1
|
Zhou Q, Meng Y, Le J, Sun Y, Dian Y, Yao L, Xiong Y, Zeng F, Chen X, Deng G. Ferroptosis: mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e70010. [PMID: 39568772 PMCID: PMC11577302 DOI: 10.1002/mco2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent lipid peroxidation in membrane phospholipids. Since its identification in 2012, extensive research has unveiled its involvement in the pathophysiology of numerous diseases, including cancers, neurodegenerative disorders, organ injuries, infectious diseases, autoimmune conditions, metabolic disorders, and skin diseases. Oxidizable lipids, overload iron, and compromised antioxidant systems are known as critical prerequisites for driving overwhelming lipid peroxidation, ultimately leading to plasma membrane rupture and ferroptotic cell death. However, the precise regulatory networks governing ferroptosis and ferroptosis-targeted therapy in these diseases remain largely undefined, hindering the development of pharmacological agonists and antagonists. In this review, we first elucidate core mechanisms of ferroptosis and summarize its epigenetic modifications (e.g., histone modifications, DNA methylation, noncoding RNAs, and N6-methyladenosine modification) and nonepigenetic modifications (e.g., genetic mutations, transcriptional regulation, and posttranslational modifications). We then discuss the association between ferroptosis and disease pathogenesis and explore therapeutic approaches for targeting ferroptosis. We also introduce potential clinical monitoring strategies for ferroptosis. Finally, we put forward several unresolved issues in which progress is needed to better understand ferroptosis. We hope this review will offer promise for the clinical application of ferroptosis-targeted therapies in the context of human health and disease.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yu Meng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Jiayuan Le
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yating Dian
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Lei Yao
- Department of General Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yixiao Xiong
- Department of Dermatology Tongji Hospital Huazhong University of Science and Technology Wuhan Hubei China
| | - Furong Zeng
- Department of Oncology Xiangya Hospital Central South University Changsha Hunan Province China
| | - Xiang Chen
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Guangtong Deng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| |
Collapse
|
2
|
Wang J, Cao H, Xie Y, Xu Z, Li Y, Luo H. Mycobacterium tuberculosis infection induces a novel type of cell death: Ferroptosis. Biomed Pharmacother 2024; 177:117030. [PMID: 38917759 DOI: 10.1016/j.biopha.2024.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Ferroptosis is a lipid peroxidation-driven and iron-dependent form of programmed cell death, which is involved in a variety of physical processes and multiple diseases. Numerous reports have demonstrated that ferroptosis is closely related to the pathophysiological processes of Mycobacterium tuberculosis (M. tuberculosis) infection and is characterized by the accumulation of excess lipid peroxides on the cell membrane. In this study, the various functions of ferroptosis, and the therapeutic strategies and diagnostic biomarkers of tuberculosis, were summarized. Notably, this review provides insights into the molecular mechanisms and functions of M. tuberculosis-induced ferroptosis, suggesting potential future therapeutic and diagnostic markers for tuberculosis.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, PR China
| | - Yiping Xie
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Zi Xu
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Yujie Li
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Hao Luo
- Department of Clinical Laboratory, The Second People's Hospital of Kunshan, Suzhou, China.
| |
Collapse
|
3
|
Wang H, Siren J, Perttunen S, Immonen K, Chen Y, Narumanchi S, Kosonen R, Paavola J, Laine M, Tikkanen I, Lakkisto P. Deficiency of heme oxygenase 1a causes detrimental effects on cardiac function. J Cell Mol Med 2024; 28:e18243. [PMID: 38509740 PMCID: PMC10955162 DOI: 10.1111/jcmm.18243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Humans lacking heme oxygenase 1 (HMOX1) display growth retardation, haemolytic anaemia, and vulnerability to stress; however, cardiac function remains unclear. We aimed to explore the cardiac function of zebrafish lacking hmox1a at baseline and in response to stress. We generated zebrafish hmox1a mutants using CRISPR/Cas9 genome editing technology. Deletion of hmox1a increases cardiac output and further induces hypertrophy in adults. Adults lacking hmox1a develop myocardial interstitial fibrosis, restrain cardiomyocyte proliferation and downregulate renal haemoglobin and cardiac antioxidative genes. Larvae lacking hmox1a fail to respond to hypoxia, whereas adults are insensitive to isoproterenol stimulation in the heart, suggesting that hmox1a is necessary for cardiac response to stress. Haplodeficiency of hmox1a stimulates non-mitochondrial respiration and cardiac cell proliferation, increases cardiac output in larvae in response to hypoxia, and deteriorates cardiac function and structure in adults upon isoproterenol treatment. Intriguingly, haplodeficiency of hmox1a upregulates cardiac hmox1a and hmox1b in response to isoproterenol. Collectively, deletion of hmox1a results in cardiac remodelling and abrogates cardiac response to hypoxia and isoproterenol. Haplodeficiency of hmox1a aggravates cardiac response to the stress, which could be associated with the upregulation of hmox1a and hmox1b. Our data suggests that HMOX1 homeostasis is essential for maintaining cardiac function and promoting cardioprotective effects.
Collapse
Affiliation(s)
- Hong Wang
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Juuso Siren
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Sanni Perttunen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | | | - Yu‐Chia Chen
- Department of AnatomyUniversity of HelsinkiHelsinkiFinland
| | | | - Riikka Kosonen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Jere Paavola
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Heart and Lung CentreUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Mika Laine
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Heart and Lung CentreUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Ilkka Tikkanen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Abdominal Centre NephrologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Department of Clinical ChemistryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
4
|
Wang Z, Liu T, Wang Z, Mi Z, Zhang Y, Wang C, Sun L, Ma S, Xue X, Liu H, Zhang F. CYBB-Mediated Ferroptosis Associated with Immunosuppression in Mycobacterium leprae-Infected Monocyte-Derived Macrophages. J Invest Dermatol 2024; 144:874-887.e2. [PMID: 37925067 DOI: 10.1016/j.jid.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
Mycobacterium leprae-infected macrophages preferentially exhibit the regulatory M2 phenotype in vitro, which helps the immune escape unabated growth of M leprae in host cells. The mechanism that triggers macrophage polarization is still unknown. In this study, we performed single-cell RNA sequencing to determine the initial responses of human monocyte-derived macrophages against M leprae infection of 4 healthy individuals and found an increase in a major alternative-activated macrophage type that overexpressed NEAT1, CCL2, and CD163. Importantly, further functional analysis showed that ferroptosis was positively correlated with M2 polarization of macrophages, and in vitro experiments have shown that inhibition of ferroptosis promotes the survival of M leprae within macrophages. In addition, further joint analysis of our results with mutisequencing data from patients with leprosy and in vitro validation identified that CYBB was the pivotal molecule for ferroptosis that could promote the M2 polarization of M leprae-infected macrophages, resulting in the immune escape and unabated growth of pathogenic bacteria. Overall, our results suggest that M leprae facilitated its survival by inducing CYBB-mediated macrophage ferroptosis leading to its alternative activation and might reveal the potential for a new therapeutic strategy of leprosy.
Collapse
Affiliation(s)
- Zhe Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Tingting Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuan Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chuan Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shanshan Ma
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaotong Xue
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
5
|
Cheng K, Yang G, Huang M, Wang Y, Huang Y, Wang C. Physiological and transcriptomic analysis revealed the alleviating effect of 1,25(OH) 2D 3 on environmental iron overloading induced ferroptosis in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123626. [PMID: 38395136 DOI: 10.1016/j.envpol.2024.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Iron overload in the aquatic environment can cause damage in fish bodies. Vitamin D3 (VD3) has been proven to have antioxidant and regulatory effects on iron transport. The current research investigated the effects of environmental iron overload on larval zebrafish and explored the effects of 1,25(OH)2D3 on ferroptosis in zebrafish larvae and zebrafish liver cells (ZFL) caused by iron overload in the environment and its possible regulatory mechanisms. The results showed that 1,25(OH)2D3 alleviated liver damage in zebrafish larvae and mitochondrial damage in ZFL after excessive ammonium ferric citrate (FAC) treatment, and improved the survival rate of ZFL. 1,25(OH)2D3 cleared and inhibited excessive FAC induced abnormal accumulation of ROS, lipid ROS, MDA, and Fe2+ in zebrafish larvae and ZFL, as well as enhanced the activity of antioxidant enzyme GPx4. Transcriptomic analysis showed that 1,25(OH)2D3 can regulate ferroptosis in ZFL by regulating signaling pathways related to oxidative stress, iron homeostasis, mitochondrial function, and ERS, mainly including ferroptosis, neoptosis, p53 signaling pathway, apoptosis, FoxO signaling pathway. Validation of transcriptome data showed that 1,25(OH)2D3 inhibits ferroptosis in zebrafish larvae and ZFL caused by excessive FAC via promoting the expression of slc40a1 and hmox1a genes and increasing SLC40A1 protein levels. In summary, 1,25(OH)2D3 can resist ferroptosis in zebrafish caused by iron overload in the environment mainly via regulating antioxidant capacity and iron ion transport.
Collapse
Affiliation(s)
- Ke Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Gang Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Min Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Yijia Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Yanqing Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Chunfang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|
6
|
Jiang Z, Deng L, Xiang G, Xu X, Wang Y. A Mechanistic Study of the Osteogenic Effect of Arecoline in an Osteoporosis Model: Inhibition of Iron Overload-Induced Osteogenesis by Promoting Heme Oxygenase-1 Expression. Antioxidants (Basel) 2024; 13:430. [PMID: 38671878 PMCID: PMC11047558 DOI: 10.3390/antiox13040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Iron overload-associated osteoporosis presents a significant challenge to bone health. This study examines the effects of arecoline (ACL), an alkaloid found in areca nut, on bone metabolism under iron overload conditions induced by ferric ammonium citrate (FAC) treatment. The results indicate that ACL mitigates the FAC-induced inhibition of osteogenesis in zebrafish larvae, as demonstrated by increased skeletal mineralization and upregulation of osteogenic genes. ACL attenuates FAC-mediated suppression of osteoblast differentiation and mineralization in MC3T3-E1 cells. RNA sequencing analysis suggests that the protective effects of ACL are related to the regulation of ferroptosis. We demonstrate that ACL inhibits ferroptosis, including oxidative stress, lipid peroxidation, mitochondrial damage, and cell death under FAC exposure. In this study, we have identified heme oxygenase-1 (HO-1) as a critical mediator of ACL inhibiting ferroptosis and promoting osteogenesis, which was validated by HO-1 knockdown and knockout experiments. The study links ACL to HO-1 activation and ferroptosis regulation in the context of bone metabolism. These findings provide new insights into the mechanisms underlying the modulation of osteogenesis by ACL. Targeting the HO-1/ferroptosis axis is a promising therapeutic approach for treating iron overload-induced bone diseases.
Collapse
Affiliation(s)
- Zhongjing Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.J.); (L.D.); (G.X.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Linhua Deng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.J.); (L.D.); (G.X.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gang Xiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.J.); (L.D.); (G.X.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xia Xu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Practice, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yunjia Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.J.); (L.D.); (G.X.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
7
|
Davis G, Hameister B, Dunnum C, Vanderpas E, Carter B. Incorporating Primer Amplification Efficiencies in Quantitative Reverse Transcription Polymerase Chain Reaction Experiments; Considerations for Differential Gene Expression Analyses in Zebrafish. Zebrafish 2023; 20:189-199. [PMID: 37722027 DOI: 10.1089/zeb.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Quantitative reverse transcription polymerase chain reaction (RT-qPCR) is commonly used to measure the mRNA expression of target genes in zebrafish. Gene expression values from RT-qPCR are typically reported as relative fold-changes, and relative quantification of RT-qPCR data incorporates primer amplification efficiency values for each target gene. We describe the influence of the primer amplification efficiency analysis method on RT-qPCR gene expression fold-change calculations. This report describes (1) a sample analysis demonstrating incorporation of primer amplification efficiency into RT-qPCR analysis for comparing gene expression of a gene of interest between two groups when normalized to multiple reference genes, (2) the influence of differences in primer amplification efficiencies between measured genes on gene expression differences calculated from theoretical delta-Cq (dCq) values, and (3) an empirical comparison of the influence of three methods of defining primer amplification efficiency in gene expression analyses (delta-delta-Cq [ddCq], standard curve, LinRegPCR) using mRNA measurements of a set of genes in zebrafish embryonic development. Given the need to account for the influence of primer amplification efficiency along with the simplicity of using software programs (LinRegPCR) to measure primer amplification efficiency from RT-qPCR data, we encourage using empirical measurements of primer amplification efficiency for RT-qPCR analysis of differential gene expression in zebrafish.
Collapse
Affiliation(s)
- Gillian Davis
- Department of Biology, University of Wisconsin Eau Claire, Eau Claire, Wisconsin, USA
| | - Brianna Hameister
- Department of Biology, University of Wisconsin Eau Claire, Eau Claire, Wisconsin, USA
| | - Cora Dunnum
- Department of Biology, University of Wisconsin Eau Claire, Eau Claire, Wisconsin, USA
| | - Emily Vanderpas
- Department of Biology, University of Wisconsin Eau Claire, Eau Claire, Wisconsin, USA
| | - Brad Carter
- Department of Biology, University of Wisconsin Eau Claire, Eau Claire, Wisconsin, USA
| |
Collapse
|
8
|
Stockwell BR. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell 2022; 185:2401-2421. [PMID: 35803244 PMCID: PMC9273022 DOI: 10.1016/j.cell.2022.06.003] [Citation(s) in RCA: 1484] [Impact Index Per Article: 494.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/17/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, was identified as a distinct phenomenon and named a decade ago. Ferroptosis has been implicated in a broad set of biological contexts, from development to aging, immunity, and cancer. This review describes key regulators of this form of cell death within a framework of metabolism, ROS biology, and iron biology. Key concepts and major unanswered questions in the ferroptosis field are highlighted. The next decade promises to yield further breakthroughs in the mechanisms governing ferroptosis and additional ways of harnessing ferroptosis for therapeutic benefit.
Collapse
Affiliation(s)
- Brent R Stockwell
- Department of Biological Sciences, Department of Chemistry, Herbert Irving Comprehensive Cancer Center, Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Ramon-Luing LA, Olvera Y, Flores-Gonzalez J, Palacios Y, Carranza C, Aguilar-Duran Y, Vargas MA, Gutierrez N, Medina-Quero K, Chavez-Galan L. Diverse Cell Death Mechanisms Are Simultaneously Activated in Macrophages Infected by Virulent Mycobacterium tuberculosis. Pathogens 2022; 11:pathogens11050492. [PMID: 35631013 PMCID: PMC9147088 DOI: 10.3390/pathogens11050492] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are necessary to eliminate pathogens. However, some pathogens have developed mechanisms to avoid the immune response. One of them is modulating the cell death mechanism to favor pathogen survival. In this study, we evaluated if virulent Mycobacterium tuberculosis (M. tb) can simultaneously activate more than one cell death mechanism. We infected human monocyte-derived macrophages (MDM) in vitro with avirulent (H37Ra) and virulent (H37Rv) strains, and then we measured molecules involved in apoptosis, necroptosis, and pyroptosis. Our data showed that H37Rv infection increased the BCL-2 transcript and protein, decreased the BAX transcript, and increased phosphorylated BCL-2 at the protein level. Moreover, H37Rv infection increased the expression of the molecules involved in the necroptotic pathway, such as ASK1, p-38, RIPK1, RIPK3, and caspase-8, while H37Ra increased caspase-8 and decreased RIPK3 at the transcriptional level. In addition, NLRP3 and CASP1 expression was increased at low MOI in both strains, while IL-1β was independent of virulence but dependent on infection MOI, suggesting the activation of pyroptosis. These findings suggest that virulent M. tb inhibits the apoptosis mediated by BCL-2 family molecules but, at the same time, increases the expression of molecules involved in apoptosis, necroptosis, and pyroptosis at the transcriptional and protein levels, probably as a mechanism to avoid the immune response and guarantee its survival.
Collapse
Affiliation(s)
- Lucero A. Ramon-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (J.F.-G.); (Y.P.); (Y.A.-D.)
| | - Yessica Olvera
- Research Department, Military School of Graduate of Health, SEDENA, Mexico City 11200, Mexico; (Y.O.); (M.A.V.); (N.G.); (K.M.-Q.)
| | - Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (J.F.-G.); (Y.P.); (Y.A.-D.)
| | - Yadira Palacios
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (J.F.-G.); (Y.P.); (Y.A.-D.)
| | - Claudia Carranza
- Laboratory of Tuberculosis Immunobiology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico;
| | - Yerany Aguilar-Duran
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (J.F.-G.); (Y.P.); (Y.A.-D.)
| | - Marco Antonio Vargas
- Research Department, Military School of Graduate of Health, SEDENA, Mexico City 11200, Mexico; (Y.O.); (M.A.V.); (N.G.); (K.M.-Q.)
| | - Neptali Gutierrez
- Research Department, Military School of Graduate of Health, SEDENA, Mexico City 11200, Mexico; (Y.O.); (M.A.V.); (N.G.); (K.M.-Q.)
| | - Karen Medina-Quero
- Research Department, Military School of Graduate of Health, SEDENA, Mexico City 11200, Mexico; (Y.O.); (M.A.V.); (N.G.); (K.M.-Q.)
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (J.F.-G.); (Y.P.); (Y.A.-D.)
- Correspondence: or ; Tel.: +52-5554871700 (ext. 5270)
| |
Collapse
|
10
|
Luo K, Ogawa M, Ayer A, Britton WJ, Stocker R, Kikuchi K, Oehlers SH. Zebrafish Heme Oxygenase 1a Is Necessary for Normal Development and Macrophage Migration. Zebrafish 2022; 19:7-17. [PMID: 35108124 DOI: 10.1089/zeb.2021.0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Heme oxygenase function is highly conserved between vertebrates where it plays important roles in normal embryonic development and controls oxidative stress. Expression of the zebrafish heme oxygenase 1 genes is known to be responsive to oxidative stress suggesting a conserved physiological function. In this study, we generate a knockout allele of zebrafish hmox1a and characterize the effects of hmox1a and hmox1b loss on embryonic development. We find that loss of hmox1a or hmox1b causes developmental defects in only a minority of embryos, in contrast to Hmox1 gene deletions in mice that cause loss of most embryos. Using a tail wound inflammation assay we find a conserved role for hmox1a, but not hmox1b, in normal macrophage migration to the wound site. Together our results indicate that zebrafish hmox1a has clearly a partitioned role from hmox1b that is more consistent with conserved functions of mammalian Heme oxygenase 1.
Collapse
Affiliation(s)
- Kaiming Luo
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Masahito Ogawa
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Anita Ayer
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,The Heart Research Institute, Newtown, Australia
| | - Warwick J Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia.,Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,The Heart Research Institute, Newtown, Australia
| | - Kazu Kikuchi
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,National Cerebral and Cardiovascular Center, Suita, Japan
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia.,Sydney Institute for Infectious Diseases, The University of Sydney, Camperdown, Australia
| |
Collapse
|