1
|
Cunha WR, Martin de la Vega M, Rodrigues de Barros P, Espinosa-Diez C. lncRNAs in vascular senescence and microvascular remodeling. Am J Physiol Heart Circ Physiol 2025; 328:H1238-H1252. [PMID: 40251747 DOI: 10.1152/ajpheart.00750.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical regulators of vascular senescence and microvascular remodeling, processes that significantly contribute to the development of age-related diseases in organs such as the kidneys, heart, and lungs. Through mechanisms like chromatin remodeling, transcriptional regulation, and posttranscriptional modifications, lncRNAs modulate gene expression, thereby influencing cellular processes such as apoptosis, inflammation, fibrosis, and angiogenesis. In chronic kidney disease, cardiovascular disease, and pulmonary disorders, lncRNAs play a central role in promoting vascular dysfunction, endothelial cell aging, and fibrosis. This review focuses on how lncRNAs contribute to endothelial dysfunction, fibrosis, and vascular aging, emphasizing their roles in disease progression within the kidneys, heart, and lungs, where lncRNA-mediated vascular changes play a significant role in disease progression. Understanding the interactions between lncRNAs, vascular senescence, and microvascular remodeling offers promising avenues for developing targeted therapeutic strategies to mitigate the impact of aging on vascular health.
Collapse
Affiliation(s)
- Warlley Rosa Cunha
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Maria Martin de la Vega
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Paula Rodrigues de Barros
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristina Espinosa-Diez
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
2
|
MacDonald JA, Bradshaw GA, Jochems F, Bernards R, Letai A. Apoptotic priming in senescence predicts specific senolysis by quantitative analysis of mitochondrial dependencies. Cell Death Differ 2025; 32:802-817. [PMID: 39762561 DOI: 10.1038/s41418-024-01431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 05/21/2025] Open
Abstract
Cellular senescence contributes to a variety of pathologies associated with aging and is implicated as a cellular state in which cancer cells can survive treatment. Reported senolytic drug treatments act through varying molecular mechanisms, but heterogeneous efficacy across the diverse contexts of cellular senescence indicates a need for predictive biomarkers of senolytic activity. Using multi-parametric analyses of commonly reported molecular features of the senescent phenotype, we assayed a variety of models, including malignant and nonmalignant cells, using several triggers of senescence induction and found little univariate predictive power of these traditional senescence markers to identify senolytic drug sensitivity. We sought to identify novel drug targets in senescent cells that were insensitive to frequently implemented senolytic therapies, such as Navitoclax (ABT-263), using quantitative mass spectrometry to measure changes in the senescent proteome, compared to cells which acquire an acute sensitivity to ABT-263 with senescence induction. Inhibition of the antioxidant GPX4 or the Bcl-2 family member MCL-1 using small molecule compounds in combination with ABT-263 significantly increased the induction of apoptosis in some, but not all, previously insensitive senescent cells. We then asked if we could use BH3 profiling to measure differences in mitochondrial apoptotic priming in these models of cellular senescence and predict sensitivity to the senolytics ABT-263 or the combination of dasatinib and quercetin (D + Q). We found, despite being significantly less primed for apoptosis overall, the dependence of senescent mitochondria on BCL-XL was significantly correlated to senescent cell killing by both ABT-263 and D + Q, despite no significant changes in the gene or protein expression of BCL-XL. However, our data caution against broad classification of drugs as globally senolytic and instead provide impetus for context-specific senolytic targets and propose BH3 profiling as an effective predictive biomarker.
Collapse
Affiliation(s)
- Julie A MacDonald
- Dana Farber Cancer Institute, Boston, MA, USA
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Gary A Bradshaw
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Fleur Jochems
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, CX, Amsterdam, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, CX, Amsterdam, The Netherlands
| | - Anthony Letai
- Dana Farber Cancer Institute, Boston, MA, USA.
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Sacchi M, Tomaselli D, Ruggeri ML, Aiello FB, Sabella P, Dore S, Pinna A, Mastropasqua R, Nubile M, Agnifili L. Fighting Bleb Fibrosis After Glaucoma Surgery: Updated Focus on Key Players and Novel Targets for Therapy. Int J Mol Sci 2025; 26:2327. [PMID: 40076946 PMCID: PMC11900438 DOI: 10.3390/ijms26052327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Filtration bleb (FB) fibrosis represents the primary risk factor for glaucoma filtration surgery (GFS) failure. We reviewed the most recent literature on post-GFS fibrosis in humans, focusing on novel molecular pathways and antifibrotic treatments. Three main literature searches were conducted. First, we performed a narrative review of two models of extra-ocular fibrosis, idiopathic pulmonary fibrosis and skin fibrosis, to improve the comprehension of ocular fibrosis. Second, we conducted a systematic review of failed FB features in the PubMed, Embase, and Cochrane Library databases. Selected studies were screened based on the functional state and morphological features of FB. Third, we carried out a narrative review of novel potential antifibrotic molecules. In the systematic review, 11 studies met the criteria for analysis. Immunohistochemistry and genomics deemed SPARC and transglutaminases to be important for tissue remodeling and attributed pivotal roles to TGFβ and M2c macrophages in promoting FB fibrosis. Four major mechanisms were identified in the FB failure process: inflammation, fibroblast proliferation and myofibroblast conversion, vascularization, and tissue remodeling. On this basis, an updated model of FB fibrosis was described. Among the pharmacological options, particular attention was given to nintedanib, pirfenidone, and rapamycin, which are used in skin and pulmonary fibrosis, since their promising effects are demonstrated in experimental models of FB fibrosis. Based on the most recent literature, modern patho-physiological models of FB fibrosis should consider TGFβ and M2c macrophages as pivotal players and favorite targets for therapy, while research on antifibrotic strategies should clinically investigate medications utilized in the management of extra-ocular fibrosis.
Collapse
Affiliation(s)
- Matteo Sacchi
- Ophthalmology Unit, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy; (M.S.)
| | - Davide Tomaselli
- Ophthalmology Clinic, Alessandro Manzoni Hospital, ASST Lecco, 23900 Lecco, Italy
| | - Maria Ludovica Ruggeri
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Retina Division, Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Francesca Bianca Aiello
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Pierfilippo Sabella
- Ophthalmology Clinic, Alessandro Manzoni Hospital, ASST Lecco, 23900 Lecco, Italy
| | - Stefano Dore
- Ophthalmology Unit, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy; (M.S.)
| | - Antonio Pinna
- Ophthalmology Unit, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy; (M.S.)
| | - Rodolfo Mastropasqua
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mario Nubile
- Ophthalmology Clinic, Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy (L.A.)
| | - Luca Agnifili
- Ophthalmology Clinic, Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy (L.A.)
| |
Collapse
|
4
|
Miller KN, Li B, Pierce-Hoffman HR, Patel S, Lei X, Rajesh A, Teneche MG, Havas AP, Gandhi A, Macip CC, Lyu J, Victorelli SG, Woo SH, Lagnado AB, LaPorta MA, Liu T, Dasgupta N, Li S, Davis A, Korotkov A, Hultenius E, Gao Z, Altman Y, Porritt RA, Garcia G, Mogler C, Seluanov A, Gorbunova V, Kaech SM, Tian X, Dou Z, Chen C, Passos JF, Adams PD. p53 enhances DNA repair and suppresses cytoplasmic chromatin fragments and inflammation in senescent cells. Nat Commun 2025; 16:2229. [PMID: 40044657 PMCID: PMC11882782 DOI: 10.1038/s41467-025-57229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
Genomic instability and inflammation are distinct hallmarks of aging, but the connection between them is poorly understood. Here we report a mechanism directly linking genomic instability and inflammation in senescent cells through a mitochondria-regulated molecular circuit involving p53 and cytoplasmic chromatin fragments (CCF) that are enriched for DNA damage signaling marker γH2A.X. We show that p53 suppresses CCF accumulation and its downstream inflammatory phenotype. p53 activation suppresses CCF formation linked to enhanced DNA repair and genome integrity. Activation of p53 in aged mice by pharmacological inhibition of MDM2 reverses transcriptomic signatures of aging and age-associated accumulation of monocytes and macrophages in liver. Mitochondrial ablation in senescent cells suppresses CCF formation and activates p53 in an ATM-dependent manner, suggesting that mitochondria-dependent formation of γH2A.X + CCF dampens nuclear DNA damage signaling and p53 activity. These data provide evidence for a mitochondria-regulated p53 signaling circuit in senescent cells that controls DNA repair, genome integrity, and senescence- and age-associated inflammation, with relevance to therapeutic targeting of age-associated disease.
Collapse
Affiliation(s)
- Karl N Miller
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA.
| | - Brightany Li
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | | | - Shreeya Patel
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Xue Lei
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Adarsh Rajesh
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Marcos G Teneche
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Aaron P Havas
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Armin Gandhi
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Carolina Cano Macip
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Jun Lyu
- Laboratory of Biochemistry and Molecular Biology; National Cancer Institute; National Institutes of Health, Bethesda, MD, USA
| | - Stella G Victorelli
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging; Mayo Clinic, Rochester, MN, USA
| | - Seung-Hwa Woo
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging; Mayo Clinic, Rochester, MN, USA
| | - Anthony B Lagnado
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging; Mayo Clinic, Rochester, MN, USA
| | - Michael A LaPorta
- NOMIS Center for Immunobiology and Microbial Pathogenesis; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tianhui Liu
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Nirmalya Dasgupta
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
- Center for Cancer Therapy; La Jolla Institute of Immunology, La Jolla, CA, USA
| | - Sha Li
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Andrew Davis
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Anatoly Korotkov
- Departments of Biology and Medicine; University of Rochester, Rochester, NY, USA
| | - Erik Hultenius
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Zichen Gao
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Yoav Altman
- Shared Resources; NCI-designated Cancer Center; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Rebecca A Porritt
- Shared Resources; NCI-designated Cancer Center; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Guillermina Garcia
- Shared Resources; NCI-designated Cancer Center; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Carolin Mogler
- Institute of Pathology; School of Medicine and Health; Technical University Munich (TUM), Munich, Germany
| | - Andrei Seluanov
- Departments of Biology and Medicine; University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine; University of Rochester, Rochester, NY, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xiao Tian
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Department of Medicine; Massachusetts General Research Institute, Boston, MA, USA
- Harvard Stem Cell Institute; Harvard University, Cambridge, MA, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology; National Cancer Institute; National Institutes of Health, Bethesda, MD, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging; Mayo Clinic, Rochester, MN, USA
| | - Peter D Adams
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA.
| |
Collapse
|
5
|
Liu G, Chen Y, Dai S, Wu G, Wang F, Chen W, Wu L, Luo P, Shi C. Targeting the NLRP3 in macrophages contributes to senescence cell clearance in radiation-induced skin injury. J Transl Med 2025; 23:196. [PMID: 39966955 PMCID: PMC11834210 DOI: 10.1186/s12967-025-06204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The persistent accumulation of senescence cells is one of the characteristics of radiation-induced skin injury (RISI), leading to fibrosis and impaired healing. However, the reasons why these senescence cells are resistant to clearance remain unclear. METHODS The mouse RISI model was established using an X-ray generator, and a shield was used to cover all areas except the skin of the right leg or back for protecting surrounding tissue. ScRNA sequencing, immunohistochemistry, immunofluorescence, qPCR, western blot, primary cell co-culture system and fluorescence microsphere phagocytosis assay were performed for the functional and mechanistic investigations. RESULTS The dynamic changes of senescence cell levels and multiple immune cell levels during RISI were evaluated, we found that macrophages could remove senescence cells from the dermis, and the clearance ability gradually strengthens over time. ScRNA sequencing revealed that macrophages with high senescence clearance capacity exhibited increased NOD-like receptor family pyrin domain-containing 3 (NLRP3) expression compared to those with low senescence clearance capacity. Inhibition or conditional knockout of Nlrp3 in macrophages led to senescence cell clearance dysfunction and impaired healing. Further studies found that interleukin-33 secreted by senescence cells inhibited the expression of NLRP3 in macrophages and their ability to phagocytize senescence cells, especially in the early stages after radiation. In addition, Nocardia rubra cell wall skeleton (Nr-CWS), an approved immunomodulator, was found to activate macrophage NLRP3 expression, reduce senescence cell burden, and accelerate the healing of RISI. CONCLUSION This study underscored NLRP3 in macrophages as a critical intervention target for senescence cell immunosurveillance and emphasized Nr-CWS as a potential therapeutic agent for accelerating senescence cell clearance in RISI.
Collapse
Affiliation(s)
- Gaoyu Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yan Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shijie Dai
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Gang Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Laboratory of Extreme Environmental Medicine of Ministry of Education, Institute of Medicine and Equipment for High Altitude Region, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Fulong Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wanchao Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lingling Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
6
|
Miller KN, Li B, Pierce-Hoffman HR, Patel S, Lei X, Rajesh A, Teneche MG, Havas AP, Gandhi A, Macip CC, Lyu J, Victorelli SG, Woo SH, Lagnado AB, LaPorta MA, Liu T, Dasgupta N, Li S, Davis A, Korotkov A, Hultenius E, Gao Z, Altman Y, Porritt RA, Garcia G, Mogler C, Seluanov A, Gorbunova V, Kaech SM, Tian X, Dou Z, Chen C, Passos JF, Adams PD. Linked regulation of genome integrity and senescence-associated inflammation by p53. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567963. [PMID: 38045344 PMCID: PMC10690201 DOI: 10.1101/2023.11.20.567963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Genomic instability and inflammation are distinct hallmarks of aging, but the connection between them is poorly understood. Understanding their interrelationship will help unravel new mechanisms and therapeutic targets of aging and age-associated diseases. Here we report a novel mechanism directly linking genomic instability and inflammation in senescent cells through a mitochondria-regulated molecular circuit driven by p53 and cytoplasmic chromatin fragments (CCF). We show, through activation or inactivation of p53 by genetic and pharmacologic approaches, that p53 suppresses CCF accumulation and the downstream inflammatory senescence-associated secretory phenotype (SASP), without affecting cell cycle arrest. p53 activation suppressed CCF formation by promoting DNA repair, and this is reflected in maintenance of genomic integrity, particularly in subtelomeric regions, as shown by single cell genome resequencing. Activation of p53 in aged mice by pharmacological inhibition of MDM2 reversed signatures of aging, including age- and senescence-associated transcriptomic signatures of inflammation and age-associated accumulation of monocytes and macrophages in liver. Remarkably, mitochondria in senescent cells suppressed p53 activity by promoting CCF formation and thereby restricting ATM-dependent nuclear DNA damage signaling. These data provide evidence for a mitochondria-regulated p53 signaling circuit in senescent cells that controls DNA repair, genome integrity, and senescence- and age-associated inflammation. This pathway is immunomodulatory in mice and a potential target for healthy aging interventions by small molecules already shown to activate p53.
Collapse
|
7
|
Matuszewska J, Krawiec A, Radziemski A, Uruski P, Tykarski A, Mikuła-Pietrasik J, Książek K. Alterations of receptors and insulin-like growth factor binding proteins in senescent cells. Eur J Cell Biol 2024; 103:151438. [PMID: 38945074 DOI: 10.1016/j.ejcb.2024.151438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
The knowledge about cellular senescence expands dynamically, providing more and more conclusive evidence of its triggers, mechanisms, and consequences. Senescence-associated secretory phenotype (SASP), one of the most important functional traits of senescent cells, is responsible for a large extent of their context-dependent activity. Both SASP's components and signaling pathways are well-defined. A literature review shows, however, that a relatively underinvestigated aspect of senescent cell autocrine and paracrine activity is the change in the production of proteins responsible for the reception and transmission of SASP signals, i.e., receptors and binding proteins. For this reason, we present in this article the current state of knowledge regarding senescence-associated changes in cellular receptors and insulin-like growth factor binding proteins. We also discuss the role of these alterations in senescence induction and maintenance, pro-cancerogenic effects of senescent cells, and aging-related structural and functional malfunctions.
Collapse
Affiliation(s)
- Julia Matuszewska
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Artur Radziemski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Paweł Uruski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Andrzej Tykarski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland.
| |
Collapse
|
8
|
Wang Y, Kuca K, You L, Nepovimova E, Heger Z, Valko M, Adam V, Wu Q, Jomova K. The role of cellular senescence in neurodegenerative diseases. Arch Toxicol 2024; 98:2393-2408. [PMID: 38744709 PMCID: PMC11272704 DOI: 10.1007/s00204-024-03768-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Increasing evidence has revealed that cellular senescence drives NDs, including Alzheimer's disease (AD) and Parkinson's disease. Different senescent cell populations secrete senescence-associated secretory phenotypes (SASP), including matrix metalloproteinase-3, interleukin (IL)-1α, IL-6, and IL-8, which can harm adjacent microglia. Moreover, these cells possess high expression levels of senescence hallmarks (p16 and p21) and elevated senescence-associated β-galactosidase activity in in vitro and in vivo ND models. These senescence phenotypes contribute to the deposition of β-amyloid and tau-protein tangles. Selective clearance of senescent cells and SASP regulation by inhibiting p38/mitogen-activated protein kinase and nuclear factor kappa B signaling attenuate β-amyloid load and prevent tau-protein tangle deposition, thereby improving cognitive performance in AD mouse models. In addition, telomere shortening, a cellular senescence biomarker, is associated with increased ND risks. Telomere dysfunction causes cellular senescence, stimulating IL-6, tumor necrosis factor-α, and IL-1β secretions. The forced expression of telomerase activators prevents cellular senescence, yielding considerable neuroprotective effects. This review elucidates the mechanism of cellular senescence in ND pathogenesis, suggesting strategies to eliminate or restore senescent cells to a normal phenotype for treating such diseases.
Collapse
Affiliation(s)
- Yating Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, 401520, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovakia.
| |
Collapse
|
9
|
Salnikov L. Cell autocloning as a pathway to their real rejuvenation. FRONTIERS IN AGING 2024; 5:1429156. [PMID: 39136004 PMCID: PMC11317467 DOI: 10.3389/fragi.2024.1429156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024]
Abstract
The article gives a brief description of geroprotection and rejuvenation methods known to date, presenting their main mechanisms and limitations. To overcome the main limitations of the process of rejuvenation, it is possible to use a process called "cell autocloning." The principle of the proposed method of rejuvenation is as follows: a periodic process of autocloning of the cell nucleus is initiated in the cellular genome with the formation of one unstable daughter copy and its subsequent self-elimination. In this case, the process of cell division stops in the phase of nuclei divergence without subsequent physical separation of the cell itself. This is especially important for postmitotic cells, where the looping of the "unidirectional" line of the ontogenesis program into a "ring" will mean their transition into renewable cells. The prototype for autocloning mechanisms could be the already known ways in which cells adapt to the increasing amount of their damage over time. These are polyploidy and asymmetric cell division, relying on which it is possible to obtain a renewable process of cell nuclei division, when only the original nucleus remains as a result of division. Although this is not a simple task, there are possible pathways to its solution using approaches that can suggest modern knowledge from the field of molecular and cell biology and genetics. The realization of such a goal will require a lot of work, but the expected result justifies it.
Collapse
|
10
|
Wang P, Konja D, Singh S, Zhang B, Wang Y. Endothelial Senescence: From Macro- to Micro-Vasculature and Its Implications on Cardiovascular Health. Int J Mol Sci 2024; 25:1978. [PMID: 38396653 PMCID: PMC10889199 DOI: 10.3390/ijms25041978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Endothelial cells line at the most inner layer of blood vessels. They act to control hemostasis, arterial tone/reactivity, wound healing, tissue oxygen, and nutrient supply. With age, endothelial cells become senescent, characterized by reduced regeneration capacity, inflammation, and abnormal secretory profile. Endothelial senescence represents one of the earliest features of arterial ageing and contributes to many age-related diseases. Compared to those in arteries and veins, endothelial cells of the microcirculation exhibit a greater extent of heterogeneity. Microcirculatory endothelial senescence leads to a declined capillary density, reduced angiogenic potentials, decreased blood flow, impaired barrier properties, and hypoperfusion in a tissue or organ-dependent manner. The heterogeneous phenotypes of microvascular endothelial cells in a particular vascular bed and across different tissues remain largely unknown. Accordingly, the mechanisms underlying macro- and micro-vascular endothelial senescence vary in different pathophysiological conditions, thus offering specific target(s) for therapeutic development of senolytic drugs.
Collapse
Affiliation(s)
- Peichun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; (P.W.); (D.K.); (S.S.); (B.Z.)
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Daniels Konja
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; (P.W.); (D.K.); (S.S.); (B.Z.)
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sandeep Singh
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; (P.W.); (D.K.); (S.S.); (B.Z.)
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Beijia Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; (P.W.); (D.K.); (S.S.); (B.Z.)
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China; (P.W.); (D.K.); (S.S.); (B.Z.)
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Hu M, Zhang Y, Zhang X, Zhang X, Huang X, Lu Y, Li Y, Brännström M, Sferruzzi-Perri AN, Shao LR, Billig H. Defective Uterine Spiral Artery Remodeling and Placental Senescence in a Pregnant Rat Model of Polycystic Ovary Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1916-1935. [PMID: 37689383 DOI: 10.1016/j.ajpath.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/28/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023]
Abstract
Pregnancy-related problems have been linked to impairments in maternal uterine spiral artery (SpA) remodeling. The mechanisms underlying this association are still unclear. It is also unclear whether hyperandrogenism and insulin resistance, the two common manifestations of polycystic ovary syndrome, affect uterine SpA remodeling. We verified previous work in which exposure to 5-dihydrotestosterone (DHT) and insulin (INS) in rats during pregnancy resulted in hyperandrogenism, insulin intolerance, and higher fetal mortality. Exposure to DHT and INS dysregulated the expression of angiogenesis-related genes in the uterus and placenta and also decreased expression of endothelial nitric oxide synthase and matrix metallopeptidases 2 and 9, increased fibrotic collagen deposits in the uterus, and reduced expression of marker genes for SpA-associated trophoblast giant cells. These changes were related to a greater proportion of unremodeled uterine SpAs and a smaller proportion of highly remodeled arteries in DHT + INS-exposed rats. Placentas from DHT + INS-exposed rats exhibited decreased basal and labyrinth zone regions, reduced maternal blood spaces, diminished labyrinth vascularity, and an imbalance in the abundance of vascular and smooth muscle proteins. Furthermore, placentas from DHT + INS-exposed rats showed expression of placental insufficiency markers and a significant increase in cell senescence-associated protein levels. Altogether, this work demonstrates that increased pregnancy complications in polycystic ovary syndrome may be mediated by problems with uterine SpA remodeling, placental functionality, and placental senescence.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China; Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - XiuYing Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyue Huang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yaxing Lu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yijia Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
13
|
Baker DJ, Narita M, Muñoz-Cánoves P. Cellular senescence: beneficial, harmful, and highly complex. FEBS J 2023; 290:1156-1160. [PMID: 36856679 DOI: 10.1111/febs.16735] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 03/02/2023]
Abstract
The contribution of cellular senescence to a diverse range of biological processes, including normal physiology, ageing, and pathology were long overlooked but have now taken centre stage. In this Editorial, we will briefly outline the review and original work articles contained in The FEBS Journal's Special Issue on Senescence in Ageing and Disease. It is beginning to be appreciated that senescent cells can exert both beneficial and adverse effects following tissue injury. Additionally, while these cells play critical roles for maintaining a healthy physiology, they also promote ageing and certain pathological conditions (including developmental disorders). Progress has been made in re-defining and identifying senescent cells, especially in slow-proliferating or terminally differentiated tissues, such as the brain and cardiovascular system. Novel approaches and techniques for isolating senescent cells will greatly increase our appreciation for senescent properties in tissues. The inter-organ communication between senescent cells and other residents of the tissue microenvironment, via the senescence-associated secretory phenotype (SASP), is a focus of several reviews in this Special Issue. The importance of the SASP in promoting tumour development and the evolution of SARS CoV-2 variants is also highlighted. In one of the two original articles included in the issue, the impact of dietary macronutrients and the presence of senescent cells in mice is investigated. Lastly, we continue to deepen our understanding on the use of senolytics and senomorphics to specifically target senescent cells or their secreted components, respectively, which is discussed in several of the reviews included here.
Collapse
Affiliation(s)
- Darren J Baker
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Paul F. Glenn Center for the Biology of Aging at Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, UK
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences, Pompeu Fabra University and ICREA, Barcelona, Spain
- Altos Labs, Inc., San Diego, CA, USA
| |
Collapse
|
14
|
Moiseeva V, Cisneros A, Sica V, Deryagin O, Lai Y, Jung S, Andrés E, An J, Segalés J, Ortet L, Lukesova V, Volpe G, Benguria A, Dopazo A, Benitah SA, Urano Y, Del Sol A, Esteban MA, Ohkawa Y, Serrano AL, Perdiguero E, Muñoz-Cánoves P. Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration. Nature 2023; 613:169-178. [PMID: 36544018 DOI: 10.1038/s41586-022-05535-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 11/07/2022] [Indexed: 12/24/2022]
Abstract
Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.
Collapse
Affiliation(s)
- Victoria Moiseeva
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Andrés Cisneros
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Valentina Sica
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Oleg Deryagin
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Yiwei Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Sascha Jung
- CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain
| | - Eva Andrés
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Juan An
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Science and Technology of China, Hefei, China
| | - Jessica Segalés
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Laura Ortet
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Vera Lukesova
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Giacomo Volpe
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Alberto Benguria
- Genomic Unit, Centro Nacional de Investigaciones Cardiovasculares and CIBERCV, Madrid, Spain
| | - Ana Dopazo
- Genomic Unit, Centro Nacional de Investigaciones Cardiovasculares and CIBERCV, Madrid, Spain
| | - Salvador Aznar Benitah
- ICREA, Barcelona, Spain.,Institute for Research in Biomedicine and BIST, Barcelona, Spain
| | - Yasuteru Urano
- Laboratory of Chemistry & Biology, Graduate School of Pharmaceutical Sciences and School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Antonio Del Sol
- CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain.,Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Yasuyuki Ohkawa
- Division of Transcriptomics. Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Antonio L Serrano
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain.,CIBERNED, Barcelona, Spain.,Altos labs Inc, San Diego, CA, USA
| | - Eusebio Perdiguero
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain. .,CIBERNED, Barcelona, Spain. .,Altos labs Inc, San Diego, CA, USA.
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain. .,CIBERNED, Barcelona, Spain. .,ICREA, Barcelona, Spain. .,Altos labs Inc, San Diego, CA, USA. .,Cardiovascular Regeneration Program, CNIC Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| |
Collapse
|