1
|
Maudsley S, Schrauwen C, Harputluoğlu İ, Walter D, Leysen H, McDonald P. GPR19 Coordinates Multiple Molecular Aspects of Stress Responses Associated with the Aging Process. Int J Mol Sci 2023; 24:ijms24108499. [PMID: 37239845 DOI: 10.3390/ijms24108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 04/15/2023] [Indexed: 05/28/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a significant role in controlling biological paradigms such as aging and aging-related disease. We have previously identified receptor signaling systems that are specifically associated with controlling molecular pathologies associated with the aging process. Here, we have identified a pseudo-orphan GPCR, G protein-coupled receptor 19 (GPR19), that is sensitive to many molecular aspects of the aging process. Through an in-depth molecular investigation process that involved proteomic, molecular biological, and advanced informatic experimentation, this study found that the functionality of GPR19 is specifically linked to sensory, protective, and remedial signaling systems associated with aging-related pathology. This study suggests that the activity of this receptor may play a role in mitigating the effects of aging-related pathology by promoting protective and remedial signaling systems. GPR19 expression variation demonstrates variability in the molecular activity in this larger process. At low expression levels in HEK293 cells, GPR19 expression regulates signaling paradigms linked with stress responses and metabolic responses to these. At higher expression levels, GPR19 expression co-regulates systems involved in sensing and repairing DNA damage, while at the highest levels of GPR19 expression, a functional link to processes of cellular senescence is seen. In this manner, GPR19 may function as a coordinator of aging-associated metabolic dysfunction, stress response, DNA integrity management, and eventual senescence.
Collapse
Affiliation(s)
- Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Claudia Schrauwen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Patricia McDonald
- Moffitt Cancer Center, Department of Metabolism & Physiology, 12902 Magnolia Drive, Tampa, FL 33612, USA
- Lexicon Pharmaceuticals Inc. Research & Development, 2445 Technology Forest, The Woodlands, TX 77381, USA
| |
Collapse
|
2
|
Wong WLE, Dawe GS, Young AH. The putative role of the relaxin-3/RXFP3 system in clinical depression and anxiety: A systematic literature review. Neurosci Biobehav Rev 2021; 131:429-450. [PMID: 34537263 DOI: 10.1016/j.neubiorev.2021.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
The relaxin-3/RXFP3 system is one of several neuropeptidergic systems putatively implicated in regulating the behavioural alterations that characterise clinical depression and anxiety, making it a potential target for clinical translation. Accordingly, this systematic review identified published reports on the role of relaxin-3/RXFP3 signalling in these neuropsychiatric disorders and their behavioural endophenotypes, evaluating evidence from animal and human studies to ascertain any relationship. We searched PubMed, EMBASE, PsycINFO and Google Scholar databases up to February 2021, finding 609 relevant records. After stringent screening, 51 of these studies were included in the final synthesis. There was considerable heterogeneity in study designs and some inconsistency across study outcomes. However, experimental evidence is consistent with an ability of relaxin-3/RXFP3 signalling to promote arousal and suppress depressive- and anxiety-like behaviour. Moreover, meta-analyses of six to eight articles investigating food intake revealed that acute RXFP3 activation had strong orexigenic effects in rats. This appraisal also identified the lack of high-quality clinical studies pertinent to the relaxin-3/RXFP3 system, a gap that future research should attempt to bridge.
Collapse
Affiliation(s)
- Win Lee Edwin Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; South London & Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, London, United Kingdom
| |
Collapse
|
3
|
Brain-Derived neurotrophic factor Val66Met induces female-specific changes in impulsive behaviour and alcohol self-administration in mice. Behav Brain Res 2020; 401:113090. [PMID: 33358916 DOI: 10.1016/j.bbr.2020.113090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022]
Abstract
Substance use disorders are a debilitating neuropsychiatric condition, however it remains unclear why some individuals are at greater risk of substance use disorders than others and what genetic factors determine such individual differences. Impulsivity appears a promising candidate endophenotype to bridge the gap between genetic risk and addiction. Brain-derived neurotrophic factor (BDNF), and in particular the BDNFVal66Met polymorphism, has been suggested to be involved in both impulsivity and substance use disorders, however results so far have been inconsistent. To investigate the role of BDNF, and more specifically the BDNFVal66Met polymorphism, in both impulsivity and operant alcohol self-administration using the same animal model. Separate cohorts of humanized Val66Met transgenic mice were assessed for either trait impulsivity in the 5-choice serial reaction time (5-CSRT) touchscreen task, or propensity towards obtaining ethanol in an operant paradigm. It was found that female hBDNFVal/Val mice exhibited both greater impulsivity compared to hBDNFMet/Met mice of the same sex as shown by a higher number of premature responses at one of three increased inter-trial intervals tested in the 5-CSRT task, and a greater propensity toward stable ethanol self-administration relative to male mice of the same genotype in the operant paradigm. By contrast, male mice showed no difference between genotypes in impulsivity or stable ethanol self-administration. The hBDNFMet/Met genotype appears to sex-specifically alter aspects of both impulsive behaviour and addiction propensity. These results suggest that impulse behaviour may be a possible predictor of addiction risk.
Collapse
|
4
|
Mapping Cell Types and Efferent Pathways in the Ascending Relaxin-3 System of the Nucleus Incertus. eNeuro 2020; 7:ENEURO.0272-20.2020. [PMID: 33055197 PMCID: PMC7643772 DOI: 10.1523/eneuro.0272-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Relaxin-3 (Rln3) is an insulin-family peptide neurotransmitter expressed primarily in neurons of the nucleus incertus (NI) of the pontine tegmentum, with smaller populations located in the deep mesencephalon (DpMe) and periaqueductal gray (PAG). Here, we have used targeted recombination at the Rln3 gene locus to generate an Rln3Cre transgenic mouse line, and characterize the molecular identity and axonal projections of Rln3-expressing neurons. Expression of Cre recombinase in Rln3Cre mice, and the expression of Cre-mediated reporters, accurately reflect the expression of Rln3 mRNA in all brain regions. In the NI, Rln3 mRNA is expressed in a subset of a larger population of tegmental neurons that express the neuropeptide neuromedin-b (NMB). These Rln3-expressing and NMB-expressing neurons also express the GABAergic marker GAD2 but not the glutamatergic marker Slc17a6 (VGluT2). Cre-mediated anterograde tracing with adeno-associated viruses (AAVs) shows that the efferents of the Rln3-expressing neurons in the DpMe and PAG are largely confined to the brain regions in which they originate, while the NI-Rln3 neurons form an extensive ascending system innervating the limbic cortex, septum, hippocampus, and hypothalamus. Viral anterograde tracing also reveals the potential synaptic targets of NI-Rln3 neurons in several brain regions, and the distinct projections of Rln3-expressing and non-expressing neurons in the pontine tegmentum. Rabies virus (RV)-mediated transsynaptic retrograde tracing demonstrates a probable synaptic link between NI-Rln3 neurons and GABAergic neurons in the septum, with implications for the modulation of neural activity in the septo-hippocampal system. Together, these results form the basis for functional studies of the NI-Rln3 system.
Collapse
|
5
|
Genders SG, Scheller KJ, Djouma E. Neuropeptide modulation of addiction: Focus on galanin. Neurosci Biobehav Rev 2020; 110:133-149. [DOI: 10.1016/j.neubiorev.2018.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
|
6
|
Genders SG, Scheller KJ, Jaehne EJ, Turner BJ, Lawrence AJ, Brunner SM, Kofler B, van den Buuse M, Djouma E. GAL 3 receptor knockout mice exhibit an alcohol-preferring phenotype. Addict Biol 2019; 24:886-897. [PMID: 29984872 DOI: 10.1111/adb.12641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
Abstract
Galanin is a neuropeptide which mediates its effects via three G-protein coupled receptors (GAL1-3 ). Administration of a GAL3 antagonist reduces alcohol self-administration in animal models while allelic variation in the GAL3 gene has been associated with an increased risk of alcohol use disorders in diverse human populations. Based on the association of GAL3 with alcoholism, we sought to characterize drug-seeking behavior in GAL3 -deficient mice for the first time. In the two-bottle free choice paradigm, GAL3 -KO mice consistently showed a significantly increased preference for ethanol over water when compared to wildtype littermates. Furthermore, male GAL3 -KO mice displayed significantly increased responding for ethanol under operant conditions. These differences in alcohol seeking behavior in GAL3 -KO mice did not result from altered ethanol metabolism. In contrast to ethanol, GAL3 -KO mice exhibited similar preference for saccharin and sucrose over water, and a similar preference for a high fat diet over a low fat diet as wildtype littermates. No differences in cognitive and locomotor behaviors were observed in GAL3 -KO mice to account for increased alcohol seeking behavior. Overall, these findings suggest genetic ablation of GAL3 in mice increases alcohol consumption.
Collapse
Affiliation(s)
- Shannyn G. Genders
- School of Life Sciences, Department of Physiology, Anatomy and Microbiology; La Trobe University; Australia
| | - Karlene J. Scheller
- School of Life Sciences, Department of Physiology, Anatomy and Microbiology; La Trobe University; Australia
| | - Emily J. Jaehne
- School of Psychology and Public Health, Department of Psychology; La Trobe University; Australia
| | - Bradley J. Turner
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| | - Susanne M. Brunner
- Laura Bassi Centre of Expertise-Therapeutic Application of Neuropeptides (THERAPEP), Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Pediatrics; Paracelsus Medical University; Austria
| | - Barbara Kofler
- Laura Bassi Centre of Expertise-Therapeutic Application of Neuropeptides (THERAPEP), Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Pediatrics; Paracelsus Medical University; Austria
| | - Maarten van den Buuse
- School of Psychology and Public Health, Department of Psychology; La Trobe University; Australia
- Department of Pharmacology; University of Melbourne; Australia
- The College of Public health, Medical and Veterinary Sciences; James Cook University; Australia
| | - Elvan Djouma
- School of Life Sciences, Department of Physiology, Anatomy and Microbiology; La Trobe University; Australia
| |
Collapse
|
7
|
Alnafea H, Vahkal B, Zelmer CK, Yegorov S, Bogerd J, Good SV. Japanese medaka as a model for studying the relaxin family genes involved in neuroendocrine regulation: Insights from the expression of fish-specific rln3 and insl5 and rxfp3/4-type receptor paralogues. Mol Cell Endocrinol 2019; 487:2-11. [PMID: 30703485 DOI: 10.1016/j.mce.2019.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
The goal of this paper is to establish Japanese medaka (Oryzias latipes) as a model for relaxin family peptide research, particularly for studying the functions of RLN3 and INSL5, hormones playing roles in neuroendocrine regulation. Medaka, like other teleosts, retained duplicate copies of rln3, insl5 and their rxfp3/4-type receptors following fish-specific whole genome duplication (WGD) and paralogous copies of these genes may have sub-functionalised providing an intuitive model for teasing apart the pleiotropic roles of the corresponding genes in mammals. To this end, we provide experimental evidence for the expression of the relaxin family genes in medaka that had previously only been identified in-silico, confirm the gene structure of five of the ligand genes, characterise gene expression across multiple tissues and during embryonic development, perform in situ hybridization with anti-sense insl5a on embryos and in adult brain and intestinal samples, and compare these results to the data available in zebrafish. We find broad similarities but also some differences in the expression of relaxin family genes in zebrafish versus medaka, and find support for the hypothesis that the rln3a/rln3b and insl5a/insl5b paralogues have been subfunctionalized. Given that medaka has a suite of relaxin family genes more similar to other teleosts, and has retained the gene for rxfp4 (which is lost in zebrafish), our results suggest that O. latipes may be a good model for delineating the ancestral function of the relaxin family genes involved in neuroendocrine regulation.
Collapse
Affiliation(s)
- Hend Alnafea
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - Brett Vahkal
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - C Kellie Zelmer
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - Sergey Yegorov
- Department of Immunology, The University of Toronto, Toronto, ON, Canada
| | - Jan Bogerd
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Sara V Good
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada; Department of Biology, The University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
8
|
Olucha-Bordonau FE, Albert-Gascó H, Ros-Bernal F, Rytova V, Ong-Pålsson EKE, Ma S, Sánchez-Pérez AM, Gundlach AL. Modulation of forebrain function by nucleus incertus and relaxin-3/RXFP3 signaling. CNS Neurosci Ther 2018; 24:694-702. [PMID: 29722152 DOI: 10.1111/cns.12862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 01/05/2023] Open
Abstract
The nucleus incertus (NI) in the pontine tegmentum sends ascending projections to the midbrain, hypothalamus, amygdala, basal forebrain, hippocampus, and prefrontal cortex, and has a postulated role in modulating several forebrain functions. A substantial population of GABAergic NI neurons expresses the neuropeptide, relaxin-3, which acts via the Gi/o -protein-coupled receptor, RXFP3, present throughout the forebrain target regions. Broad and specific manipulations of these systems by activation or inhibition of the NI or modulating RXFP3 signaling have revealed key insights into the likely influence of the NI/relaxin-3/RXFP3 system on modalities including arousal, feeding, stress responses, anxiety and addiction, and attention and memory. This range of actions corresponds to a likely impact of NI/(relaxin-3) projections on multiple integrated circuits, but makes it difficult to draw conclusions about a generalized function for this network. This review will focus on the key physiological process of oscillatory theta rhythm and the neural circuits that promote it during behavioral activation, highlighting the ability of NI and relaxin-3/RXFP3 signaling systems to modulate these circuits. A better understanding of these mechanisms may provide a way to therapeutically adjust malfunction of forebrain activity present in several pathological conditions.
Collapse
Affiliation(s)
| | - Héctor Albert-Gascó
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Francisco Ros-Bernal
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Valeria Rytova
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - Emma K E Ong-Pålsson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - Ana M Sánchez-Pérez
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| |
Collapse
|
9
|
Ma S, Smith CM, Blasiak A, Gundlach AL. Distribution, physiology and pharmacology of relaxin-3/RXFP3 systems in brain. Br J Pharmacol 2016; 174:1034-1048. [PMID: 27774604 DOI: 10.1111/bph.13659] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 01/29/2023] Open
Abstract
Relaxin-3 is a member of a superfamily of structurally-related peptides that includes relaxin and insulin-like peptide hormones. Soon after the discovery of the relaxin-3 gene, relaxin-3 was identified as an abundant neuropeptide in brain with a distinctive topographical distribution within a small number of GABAergic neuron populations that is well conserved across species. Relaxin-3 is thought to exert its biological actions through a single class-A GPCR - relaxin-family peptide receptor 3 (RXFP3). Class-A comprises GPCRs for relaxin-3 and insulin-like peptide-5 and other peptides such as orexin and the monoamine transmitters. The RXFP3 receptor is selectively activated by relaxin-3, whereas insulin-like peptide-5 is the cognate ligand for the related RXFP4 receptor. Anatomical and pharmacological evidence obtained over the last decade supports a function of relaxin-3/RXFP3 systems in modulating responses to stress, anxiety-related and motivated behaviours, circadian rhythms, and learning and memory. Electrophysiological studies have identified the ability of RXFP3 agonists to directly hyperpolarise thalamic neurons in vitro, but there are no reports of direct cell signalling effects in vivo. This article provides an overview of earlier studies and highlights more recent research that implicates relaxin-3/RXFP3 neural network signalling in the integration of arousal, motivation, emotion and related cognition, and that has begun to identify the associated neural substrates and mechanisms. Future research directions to better elucidate the connectivity and function of different relaxin-3 neuron populations and their RXFP3-positive target neurons in major experimental species and humans are also identified. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Craig M Smith
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Abstract
For many individuals, stress promotes the consumption of sweet, high-sugar foods relative to healthier alternatives. Daily life stressors stimulate the overeating of highly-palatable foods through multiple mechanisms, including altered glucocorticoid, relaxin-3, ghrelin and serotonin signaling in brain. In turn, a history of consuming high-sugar foods attenuates the psychological (anxiety and depressed mood) and physiological (HPA axis) effects of stress. Together the metabolic and hedonic properties of sucrose contribute to its stress relief, possibly via actions in both the periphery (e.g., glucocorticoid receptor signaling in adipose tissue) and in the brain (e.g., plasticity in brain reward regions). Emerging work continues to reveal the bidirectional mechanisms that underlie the use of high-sugar foods as 'self-medication' for stress relief.
Collapse
|