1
|
Aderinto N, Abdulbasit M, Olatunji G, Edun M. The landscape of neuroscience research in Africa: current state, progress, and challenges; a perspective. Ann Med Surg (Lond) 2023; 85:5267-5274. [PMID: 37811039 PMCID: PMC10553195 DOI: 10.1097/ms9.0000000000001219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/12/2023] [Indexed: 10/10/2023] Open
Abstract
The field of neuroscience research in Africa has witnessed significant advancements in recent years, contributing to understanding the brain and neurological disorders. This paper provides an overview of the current state of neuroscience research in Africa, highlighting the progress made, ongoing efforts, and the challenges researchers face. Despite limited resources and funding constraints, African scientists have made remarkable strides in various areas of neuroscience. Collaborative networks and international partnerships have been crucial in advancing education, research infrastructure, and capacity building in the field. Institutions in countries such as Egypt, Ghana, South Africa, Nigeria, Tunisia, and Morocco have emerged as key hubs for neuroscience research, fostering a growing community of researchers dedicated to unravelling the complexities of the brain. Efforts in neuroscience research have encompassed diverse domains, including neurogenomics, neuroimaging, neurophysiology, neurorehabilitation, and neuroepidemiology. Studies have focused on investigating genetic factors underlying neurological conditions, exploring the neural mechanisms of cognition and behaviour, and developing innovative therapeutic approaches for neurological disorders. However, challenges persist in the African neuroscience research landscape. Limited funding remains a significant barrier, hindering the establishment of well-equipped laboratories, access to advanced technologies, and support for research projects. Addressing these concerns is crucial to ensure research outcomes' integrity, validity, and relevance. Looking ahead, strategic interventions are required to address these challenges and further advance neuroscience research in Africa.
Collapse
Affiliation(s)
- Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology
| | - Muili Abdulbasit
- Department of Medicine and Surgery, Ladoke Akintola University of Technology
| | - Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Mariam Edun
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
2
|
Nayak S, Coleman PL, Ladányi E, Nitin R, Gustavson DE, Fisher SE, Magne CL, Gordon RL. The Musical Abilities, Pleiotropy, Language, and Environment (MAPLE) Framework for Understanding Musicality-Language Links Across the Lifespan. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:615-664. [PMID: 36742012 PMCID: PMC9893227 DOI: 10.1162/nol_a_00079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 08/08/2022] [Indexed: 04/18/2023]
Abstract
Using individual differences approaches, a growing body of literature finds positive associations between musicality and language-related abilities, complementing prior findings of links between musical training and language skills. Despite these associations, musicality has been often overlooked in mainstream models of individual differences in language acquisition and development. To better understand the biological basis of these individual differences, we propose the Musical Abilities, Pleiotropy, Language, and Environment (MAPLE) framework. This novel integrative framework posits that musical and language-related abilities likely share some common genetic architecture (i.e., genetic pleiotropy) in addition to some degree of overlapping neural endophenotypes, and genetic influences on musically and linguistically enriched environments. Drawing upon recent advances in genomic methodologies for unraveling pleiotropy, we outline testable predictions for future research on language development and how its underlying neurobiological substrates may be supported by genetic pleiotropy with musicality. In support of the MAPLE framework, we review and discuss findings from over seventy behavioral and neural studies, highlighting that musicality is robustly associated with individual differences in a range of speech-language skills required for communication and development. These include speech perception-in-noise, prosodic perception, morphosyntactic skills, phonological skills, reading skills, and aspects of second/foreign language learning. Overall, the current work provides a clear agenda and framework for studying musicality-language links using individual differences approaches, with an emphasis on leveraging advances in the genomics of complex musicality and language traits.
Collapse
Affiliation(s)
- Srishti Nayak
- Department of Otolaryngology – Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychology, Middle Tennessee State University, Murfreesboro, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University School of Medicine, Vanderbilt University, TN, USA
| | - Peyton L. Coleman
- Department of Otolaryngology – Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Enikő Ladányi
- Department of Otolaryngology – Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Linguistics, Potsdam University, Potsdam, Germany
| | - Rachana Nitin
- Department of Otolaryngology – Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Daniel E. Gustavson
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Cyrille L. Magne
- Department of Psychology, Middle Tennessee State University, Murfreesboro, TN, USA
- PhD Program in Literacy Studies, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Reyna L. Gordon
- Department of Otolaryngology – Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Curb Center for Art, Enterprise, and Public Policy, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, TN, USA
- Vanderbilt University School of Medicine, Vanderbilt University, TN, USA
| |
Collapse
|
3
|
Mountford HS, Braden R, Newbury DF, Morgan AT. The Genetic and Molecular Basis of Developmental Language Disorder: A Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:586. [PMID: 35626763 PMCID: PMC9139417 DOI: 10.3390/children9050586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 01/05/2023]
Abstract
Language disorders are highly heritable and are influenced by complex interactions between genetic and environmental factors. Despite more than twenty years of research, we still lack critical understanding of the biological underpinnings of language. This review provides an overview of the genetic landscape of developmental language disorders (DLD), with an emphasis on the importance of defining the specific features (the phenotype) of DLD to inform gene discovery. We review the specific phenotype of DLD in the genetic literature, and the influence of historic variation in diagnostic inclusion criteria on researchers' ability to compare and replicate genotype-phenotype studies. This review provides an overview of the recently identified gene pathways in populations with DLD and explores current state-of-the-art approaches to genetic analysis based on the hypothesised architecture of DLD. We will show how recent global efforts to unify diagnostic criteria have vastly increased sample size and allow for large multi-cohort metanalyses, leading the identification of a growing number of contributory loci. We emphasise the important role of estimating the genetic architecture of DLD to decipher underlying genetic associations. Finally, we explore the potential for epigenetics and environmental interactions to further unravel the biological basis of language disorders.
Collapse
Affiliation(s)
- Hayley S. Mountford
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (H.S.M.); (D.F.N.)
| | - Ruth Braden
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia;
| | - Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (H.S.M.); (D.F.N.)
| | - Angela T. Morgan
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia;
| |
Collapse
|
4
|
Walters CE, Nitin R, Margulis K, Boorom O, Gustavson DE, Bush CT, Davis LK, Below JE, Cox NJ, Camarata SM, Gordon RL. Automated Phenotyping Tool for Identifying Developmental Language Disorder Cases in Health Systems Data (APT-DLD): A New Research Algorithm for Deployment in Large-Scale Electronic Health Record Systems. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:3019-3035. [PMID: 32791019 PMCID: PMC7890229 DOI: 10.1044/2020_jslhr-19-00397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/23/2020] [Accepted: 05/19/2020] [Indexed: 05/13/2023]
Abstract
Purpose Data mining algorithms using electronic health records (EHRs) are useful in large-scale population-wide studies to classify etiology and comorbidities (Casey et al., 2016). Here, we apply this approach to developmental language disorder (DLD), a prevalent communication disorder whose risk factors and epidemiology remain largely undiscovered. Method We first created a reliable system for manually identifying DLD in EHRs based on speech-language pathologist (SLP) diagnostic expertise. We then developed and validated an automated algorithmic procedure, called, Automated Phenotyping Tool for identifying DLD cases in health systems data (APT-DLD), that classifies a DLD status for patients within EHRs on the basis of ICD (International Statistical Classification of Diseases and Related Health Problems) codes. APT-DLD was validated in a discovery sample (N = 973) using expert SLP manual phenotype coding as a gold-standard comparison and then applied and further validated in a replication sample of N = 13,652 EHRs. Results In the discovery sample, the APT-DLD algorithm correctly classified 98% (concordance) of DLD cases in concordance with manually coded records in the training set, indicating that APT-DLD successfully mimics a comprehensive chart review. The output of APT-DLD was also validated in relation to independently conducted SLP clinician coding in a subset of records, with a positive predictive value of 95% of cases correctly classified as DLD. We also applied APT-DLD to the replication sample, where it achieved a positive predictive value of 90% in relation to SLP clinician classification of DLD. Conclusions APT-DLD is a reliable, valid, and scalable tool for identifying DLD cohorts in EHRs. This new method has promising public health implications for future large-scale epidemiological investigations of DLD and may inform EHR data mining algorithms for other communication disorders. Supplemental Material https://doi.org/10.23641/asha.12753578.
Collapse
Affiliation(s)
- Courtney E. Walters
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN
- Neuroscience Program, College of Arts and Science, Vanderbilt University, Nashville, TN
| | - Rachana Nitin
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
| | - Katherine Margulis
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Kennedy Krieger Institute, Baltimore, MD
| | - Olivia Boorom
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Daniel E. Gustavson
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Catherine T. Bush
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Lea K. Davis
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jennifer E. Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Nancy J. Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Stephen M. Camarata
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Reyna L. Gordon
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
5
|
Nudel R, Christiani CAJ, Ohland J, Uddin MJ, Hemager N, Ellersgaard D, Spang KS, Burton BK, Greve AN, Gantriis DL, Bybjerg-Grauholm J, Jepsen JRM, Thorup AAE, Mors O, Werge T, Nordentoft M. Quantitative genome-wide association analyses of receptive language in the Danish High Risk and Resilience Study. BMC Neurosci 2020; 21:30. [PMID: 32635940 PMCID: PMC7341668 DOI: 10.1186/s12868-020-00581-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/28/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One of the most basic human traits is language. Linguistic ability, and disability, have been shown to have a strong genetic component in family and twin studies, but molecular genetic studies of language phenotypes are scarce, relative to studies of other cognitive traits and neurodevelopmental phenotypes. Moreover, most genetic studies examining such phenotypes do not incorporate parent-of-origin effects, which could account for some of the heritability of the investigated trait. We performed a genome-wide association study of receptive language, examining both child genetic effects and parent-of-origin effects. RESULTS Using a family-based cohort with 400 children with receptive language scores, we found a genome-wide significant paternal parent-of-origin effect with a SNP, rs11787922, on chromosome 9q21.31, whereby the T allele reduced the mean receptive language score by ~ 23, constituting a reduction of more than 1.5 times the population SD (P = 1.04 × 10-8). We further confirmed that this association was not driven by broader neurodevelopmental diagnoses in the child or a family history of psychiatric diagnoses by incorporating covariates for the above and repeating the analysis. CONCLUSIONS Our study reports a genome-wide significant association for receptive language skills; to our knowledge, this is the first documented genome-wide significant association for this phenotype. Furthermore, our study illustrates the importance of considering parent-of-origin effects in association studies, particularly in the case of cognitive or neurodevelopmental traits, in which parental genetic data are not always incorporated.
Collapse
Affiliation(s)
- Ron Nudel
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Camilla A J Christiani
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
| | - Jessica Ohland
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
| | - Md Jamal Uddin
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
- Section for Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Nicoline Hemager
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
| | - Ditte Ellersgaard
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
| | - Katrine S Spang
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Birgitte K Burton
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Aja N Greve
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
| | - Ditte L Gantriis
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
| | - Jonas Bybjerg-Grauholm
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Jens Richardt M Jepsen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
- Mental Health Centre for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Anne A E Thorup
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Merete Nordentoft
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Chen XS, Reader RH, Hoischen A, Veltman JA, Simpson NH, Francks C, Newbury DF, Fisher SE. Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment. Sci Rep 2017; 7:46105. [PMID: 28440294 PMCID: PMC5404330 DOI: 10.1038/srep46105] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/08/2017] [Indexed: 12/22/2022] Open
Abstract
A significant proportion of children have unexplained problems acquiring proficient linguistic skills despite adequate intelligence and opportunity. Developmental language disorders are highly heritable with substantial societal impact. Molecular studies have begun to identify candidate loci, but much of the underlying genetic architecture remains undetermined. We performed whole-exome sequencing of 43 unrelated probands affected by severe specific language impairment, followed by independent validations with Sanger sequencing, and analyses of segregation patterns in parents and siblings, to shed new light on aetiology. By first focusing on a pre-defined set of known candidates from the literature, we identified potentially pathogenic variants in genes already implicated in diverse language-related syndromes, including ERC1, GRIN2A, and SRPX2. Complementary analyses suggested novel putative candidates carrying validated variants which were predicted to have functional effects, such as OXR1, SCN9A and KMT2D. We also searched for potential "multiple-hit" cases; one proband carried a rare AUTS2 variant in combination with a rare inherited haplotype affecting STARD9, while another carried a novel nonsynonymous variant in SEMA6D together with a rare stop-gain in SYNPR. On broadening scope to all rare and novel variants throughout the exomes, we identified biological themes that were enriched for such variants, including microtubule transport and cytoskeletal regulation.
Collapse
Affiliation(s)
- Xiaowei Sylvia Chen
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Rose H. Reader
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joris A. Veltman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Genetics, University of Maastricht, Maastricht, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Nuala H. Simpson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Dianne F. Newbury
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|