilizing DNA-PK for efficient NHEJ repair. Reduced expression or pathogenic mutations of PRRX1 are associated with genomic instability and impaired NHEJ repair. Furthermore, a peptide that disrupts PRRX1 oligomerization compromises NHEJ efficiency and reduces cell survival following irradiation. These findings provide new insights into the activation of the NHEJ machinery and offer potential strategies for optimizing cancer therapies.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Fuyuan Shen
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Chen Zhao
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Jiali Li
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Wen Wang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Yamu Li
- The First Affiliated Hospital of Henan University, Kaifeng 475004, China
| | - Jia Gan
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Haojian Zhang
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Xuefeng Chen
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Qiang Chen
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Fangyu Wang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Ying Liu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Yan Zhou
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
2
|
Zhu Y, Lee BJ, Fujii S, Jonchhe S, Zhang H, Li A, Wang KJ, Rothenberg E, Modesti M, Zha S. The KU70-SAP domain has an overlapping function with DNA-PKcs in limiting the lateral movement of KU along DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609806. [PMID: 39253422 PMCID: PMC11383278 DOI: 10.1101/2024.08.26.609806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The non-homologous end-joining (NHEJ) pathway is critical for DNA double-strand break repair and is essential for lymphocyte development and maturation. The Ku70/Ku80 heterodimer (KU) binds to DNA ends, initiating NHEJ and recruiting additional factors, including DNA-dependent protein kinase catalytic subunit (DNA-PKcs) that caps the ends and pushes KU inward. The C-terminus of Ku70 in higher eukaryotes includes a flexible linker and a SAP domain, whose physiological role remains poorly understood. To investigate this, we generated a mouse model with knock-in deletion of the SAP domain ( Ku70 ΔSAP/ΔSAP ). Ku70 ΔSAP supports KU stability and its recruitment to DNA damage sites in vivo . In contrast to the growth retardation and immunodeficiency seen in Ku70 -/- mice, Ku70 ΔSAP/ΔSAP mice show no defects in lymphocyte development and maturation. Structural modeling of KU on long dsDNA, but not dsRNA suggests that the SAP domain can bind to an adjacent major groove, where it can limit KU's rotation and lateral movement along the dsDNA. Accordingly, in the absence of DNA-PKcs that caps the ends, Ku70 ΔSAP fails to support stable DNA damage-induced KU foci. In DNA-PKcs -/- mice, Ku70 ΔSAP abrogates the leaky T cell development and reduces both the qualitative and quantitative aspects of residual V(D)J recombination. In the absence of DNA-PKcs, purified Ku70 ΔSAP has reduced affinity for DNA ends and dissociates more readily at lower concentration and accumulated as multimers at high concentration. These findings revealed a physiological role of the SAP domain in NHEJ by restricting KU rotation and lateral movement on DNA that is largely masked by DNA-PKcs. Highlight Ku70 is a conserved non-homologous end-joining (NHEJ) factor. Using genetically engineered mouse models and biochemical analyses, our study uncovered a previously unappreciated role of the C-terminal SAP domain of Ku70 in limiting the lateral movement of KU on DNA ends and ensuring end protection. The presence of DNA-PKcs partially masks this role of the SAP domain.
Collapse
|
3
|
Harada N, Asada S, Jiang L, Nguyen H, Moreau L, Marina RJ, Adelman K, Iyer DR, D'Andrea AD. The splicing factor CCAR1 regulates the Fanconi anemia/BRCA pathway. Mol Cell 2024; 84:2618-2633.e10. [PMID: 39025073 PMCID: PMC11321822 DOI: 10.1016/j.molcel.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/15/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
The twenty-three Fanconi anemia (FA) proteins cooperate in the FA/BRCA pathway to repair DNA interstrand cross-links (ICLs). The cell division cycle and apoptosis regulator 1 (CCAR1) protein is also a regulator of ICL repair, though its possible function in the FA/BRCA pathway remains unknown. Here, we demonstrate that CCAR1 plays a unique upstream role in the FA/BRCA pathway and is required for FANCA protein expression in human cells. Interestingly, CCAR1 co-immunoprecipitates with FANCA pre-mRNA and is required for FANCA mRNA processing. Loss of CCAR1 results in retention of a poison exon in the FANCA transcript, thereby leading to reduced FANCA protein expression. A unique domain of CCAR1, the EF hand domain, is required for interaction with the U2AF heterodimer of the spliceosome and for excision of the poison exon. Taken together, CCAR1 is a splicing modulator required for normal splicing of the FANCA mRNA and other mRNAs involved in various cellular pathways.
Collapse
Affiliation(s)
- Naoya Harada
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Shuhei Asada
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Lige Jiang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Huy Nguyen
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Lisa Moreau
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ryan J Marina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Divya R Iyer
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Alan D D'Andrea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Wang Y, Czap MS, Kim H, Lu H, Liu J, Chang Y, Romanienko PJ, Montagna C, Shen Z. The Mammalian KU70 C-terminus SAP Domain Is Required to Repair Exogenous DNA Damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601420. [PMID: 38979328 PMCID: PMC11230462 DOI: 10.1101/2024.06.30.601420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The mammalian non-homologous end joining (NHEJ) is required for V(D)J recombination as well as coping with exogenously induced DNA double strand breaks (DSBs). Initiated by the binding of KU70/KU80 (KU) dimer to DNA ends and the subsequent recruitment of the DNA- dependent protein kinase catalytic subunit (DNA-PKcs), NHEJ plays a key role in DNA repair. While there has been significant structural understandings of how KU70 participates in NHEJ, the specific function of its highly conserved C-terminal SAP domain remains elusive. In this study, we developed a novel mouse model by deleting the SAP domain but preserving the KU70 nuclear localization and its dimerization ability with KU80. We found that the KU70 SAP deletion did not affect the V(D)J recombination or animal development but significantly impaired the animals and cells in repairing exogenously induced DSBs. We further showed an inability of KU70-ΔSAP cells to retain the DNA Ligase IV (LIG4) and other NHEJ co-factors on chromatin, and a spreading pattern of DSB marker γH2AX in KU70-ΔSAP cells after DNA damage. Our findings suggest that a specific inhibition of the SAP function may offer an opportunity to modulate cell sensitivity to therapeutic DSB-inducing agents without interfering with the developmental function of KU70. KeyPoints Generation of a novel transgenic mouse line lacking the C-terminal conserved KU70-SAP domainKU70-SAP defends against exogenous DSBs, but unessential for development and V(D)J recombinationKU70-SAP aids in recruiting and retaining NHEJ components, such as LIG4, to DSB sites.
Collapse
|
5
|
Lugano D, Barrett L, Westerheide SD, Kee Y. Multifaceted roles of CCAR family proteins in the DNA damage response and cancer. Exp Mol Med 2024; 56:59-65. [PMID: 38172598 PMCID: PMC10834508 DOI: 10.1038/s12276-023-01139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 01/05/2024] Open
Abstract
The cell cycle apoptosis regulator (CCAR) family of proteins consists of two proteins, CCAR1 and CCAR2, that play a variety of roles in cellular physiology and pathology. These multidomain proteins are able to perform multiple interactions and functions, playing roles in processes such as stress responses, metabolism, and the DNA damage response. The evolutionary conservation of CCAR family proteins allows their study in model organisms such as Caenorhabditis elegans, where a role for CCAR in aging was revealed. This review particularly highlights the multifaceted roles of CCAR family proteins and their implications in the DNA damage response and in cancer biology.
Collapse
Affiliation(s)
- D Lugano
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL, 33647, USA
| | - L Barrett
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL, 33647, USA
| | - S D Westerheide
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL, 33647, USA
| | - Y Kee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno-Joongang-daero, Dalseong-gun, Daegu, 42988, Republic of Korea.
| |
Collapse
|
6
|
Okus F, Yuzbasioglu D, Unal F. Molecular docking study of frequently used food additives for selected targets depending on the chromosomal abnormalities they cause. Toxicology 2024; 502:153716. [PMID: 38159899 DOI: 10.1016/j.tox.2023.153716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Food additives (FAs) (flavor enhancers, sweeteners, etc.) protect foods during storage and transportation, making them attractive to consumers. Today, while the desire to access natural foods is increasing, the chemicals added to foods have started to be questioned. In this respect, genotoxicity tests have gained importance. Studies show that some food additives may have genotoxic risks. Previous studies carried out in our laboratory also revealed genotoxic effects of Monopotassium glutamate (MPG), Monosodium glutamate (MSG), Magnesium diglutamate (MDG) as flavor enhancers; Potassium benzoate (PB), Potassium sorbate (PS), Sodium benzoate (SB), Sodium sorbate (SS) as preservatives; Acesulfame potassium (ACE-K), Xylitol (XYL) as sweeteners. In this study, we determined the interactions of these food additives with ATM and p53 proteins, which are activated in the cell due to genotoxic effects, and with DNA by employing the molecular docking method for the first time. Among the food additives, SB (-4.307) for ATM, XYL (-4.629) for p53, and XYL (-4.927) for DNA showed the highest affinity. Therefore, flexible docking (IFD) scores were determined for SB, XYL, and MDG from flavor enhancers. The potential binding modes of the food additives to target molecules' possible inhibition mechanisms were determined by molecular docking. Thus, new information was obtained to show how these additives cause chromosomal abnormalities.
Collapse
Affiliation(s)
- Fatma Okus
- Graduate School of Natural and Applied Sciences, Gazi University, Teknikokullar, Ankara, Türkiye
| | - Deniz Yuzbasioglu
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, Teknikokullar, Ankara, Türkiye.
| | - Fatma Unal
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, Teknikokullar, Ankara, Türkiye
| |
Collapse
|
7
|
Fulneček J, Klimentová E, Cairo A, Bukovcakova SV, Alexiou P, Prokop Z, Riha K. The SAP domain of Ku facilitates its efficient loading onto DNA ends. Nucleic Acids Res 2023; 51:11706-11716. [PMID: 37850645 PMCID: PMC10681742 DOI: 10.1093/nar/gkad850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
The evolutionarily conserved DNA repair complex Ku serves as the primary sensor of free DNA ends in eukaryotic cells. Its rapid association with DNA ends is crucial for several cellular processes, including non-homologous end joining (NHEJ) DNA repair and telomere protection. In this study, we conducted a transient kinetic analysis to investigate the impact of the SAP domain on individual phases of the Ku-DNA interaction. Specifically, we examined the initial binding, the subsequent docking of Ku onto DNA, and sliding of Ku along DNA. Our findings revealed that the C-terminal SAP domain of Ku70 facilitates the initial phases of the Ku-DNA interaction but does not affect the sliding process. This suggests that the SAP domain may either establish the first interactions with DNA, or stabilize these initial interactions during loading. To assess the biological role of the SAP domain, we generated Arabidopsis plants expressing Ku lacking the SAP domain. Intriguingly, despite the decreased efficiency of the ΔSAP Ku complex in loading onto DNA, the mutant plants exhibited full proficiency in classical NHEJ and telomere maintenance. This indicates that the speed with which Ku loads onto telomeres or DNA double-strand breaks is not the decisive factor in stabilizing these DNA structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Karel Riha
- CEITEC Masaryk University, Brno, Czech Republic
| |
Collapse
|
8
|
Kefala Stavridi A, Gontier A, Morin V, Frit P, Ropars V, Barboule N, Racca C, Jonchhe S, Morten M, Andreani J, Rak A, Legrand P, Bourand-Plantefol A, Hardwick S, Chirgadze D, Davey P, De Oliveira TM, Rothenberg E, Britton S, Calsou P, Blundell T, Varela P, Chaplin A, Charbonnier JB. Structural and functional basis of inositol hexaphosphate stimulation of NHEJ through stabilization of Ku-XLF interaction. Nucleic Acids Res 2023; 51:11732-11747. [PMID: 37870477 PMCID: PMC10682503 DOI: 10.1093/nar/gkad863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
The classical Non-Homologous End Joining (c-NHEJ) pathway is the predominant process in mammals for repairing endogenous, accidental or programmed DNA Double-Strand Breaks. c-NHEJ is regulated by several accessory factors, post-translational modifications, endogenous chemical agents and metabolites. The metabolite inositol-hexaphosphate (IP6) stimulates c-NHEJ by interacting with the Ku70-Ku80 heterodimer (Ku). We report cryo-EM structures of apo- and DNA-bound Ku in complex with IP6, at 3.5 Å and 2.74 Å resolutions respectively, and an X-ray crystallography structure of a Ku in complex with DNA and IP6 at 3.7 Å. The Ku-IP6 interaction is mediated predominantly via salt bridges at the interface of the Ku70 and Ku80 subunits. This interaction is distant from the DNA, DNA-PKcs, APLF and PAXX binding sites and in close proximity to XLF binding site. Biophysical experiments show that IP6 binding increases the thermal stability of Ku by 2°C in a DNA-dependent manner, stabilizes Ku on DNA and enhances XLF affinity for Ku. In cells, selected mutagenesis of the IP6 binding pocket reduces both Ku accrual at damaged sites and XLF enrolment in the NHEJ complex, which translate into a lower end-joining efficiency. Thus, this study defines the molecular bases of the IP6 metabolite stimulatory effect on the c-NHEJ repair activity.
Collapse
Affiliation(s)
- Antonia Kefala Stavridi
- Heartand Lung Research Institute, University of Cambridge, Biomedical Campus, Papworth Road, Trumpington, Cambridge CB2 0BB, UK
| | - Amandine Gontier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Vincent Morin
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Philippe Frit
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Nadia Barboule
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Carine Racca
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Sagun Jonchhe
- NYU Langone Medical Center, 450 East 29th Street, NY, NY, USA York University, USA
| | - Michael J Morten
- NYU Langone Medical Center, 450 East 29th Street, NY, NY, USA York University, USA
| | - Jessica Andreani
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Alexey Rak
- Structure-Design-Informatics, Sanofi R&D, Vitry sur Seine, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, France
| | - Alexa Bourand-Plantefol
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Steven W Hardwick
- Cryo-EM Facility, Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Dimitri Y Chirgadze
- Cryo-EM Facility, Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Paul Davey
- Oncology, R&D, AstraZeneca, Cambridge, UK
| | | | - Eli Rothenberg
- NYU Langone Medical Center, 450 East 29th Street, NY, NY, USA York University, USA
| | - Sebastien Britton
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Tom L Blundell
- Heartand Lung Research Institute, University of Cambridge, Biomedical Campus, Papworth Road, Trumpington, Cambridge CB2 0BB, UK
| | - Paloma F Varela
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Amanda K Chaplin
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
9
|
Vogt A, He Y, Lees-Miller SP. How to fix DNA breaks: new insights into the mechanism of non-homologous end joining. Biochem Soc Trans 2023; 51:1789-1800. [PMID: 37787023 PMCID: PMC10657183 DOI: 10.1042/bst20220741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 08/26/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
Non-homologous end joining (NHEJ) is the major pathway for the repair of ionizing radiation-induced DNA double-strand breaks (DSBs) in human cells and is essential for the generation of mature T and B cells in the adaptive immune system via the process of V(D)J recombination. Here, we review how recently determined structures shed light on how NHEJ complexes function at DNA DSBs, emphasizing how multiple structures containing the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) may function in NHEJ. Together, these studies provide an explanation for how NHEJ proteins assemble to detect and protect DSB ends, then proceed, through DNA-PKcs-dependent autophosphorylation, to a ligation-competent complex.
Collapse
Affiliation(s)
- Alex Vogt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, U.S.A
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, U.S.A
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, U.S.A
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, U.S.A
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, U.S.A
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, U.S.A
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre and Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
10
|
Vogt A, He Y. Structure and mechanism in non-homologous end joining. DNA Repair (Amst) 2023; 130:103547. [PMID: 37556875 PMCID: PMC10528545 DOI: 10.1016/j.dnarep.2023.103547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
DNA double-stranded breaks (DSBs) are a particularly challenging form of DNA damage to repair because the damaged DNA must not only undergo the chemical reactions responsible for returning it to its original state, but, additionally, the two free ends can become physically separated in the nucleus and must be bridged prior to repair. In nonhomologous end joining (NHEJ), one of the major pathways of DSB repair, repair is carried out by a number of repair factors capable of binding to and directly joining DNA ends. It has been unclear how these processes are carried out at a molecular level, owing in part to the lack of structural evidence describing the coordination of the NHEJ factors with each other and a DNA substrate. Advances in cryo-Electron Microscopy (cryo-EM), allowing for the structural characterization of large protein complexes that would be intractable using other techniques, have led to the visualization several key steps of the NHEJ process, which support a model of sequential assembly of repair factors at the DSB, followed by end-bridging mediated by protein-protein complexes and transition to full synapsis. Here we examine the structural evidence for these models, devoting particular attention to recent work identifying a new NHEJ intermediate state and incorporating new NHEJ factors into the general mechanism. We also discuss the evolving understanding of end-bridging mechanisms in NHEJ and DNA-PKcs's role in mediating DSB repair.
Collapse
Affiliation(s)
- Alex Vogt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, USA.
| |
Collapse
|
11
|
Tan J, Sun X, Zhao H, Guan H, Gao S, Zhou P. Double-strand DNA break repair: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e388. [PMID: 37808268 PMCID: PMC10556206 DOI: 10.1002/mco2.388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Double-strand break (DSB), a significant DNA damage brought on by ionizing radiation, acts as an initiating signal in tumor radiotherapy, causing cancer cells death. The two primary pathways for DNA DSB repair in mammalian cells are nonhomologous end joining (NHEJ) and homologous recombination (HR), which cooperate and compete with one another to achieve effective repair. The DSB repair mechanism depends on numerous regulatory variables. DSB recognition and the recruitment of DNA repair components, for instance, depend on the MRE11-RAD50-NBS1 (MRN) complex and the Ku70/80 heterodimer/DNA-PKcs (DNA-PK) complex, whose control is crucial in determining the DSB repair pathway choice and efficiency of HR and NHEJ. In-depth elucidation on the DSB repair pathway's molecular mechanisms has greatly facilitated for creation of repair proteins or pathways-specific inhibitors to advance precise cancer therapy and boost the effectiveness of cancer radiotherapy. The architectures, roles, molecular processes, and inhibitors of significant target proteins in the DSB repair pathways are reviewed in this article. The strategy and application in cancer therapy are also discussed based on the advancement of inhibitors targeted DSB damage response and repair proteins.
Collapse
Affiliation(s)
- Jinpeng Tan
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xingyao Sun
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hongling Zhao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hua Guan
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Shanshan Gao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| |
Collapse
|
12
|
Watanabe G, Lieber MR. The flexible and iterative steps within the NHEJ pathway. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:105-119. [PMID: 37150451 PMCID: PMC10205690 DOI: 10.1016/j.pbiomolbio.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Cellular and biochemical studies of nonhomologous DNA end joining (NHEJ) have long established that nuclease and polymerase action are necessary for the repair of a very large fraction of naturally-arising double-strand breaks (DSBs). This conclusion is derived from NHEJ studies ranging from yeast to humans and all genetically-tractable model organisms. Biochemical models derived from recent real-time and structural studies have yet to incorporate physical space or timing for DNA end processing. In real-time single molecule FRET (smFRET) studies, we analyzed NHEJ synapsis of DNA ends in a defined biochemical system. We described a Flexible Synapsis (FS) state in which the DNA ends were in proximity via only Ku and XRCC4:DNA ligase 4 (X4L4), and in an orientation that would not yet permit ligation until base pairing between one or more nucleotides of microhomology (MH) occurred, thereby allowing an in-line Close Synapsis (CS) state. If no MH was achievable, then XLF was critical for ligation. Neither FS or CS required DNA-PKcs, unless Artemis activation was necessary to permit local resection and subsequent base pairing between the two DNA ends being joined. Here we conjecture on possible 3D configurations for this FS state, which would spatially accommodate the nuclease and polymerase processing steps in an iterative manner. The FS model permits repeated attempts at ligation of at least one strand at the DSB after each round of nuclease or polymerase action. In addition to activation of Artemis, other possible roles for DNA-PKcs are discussed.
Collapse
Affiliation(s)
- Go Watanabe
- Departments of Pathology, Biochemistry, Molecular Microbiology & Immunology, and Section of Molecular & Computational Biology (Department of Biological Sciences), University of Southern California, Los Angeles, CA, 90089-9176, USA
| | - Michael R Lieber
- Departments of Pathology, Biochemistry, Molecular Microbiology & Immunology, and Section of Molecular & Computational Biology (Department of Biological Sciences), University of Southern California, Los Angeles, CA, 90089-9176, USA.
| |
Collapse
|
13
|
Rivera-Calzada A, Arribas-Bosacoma R, Ruiz-Ramos A, Escudero-Bravo P, Boskovic J, Fernandez-Leiro R, Oliver AW, Pearl LH, Llorca O. Structural basis for the inactivation of cytosolic DNA sensing by the vaccinia virus. Nat Commun 2022; 13:7062. [PMID: 36400800 PMCID: PMC9674614 DOI: 10.1038/s41467-022-34843-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Detection of cytosolic DNA is a central element of the innate immunity system against viral infection. The Ku heterodimer, a component of the NHEJ pathway of DNA repair in the nucleus, functions as DNA sensor that detects dsDNA of viruses that replicate in the cytoplasm. Vaccinia virus expresses two proteins, C4 and C16, that inactivate DNA sensing and enhance virulence. The structural basis for this is unknown. Here we determine the structure of the C16 - Ku complex using cryoEM. Ku binds dsDNA by a preformed ring but C16 sterically blocks this access route, abrogating binding to a dsDNA end and its insertion into DNA-PK, thereby averting signalling into the downstream innate immunity system. C4 replicates these activities using a domain with 54% identity to C16. Our results reveal how vaccinia virus subverts the capacity of Ku to recognize viral DNA.
Collapse
Affiliation(s)
- Angel Rivera-Calzada
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Raquel Arribas-Bosacoma
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW1E 6BT, UK
| | - Alba Ruiz-Ramos
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Paloma Escudero-Bravo
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Jasminka Boskovic
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rafael Fernandez-Leiro
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Antony W Oliver
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Laurence H Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW1E 6BT, UK.
| | - Oscar Llorca
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
14
|
Extended DNA binding interfaces beyond the canonical SAP domain contribute to the function of replication stress regulator SDE2 at DNA replication forks. J Biol Chem 2022; 298:102268. [PMID: 35850305 PMCID: PMC9399289 DOI: 10.1016/j.jbc.2022.102268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Elevated DNA replication stress causes instability of the DNA replication fork and increased DNA mutations, which underlies tumorigenesis. The DNA replication stress regulator silencing-defective 2 (SDE2) is known to bind to TIMELESS (TIM), a protein of the fork protection complex, and enhances its stability, thereby supporting replisome activity at DNA replication forks. However, the DNA-binding activity of SDE2 is not well defined. Here, we structurally and functionally characterize a new conserved DNA-binding motif related to the SAP (SAF-A/B, Acinus, PIAS) domain in human SDE2 and establish its preference for ssDNA. Our NMR solution structure of the SDE2SAP domain reveals a helix-extended loop-helix core with the helices aligned parallel to each other, consistent with known canonical SAP folds. Notably, we have shown that the DNA interaction of this SAP domain extends beyond the core SAP domain and is augmented by two lysine residues in the C-terminal tail, which is uniquely positioned adjacent to the SAP motif and conserved in the pre-mRNA splicing factor SF3A3. Furthermore, we found that mutation in the SAP domain and extended C terminus not only disrupts ssDNA binding but also impairs TIM localization at replication forks, thus inhibiting efficient fork progression. Taken together, our results establish SDE2SAP as an essential element for SDE2 to exert its role in preserving replication fork integrity via fork protection complex regulation and highlight the structural diversity of the DNA–protein interactions achieved by a specialized DNA-binding motif.
Collapse
|
15
|
Nguyen TB, Myung Y, de Sá AGC, Pires DEV, Ascher DB. mmCSM-NA: accurately predicting effects of single and multiple mutations on protein-nucleic acid binding affinity. NAR Genom Bioinform 2021; 3:lqab109. [PMID: 34805992 PMCID: PMC8600011 DOI: 10.1093/nargab/lqab109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 02/02/2023] Open
Abstract
While protein-nucleic acid interactions are pivotal for many crucial biological processes, limited experimental data has made the development of computational approaches to characterise these interactions a challenge. Consequently, most approaches to understand the effects of missense mutations on protein-nucleic acid affinity have focused on single-point mutations and have presented a limited performance on independent data sets. To overcome this, we have curated the largest dataset of experimentally measured effects of mutations on nucleic acid binding affinity to date, encompassing 856 single-point mutations and 141 multiple-point mutations across 155 experimentally solved complexes. This was used in combination with an optimized version of our graph-based signatures to develop mmCSM-NA (http://biosig.unimelb.edu.au/mmcsm_na), the first scalable method capable of quantitatively and accurately predicting the effects of multiple-point mutations on nucleic acid binding affinities. mmCSM-NA obtained a Pearson's correlation of up to 0.67 (RMSE of 1.06 Kcal/mol) on single-point mutations under cross-validation, and up to 0.65 on independent non-redundant datasets of multiple-point mutations (RMSE of 1.12 kcal/mol), outperforming similar tools. mmCSM-NA is freely available as an easy-to-use web-server and API. We believe it will be an invaluable tool to shed light on the role of mutations affecting protein-nucleic acid interactions in diseases.
Collapse
Affiliation(s)
- Thanh Binh Nguyen
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Yoochan Myung
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Alex G C de Sá
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Douglas E V Pires
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
- School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|