1
|
Bao J, Tian X, Pan Y, Guo Y, Yang Z, Gan M, Zheng J. SNRPB2: a prognostic biomarker and oncogenic driver in esophageal cancer via β-catenin/c-Myc signaling. Front Oncol 2025; 15:1536473. [PMID: 40303992 PMCID: PMC12037380 DOI: 10.3389/fonc.2025.1536473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Background The SNRPB2 gene encodes Small Nuclear Ribonucleoprotein Polypeptide B2, a crucial component involved in RNA splicing processes. While SNRPB2 dysregulation has been observed in various cancers, its role in esophageal cancer (ESCA) remains unclear. Methods The mRNA level of SNRPB2 in ESCA was evaluated in combination with TCGA, GTEX, and GEO databases. The prognostic value of SNRPB2 was assessed using Kaplan-Meier analysis. Immunohistochemistry (IHC) was employed to confirm the expression of the SNRPB2 protein in tumor tissues from clinical samples. The biological functions of SNRPB2 were assessed in vitro cell assay and in vivo tumor models. The molecular mechanisms were determined by correlation and gene set enrichment analysis. Western blot experiments validated involvement in signaling pathways. Results Our findings unveiled that SNRPB2 was upregulated at both mRNA and protein levels in ESCA, which was associated with the pathological progression of the disease. Additionally, SNRPB2 served as a robust prognostic biomarker, implicated in driving oncogenic functions in ESCA. It facilitated cell proliferation, migration, and invasion, transitioned the cell cycle, and inhibited apoptosis. Mechanistically, SNRPB2 activated genes associated with the β-catenin/c-Myc signaling pathway, such as β-catenin, c-Myc, CCNA2, CCNB1, CDK1, and CDK2. This activation also regulated the epithelial-to-mesenchymal transition (EMT), thereby facilitating the progression of ESCA. Conclusion Our findings demonstrate that SNRPB2 contributes to ESCA progression by regulating the β-catenin/c-Myc axis, suggesting its potential as a prognostic biomarker and therapeutic target for ESCA patients.
Collapse
Affiliation(s)
- Jiaqian Bao
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiong Tian
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yixiao Pan
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenyu Yang
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Meifu Gan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Pathology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jingmin Zheng
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
2
|
Cui L, Zheng Y, Xu R, Lin Y, Zheng J, Lin P, Guo B, Sun S, Zhao X. Alternative pre-mRNA splicing in stem cell function and therapeutic potential: A critical review of current evidence. Int J Biol Macromol 2024; 268:131781. [PMID: 38657924 DOI: 10.1016/j.ijbiomac.2024.131781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Alternative splicing is a crucial regulator in stem cell biology, intricately influencing the functions of various biological macromolecules, particularly pre-mRNAs and the resultant protein isoforms. This regulatory mechanism is vital in determining stem cell pluripotency, differentiation, and proliferation. Alternative splicing's role in allowing single genes to produce multiple protein isoforms facilitates the proteomic diversity that is essential for stem cells' functional complexity. This review delves into the critical impact of alternative splicing on cellular functions, focusing on its interaction with key macromolecules and how this affects cellular behavior. We critically examine how alternative splicing modulates the function and stability of pre-mRNAs, leading to diverse protein expressions that govern stem cell characteristics, including pluripotency, self-renewal, survival, proliferation, differentiation, aging, migration, somatic reprogramming, and genomic stability. Furthermore, the review discusses the therapeutic potential of targeting alternative splicing-related pathways in disease treatment, particularly focusing on the modulation of RNA and protein interactions. We address the challenges and future prospects in this field, underscoring the need for further exploration to unravel the complex interplay between alternative splicing, RNA, proteins, and stem cell behaviors, which is crucial for advancing our understanding and therapeutic approaches in regenerative medicine and disease treatment.
Collapse
Affiliation(s)
- Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China; Hospital of Stomatology, Zunyi Medical University, Zunyi 563000, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuyu Sun
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
3
|
Engal E, Oja KT, Maroofian R, Geminder O, Le TL, Marzin P, Guimier A, Mor E, Zvi N, Elefant N, Zaki MS, Gleeson JG, Muru K, Pajusalu S, Wojcik MH, Pachat D, Elmaksoud MA, Chan Jeong W, Lee H, Bauer P, Zifarelli G, Houlden H, Daana M, Elpeleg O, Amiel J, Lyonnet S, Gordon CT, Harel T, Õunap K, Salton M, Mor-Shaked H. Bi-allelic loss-of-function variants in WBP4, encoding a spliceosome protein, result in a variable neurodevelopmental syndrome. Am J Hum Genet 2023; 110:2112-2119. [PMID: 37963460 PMCID: PMC10716347 DOI: 10.1016/j.ajhg.2023.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WW domain-binding protein 4 (WBP4) is part of the early spliceosomal complex and has not been previously associated with human pathologies in the Online Mendelian Inheritance in Man (OMIM) database. Through GeneMatcher, we identified ten individuals from eight families with a severe neurodevelopmental syndrome featuring variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal, and gastrointestinal abnormalities. Genetic analysis revealed five different homozygous loss-of-function variants in WBP4. Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated a complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including in genes associated with abnormalities of the nervous system, potentially underlying the phenotypes of the probands. We conclude that bi-allelic variants in WBP4 cause a developmental disorder with variable presentations, adding to the growing list of human spliceosomopathies.
Collapse
Affiliation(s)
- Eden Engal
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; Department of Military Medicine and "Tzameret," Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kaisa Teele Oja
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia; Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Reza Maroofian
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Ophir Geminder
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; Department of Military Medicine and "Tzameret," Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Thuy-Linh Le
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de La Santé et de La Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, 75015 Paris, France
| | - Pauline Marzin
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, 75015 Paris, France
| | - Anne Guimier
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de La Santé et de La Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, 75015 Paris, France; Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, 75015 Paris, France
| | - Evyatar Mor
- Department of Computer Science, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Naama Zvi
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
| | - Naama Elefant
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, Cairo, Egypt
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, USA; Rady Children's Institute for Genomic Medicine, San Diego, La Jolla, USA
| | - Kai Muru
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia; Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sander Pajusalu
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia; Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | | | - Divya Pachat
- Department of Medical Genetics, Aster MIMS (Malabar Institute of Medical Sciences)-Calicut, Kerala, India
| | - Marwa Abd Elmaksoud
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | | | - Peter Bauer
- CENTOGENE GmbH, Am Strande 7, 18055 Rostock, Germany
| | | | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Muhannad Daana
- Child Development Centers, Clalit Health Care Services, Jerusalem, Israel
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de La Santé et de La Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, 75015 Paris, France; Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, 75015 Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de La Santé et de La Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, 75015 Paris, France; Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, 75015 Paris, France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de La Santé et de La Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, 75015 Paris, France
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Katrin Õunap
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia; Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|