1
|
Kaushik S, Ahmad F, Choudhary S, Mathkor DM, Mishra BN, Singh V, Haque S. Critical appraisal and systematic review of genes linked with cocaine addiction, depression and anxiety. Neurosci Biobehav Rev 2023; 152:105270. [PMID: 37271299 DOI: 10.1016/j.neubiorev.2023.105270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 05/13/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
Recent lifestyle changes have resulted in tremendous peer pressure and mental stress, and increased the incidences of chronic psychological disorders; like addiction, depression and anxiety (ADA). In this context, the stress-tolerance levels vary amongst individuals and genetic factors play prominent roles. Vulnerable individuals may often be drawn towards drug-addiction to combat stress. This systematic review critically appraises the relationship of various genetic factors linked with the incidences of ADA development. For coherence, we focused solely on cocaine as a substance of abuse in this study. Online scholarly databases were used to screen pertinent literature using apt keywords; and the final retrieval included 42 primary-research articles. The major conclusion drawn from this systematic analysis states that there are 51 genes linked with the development of ADA; and 3 (BDNF, PERIOD2 and SLC6A4) of them are common to all the three aspects of ADA. Further, inter-connectivity analyses of the 51 genes further endorsed the central presence of BDNF and SLC6A4 genes in the development of ADA disorders. The conclusions derived from this systematic study pave the way for future studies for the identification of diagnostic biomarkers and drug targets; and for the development of novel and effective therapeutic regimens against ADA.
Collapse
Affiliation(s)
- Shradhha Kaushik
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021, Uttar Pradesh, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Sunita Choudhary
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021, Uttar Pradesh, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021, Uttar Pradesh, India
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021, Uttar Pradesh, India.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, the United Arab Emirates.
| |
Collapse
|
2
|
Geißert L, Schmidt NM, Henkel K, Luxem A, Hennig J. Dopamine and oxytocin and their relevance for attachment: A gene x gene interaction study. PERSONALITY AND INDIVIDUAL DIFFERENCES 2022. [DOI: 10.1016/j.paid.2022.111752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Genetic associations with resilience to potentially traumatic events and vantage sensitivity to social support. Arch Psychiatr Nurs 2022; 40:147-157. [PMID: 36064238 DOI: 10.1016/j.apnu.2022.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/30/2022] [Accepted: 07/03/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Stress responses and mental health outcomes greatly vary when individuals are exposed to potentially traumatic events (PTEs). The Differential Susceptibility Model (DSM) (Pluess, 2015) suggests individual differences in stress responses are influenced by gene-environment interactions, with genes conferring reactivity. While individuals can be resilient (or vulnerable) to PTEs, they can also have vantage sensitivity (or resistance) to social support. This study examined whether selected genotypes moderated the effect of PTEs and social support on mental health. METHODS This cross-sectional candidate gene study included 450 college students (M age = 20.4, 79.3 % women) who provided buccal cells for genotyping and completed measures of psychosocial variables. DNA was genotyped for 12 genetic variants. RESULTS Hierarchical regression revealed that the Mental Health Inventory (MHI) was associated with the Trauma History Questionnaire (THQ), rs1800795 in IL-6, and THQ × rs1800795 [R2 = 0.10, F(3, 418) = 15.68, p < .01]. The MHI was associated with the Social Support Survey (SSS), rs4680 in COMT, and SSS × rs4680 [R2 = 0.24, F(3, 429) = 44.19, p < .01]. Only THQ and SSS survived multiple testing corrections. DISCUSSION Findings partially support the DSM that the G/G genotype of rs1800795 in IL-6 is associated with resilience to PTEs, and the Met/Met genotype of rs4680 in COMT is associated with vantage sensitivity to social support. Limitations include cross-sectional design, limited PTE measurement, small convenience sample, and noncorrection for multiple significance test. Clinicians need to view resilience holistically and understand resilience is associated with psychosocial and genetic factors.
Collapse
|
4
|
Bondy E, Bogdan R. Understanding Anhedonia from a Genomic Perspective. Curr Top Behav Neurosci 2022; 58:61-79. [PMID: 35152374 PMCID: PMC9375777 DOI: 10.1007/7854_2021_293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anhedonia, or the decreased ability to experience pleasure, is a cardinal symptom of major depression that commonly occurs within other forms of psychopathology. Supportive of long-held theory that anhedonia represents a genetically influenced vulnerability marker for depression, evidence from twin studies suggests that it is moderately-largely heritable. However, the genomic sources of this heritability are just beginning to be understood. In this review, we survey what is known about the genomic architecture underlying anhedonia and related constructs. We briefly review twin and initial candidate gene studies before focusing on genome-wide association study (GWAS) and polygenic efforts. As large samples are needed to reliably detect the small effects that typically characterize common genetic variants, the study of anhedonia and related phenotypes conflicts with current genomic research requirements and frameworks that prioritize sample size over precise phenotyping. This has resulted in few and underpowered studies of anhedonia-related constructs that have largely failed to reliably identify individual variants. Nonetheless, the polygenic architecture of anhedonia-related constructs identified in these studies has genetic overlap with depression and schizophrenia as well as related brain structure (e.g., striatal volume), providing important clues to etiology that may usefully guide refinement in nosology. As we await the accumulation of larger samples for more well-powered GWAS of reward-related constructs, novel analytic techniques that leverage GWAS summary statistics (e.g., genomic structural equation modeling) may currently be used to help characterize how the genomic architecture of anhedonia is shared and distinct from that underlying other constructs (e.g., depression, neuroticism, anxiety).
Collapse
Affiliation(s)
- Erin Bondy
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
5
|
Frydecka D, Misiak B, Piotrowski P, Bielawski T, Pawlak E, Kłosińska E, Krefft M, Al Noaimy K, Rymaszewska J, Moustafa AA, Drapała J. The Role of Dopaminergic Genes in Probabilistic Reinforcement Learning in Schizophrenia Spectrum Disorders. Brain Sci 2021; 12:brainsci12010007. [PMID: 35053751 PMCID: PMC8774082 DOI: 10.3390/brainsci12010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022] Open
Abstract
Schizophrenia spectrum disorders (SZ) are characterized by impairments in probabilistic reinforcement learning (RL), which is associated with dopaminergic circuitry encompassing the prefrontal cortex and basal ganglia. However, there are no studies examining dopaminergic genes with respect to probabilistic RL in SZ. Thus, the aim of our study was to examine the impact of dopaminergic genes on performance assessed by the Probabilistic Selection Task (PST) in patients with SZ in comparison to healthy control (HC) subjects. In our study, we included 138 SZ patients and 188 HC participants. Genetic analysis was performed with respect to the following genetic polymorphisms: rs4680 in COMT, rs907094 in DARP-32, rs2734839, rs936461, rs1800497, and rs6277 in DRD2, rs747302 and rs1800955 in DRD4 and rs28363170 and rs2975226 in DAT1 genes. The probabilistic RL task was completed by 59 SZ patients and 95 HC subjects. SZ patients performed significantly worse in acquiring reinforcement contingencies during the task in comparison to HCs. We found no significant association between genetic polymorphisms and RL among SZ patients; however, among HC participants with respect to the DAT1 rs28363170 polymorphism, individuals with 10-allele repeat genotypes performed better in comparison to 9-allele repeat carriers. The present study indicates the relevance of the DAT1 rs28363170 polymorphism in RL in HC participants.
Collapse
Affiliation(s)
- Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
- Correspondence:
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (B.M.); (P.P.)
| | - Patryk Piotrowski
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (B.M.); (P.P.)
| | - Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Edyta Pawlak
- Department of Experimental Therapy, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigel Street 12, 53-114 Wroclaw, Poland;
| | - Ewa Kłosińska
- Day-Care Psychiatric Unit, University Clinical Hospital, Pasteur Street 10, 50-367 Wroclaw, Poland;
| | - Maja Krefft
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Kamila Al Noaimy
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Joanna Rymaszewska
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Ahmed A. Moustafa
- School of Psychology, Marcs Institute for Brain and Behaviour, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia;
- Department of Human Anatomy and Physiology, The Faculty of Health Sciences, University of Johannesburg, Johannesburg 2006, South Africa
| | - Jarosław Drapała
- Department of Computer Science and Systems Engineering, Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego Street 27, 50-370 Wrocław, Poland;
| |
Collapse
|
6
|
Richter A, de Boer L, Guitart-Masip M, Behnisch G, Seidenbecher CI, Schott BH. Motivational learning biases are differentially modulated by genetic determinants of striatal and prefrontal dopamine function. J Neural Transm (Vienna) 2021; 128:1705-1720. [PMID: 34302222 PMCID: PMC8536632 DOI: 10.1007/s00702-021-02382-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/04/2021] [Indexed: 01/20/2023]
Abstract
Dopaminergic neurotransmission plays a pivotal role in appetitively motivated behavior in mammals, including humans. Notably, action and valence are not independent in motivated tasks, and it is particularly difficult for humans to learn the inhibition of an action to obtain a reward. We have previously observed that the carriers of the DRD2/ANKK1 TaqIA A1 allele, that has been associated with reduced striatal dopamine D2 receptor expression, showed a diminished learning performance when required to learn response inhibition to obtain rewards, a finding that was replicated in two independent cohorts. With our present study, we followed two aims: first, we aimed to replicate our finding on the DRD2/ANKK1 TaqIA polymorphism in a third independent cohort (N = 99) and to investigate the nature of the genetic effects more closely using trial-by-trial behavioral analysis and computational modeling in the combined dataset (N = 281). Second, we aimed to assess a potentially modulatory role of prefrontal dopamine availability, using the widely studied COMT Val108/158Met polymorphism as a proxy. We first report a replication of the above mentioned finding. Interestingly, after combining all three cohorts, exploratory analyses regarding the COMT Val108/158Met polymorphism suggest that homozygotes for the Met allele, which has been linked to higher prefrontal dopaminergic tone, show a lower learning bias. Our results corroborate the importance of genetic variability of the dopaminergic system in individual learning differences of action-valence interaction and, furthermore, suggest that motivational learning biases are differentially modulated by genetic determinants of striatal and prefrontal dopamine function.
Collapse
Affiliation(s)
- Anni Richter
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
| | - Lieke de Boer
- Ageing Research Centre, Karolinska Institute, Stockholm, Sweden
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
| | - Marc Guitart-Masip
- Ageing Research Centre, Karolinska Institute, Stockholm, Sweden
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Gusalija Behnisch
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Björn H Schott
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Göttingen, Germany
- Department of Neurology, University of Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
7
|
Madzarac Z, Tudor L, Sagud M, Nedic Erjavec G, Mihaljevic Peles A, Pivac N. The Associations between COMT and MAO-B Genetic Variants with Negative Symptoms in Patients with Schizophrenia. Curr Issues Mol Biol 2021; 43:618-636. [PMID: 34287249 PMCID: PMC8928957 DOI: 10.3390/cimb43020045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
Negative symptoms of schizophrenia, including anhedonia, represent a heavy burden on patients and their relatives. These symptoms are associated with cortical hypodopamynergia and impaired striatal dopamine release in response to reward stimuli. Catechol-O-methyltransferase (COMT) and monoamine oxidase type B (MAO-B) degrade dopamine and affect its neurotransmission. The study determined the association between COMT rs4680 and rs4818, MAO-B rs1799836 and rs6651806 polymorphisms, the severity of negative symptoms, and physical and social anhedonia in schizophrenia. Sex-dependent associations were detected in a research sample of 302 patients with schizophrenia. In female patients with schizophrenia, the presence of the G allele or GG genotype of COMT rs4680 and rs4818, as well as GG haplotype rs4818-rs4680, which were all related to higher COMT activity, was associated with an increase in several dimensions of negative symptoms and anhedonia. In male patients with schizophrenia, carriers of the MAO-B rs1799836 A allele, presumably associated with higher MAO-B activity, had a higher severity of alogia, while carriers of the A allele of the MAO-B rs6651806 had a higher severity of negative symptoms. These findings suggest that higher dopamine degradation, associated with COMT and MAO-B genetic variants, is associated with a sex-specific increase in the severity of negative symptoms in schizophrenia patients.
Collapse
Affiliation(s)
- Zoran Madzarac
- Department of Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (Z.M.); (M.S.); (A.M.P.)
| | - Lucija Tudor
- Ruder Boskovic Institute, 10 000 Zagreb, Croatia; (L.T.); (G.N.E.)
| | - Marina Sagud
- Department of Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (Z.M.); (M.S.); (A.M.P.)
- School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | | | - Alma Mihaljevic Peles
- Department of Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (Z.M.); (M.S.); (A.M.P.)
- School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Nela Pivac
- Ruder Boskovic Institute, 10 000 Zagreb, Croatia; (L.T.); (G.N.E.)
- Correspondence: ; Tel.: +385-915-371-810
| |
Collapse
|
8
|
Distinct roles for dopamine clearance mechanisms in regulating behavioral flexibility. Mol Psychiatry 2021; 26:7188-7199. [PMID: 34193974 PMCID: PMC8872990 DOI: 10.1038/s41380-021-01194-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/21/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
Dopamine plays a crucial role in adaptive behavior, and dysfunctional dopamine is implicated in multiple psychiatric conditions characterized by inflexible or inconsistent choices. However, the precise relationship between dopamine and flexible decision making remains unclear. One reason is that, while many studies have focused on the activity of dopamine neurons, efficient dopamine signaling also relies on clearance mechanisms, notably the dopamine transporter (DAT), which predominates in striatum, and catechol-O-methyltransferase (COMT), which predominates in cortex. The exact locus, extent, and timescale of the effects of DAT and COMT are uncertain. Moreover, there is limited data on how acute disruption of either mechanism affects flexible decision making strategies mediated by cortico-striatal networks. To address these issues, we combined pharmacological modulation of DAT and COMT with electrochemistry and behavior in mice. DAT blockade, but not COMT inhibition, regulated sub-second dopamine release in the nucleus accumbens core, but surprisingly neither clearance mechanism affected evoked release in prelimbic cortex. This was not due to a lack of sensitivity, as both amphetamine and atomoxetine changed the kinetics of sub-second release. In a multi-step decision making task where mice had to respond to reversals in either reward probabilities or the choice sequence to reach the goal, DAT blockade selectively impaired, and COMT inhibition improved, performance after reward reversals, but neither manipulation affected the adaptation of choices after action-state transition reversals. Together, our data suggest that DAT and COMT shape specific aspects of behavioral flexibility by regulating different aspects of the kinetics of striatal and cortical dopamine, respectively.
Collapse
|
9
|
Using pharmacological manipulations to study the role of dopamine in human reward functioning: A review of studies in healthy adults. Neurosci Biobehav Rev 2020; 120:123-158. [PMID: 33202256 DOI: 10.1016/j.neubiorev.2020.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/08/2023]
Abstract
Dopamine (DA) plays a key role in reward processing and is implicated in psychological disorders such as depression, substance use, and schizophrenia. The role of DA in reward processing is an area of highly active research. One approach to this question is drug challenge studies with drugs known to alter DA function. These studies provide good experimental control and can be performed in parallel in laboratory animals and humans. This review aimed to summarize results of studies using pharmacological manipulations of DA in healthy adults. 'Reward' is a complex process, so we separated 'phases' of reward, including anticipation, evaluation of cost and benefits of upcoming reward, execution of actions to obtain reward, pleasure in response to receiving a reward, and reward learning. Results indicated that i) DAergic drugs have different effects on different phases of reward; ii) the relationship between DA and reward functioning appears unlikely to be linear; iii) our ability to detect the effects of DAergic drugs varies depending on whether subjective, behavioral, imaging measures are used.
Collapse
|
10
|
Patel P, Miles A, Nikolova Y. Cortical thickness correlates of probabilistic reward learning in young adults. Biol Psychol 2020; 157:107975. [DOI: 10.1016/j.biopsycho.2020.107975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
|
11
|
al'Absi M. The influence of stress and early life adversity on addiction: Psychobiological mechanisms of risk and resilience. STRESS AND BRAIN HEALTH: IN CLINICAL CONDITIONS 2020; 152:71-100. [DOI: 10.1016/bs.irn.2020.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
VAN DER Mee DJ, Fedko IO, Hottenga JJ, Ehli EA, VAN DER Zee MD, Ligthart L, VAN Beijsterveldt TCEM, Davies GE, Bartels M, Landers JG, DE Geus EJC. Dopaminergic Genetic Variants and Voluntary Externally Paced Exercise Behavior. Med Sci Sports Exerc 2018; 50:700-708. [PMID: 29135816 PMCID: PMC5856580 DOI: 10.1249/mss.0000000000001479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Most candidate gene studies on the neurobiology of voluntary exercise behavior have focused on the dopaminergic signaling pathway and its role in the mesolimbic reward system. We hypothesized that dopaminergic candidate genes may influence exercise behavior through additional effects on executive functioning and that these effects are only detected when the types of exercise activity are taken into account. METHODS Data on voluntary exercise behavior and at least one single-nucleotide polymorphism/variable number of tandem repeat (VNTR) were available for 12,929 participants of the Netherlands Twin Registry. Exercise activity was classified as externally paced if a high level of executive function skill was required. The total volume of voluntary exercise (minutes per week) as well as the volume specifically spent on externally paced activities were tested for association with nine functional dopaminergic polymorphisms (DRD1: rs265981, DRD2/ANKK1: rs1800497, DRD3: rs6280, DRD4: VNTR 48 bp, DRD5: VNTR 130-166 bp, DBH: rs2519152, DAT1: VNTR 40 bp, COMT: rs4680, MAOA: VNTR 30 bp), a polygenic score (PGS) based on nine alleles leading to lower dopamine responsiveness, and a PGS based on three alleles associated with both higher reward sensitivity and better executive functioning (DRD2/ANKK1: "G" allele, COMT: Met allele, DAT1: 440-bp allele). RESULTS No association with total exercise volume or externally paced exercise volume was found for individual alleles or the nine-allele PGS. The volume of externally paced exercise behavior was significantly associated with the reward and executive function congruent PGS. This association was driven by the DAT1 440-bp and COMT Met allele, which acted as increaser alleles for externally paced exercise behavior. CONCLUSIONS Taking into account the types of exercise activity may increase the success of identifying genetic variants and unraveling the neurobiology of voluntary exercise behavior.
Collapse
Affiliation(s)
- Denise J VAN DER Mee
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | - Iryna O Fedko
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | - Erik A Ehli
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | - Matthijs D VAN DER Zee
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | - Lannie Ligthart
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | | | - Gareth E Davies
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | - Meike Bartels
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | - Joseph G Landers
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| | - Eco J C DE Geus
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, THE NETHERLANDS
| |
Collapse
|
13
|
Klein M, Onnink M, van Donkelaar M, Wolfers T, Harich B, Shi Y, Dammers J, Arias-Vásquez A, Hoogman M, Franke B. Brain imaging genetics in ADHD and beyond - Mapping pathways from gene to disorder at different levels of complexity. Neurosci Biobehav Rev 2017; 80:115-155. [PMID: 28159610 PMCID: PMC6947924 DOI: 10.1016/j.neubiorev.2017.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/08/2016] [Accepted: 01/09/2017] [Indexed: 01/03/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and often persistent neurodevelopmental disorder. Beyond gene-finding, neurobiological parameters, such as brain structure, connectivity, and function, have been used to link genetic variation to ADHD symptomatology. We performed a systematic review of brain imaging genetics studies involving 62 ADHD candidate genes in childhood and adult ADHD cohorts. Fifty-one eligible research articles described studies of 13 ADHD candidate genes. Almost exclusively, single genetic variants were studied, mostly focussing on dopamine-related genes. While promising results have been reported, imaging genetics studies are thus far hampered by methodological differences in study design and analysis methodology, as well as limited sample sizes. Beyond reviewing imaging genetics studies, we also discuss the need for complementary approaches at multiple levels of biological complexity and emphasize the importance of combining and integrating findings across levels for a better understanding of biological pathways from gene to disease. These may include multi-modal imaging genetics studies, bioinformatic analyses, and functional analyses of cell and animal models.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marten Onnink
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Thomas Wolfers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Benjamin Harich
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Yan Shi
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Janneke Dammers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alejandro Arias-Vásquez
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Ryu V, Ha RY, Lee SJ, Ha K, Cho HS. Behavioral and Electrophysiological Alterations for Reinforcement Learning in Manic and Euthymic Patients with Bipolar Disorder. CNS Neurosci Ther 2017; 23:248-256. [PMID: 28098430 DOI: 10.1111/cns.12671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 11/28/2016] [Accepted: 12/09/2016] [Indexed: 12/28/2022] Open
Abstract
AIMS Bipolar disorder is characterized by behavioral changes such as risk-taking and increasing goal-directed activities, which may result from altered reward processing. Patients with bipolar disorder show impaired reward learning in situations that require the integration of reinforced feedback over time. In this study, we examined the behavioral and electrophysiological characteristics of reward learning in manic and euthymic patients with bipolar disorder using a probabilistic reward task. METHODS Twenty-four manic and 20 euthymic patients with bipolar I disorder and 24 healthy control subjects performed the probabilistic reward task. We assessed response bias (RB) as a preference for the stimulus paired with the more frequent reward and feedback-related negativity (FRN) to correct identification of the rich stimulus. RESULTS Both manic and euthymic patients showed significantly lower RB scores in the early learning stage (block 1) in comparison with the late learning stage (block 2 or block 3) of the task, as well as significantly lower RB scores in the early stage compared to healthy subjects. Relatively more negative FRN amplitude is elicited by no presentation of an expected reward, compared to that elicited by presentation of expected feedback. The FRN became significantly more negative from the early (block 1) to the later stages (blocks 2 and 3) in both manic and euthymic patients, but not in healthy subjects. Changes in RB scores and FRN amplitudes between blocks 2 and 3 and block 1 correlated positively in healthy controls, but correlated negatively in manic and euthymic patients. The severity of manic symptoms correlated positively with reward learning scores and negatively with the FRN. CONCLUSIONS These findings suggest that patients with bipolar disorder during euthymic or manic states have behavioral and electrophysiological alterations in reward learning compared to healthy subjects. This dysfunctional reward processing may be related to the abnormal decision-making or altered goal-directed activities frequently seen in patients with bipolar disorder.
Collapse
Affiliation(s)
- Vin Ryu
- Department of Psychiatry, National Center for Mental Health, Seoul, South Korea
| | - Ra Yeon Ha
- Department of Psychiatry, Seoul Bukbu Hospital, Seoul, South Korea
| | - Su Jin Lee
- Institute of Behavioral Science in Medicine, College of Medicine, Yonsei University, Seoul, South Korea
| | - Kyooseob Ha
- Department of Neuropsychiatry, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyun-Sang Cho
- Institute of Behavioral Science in Medicine, College of Medicine, Yonsei University, Seoul, South Korea.,Department of Psychiatry, College of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
15
|
Blum K, Marcelo F, Dushaj K, Fried L, Badgaiyan RD. "Pro-dopamine regulation (KB220Z™)" as a long-term therapeutic modality to overcome reduced resting state dopamine tone in opiate/opioid epidemic in America. JOURNAL OF SYSTEMS AND INTEGRATIVE NEUROSCIENCE 2016; 2:162-165. [PMID: 28491463 PMCID: PMC5421552 DOI: 10.15761/jsin.1000129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since it is known that relapse, morality, and hospitalizations have been tied to the presence of the Dopamine D2 Receptor A1 allele, as one example, and carriers of this gene variant have a proclivity to favor amino-acid therapy, it seems intuitive that the incorporation of modalities to provide a balance and or restoration of hypodopaminergia should be considered as a front-line tactic to overcome the current American opiate/opioid epidemic, saving millions from death and unwanted locked-in-addiction. If we continue down the prim road path of fighting addiction to narcotics with narcotics, we are doomed to fail. This lesson can also have global interest.
Collapse
Affiliation(s)
- K Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC., North Kingstown, RI, USA
- Synaptamine, Inc., Austin, TX, USA
- Division of Clinical Neurology, PATH Foundation NY, New York, NY, USA
- Division of Personalized Medicine, IGENE, LLC., Austin, TX, USA
- Division of Molecular Neurobiology, LaVitaRDS, Salt Lake City, UT, USA
- Division of Neuroscience Research and Addiction Therapy, Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA
- Department of Clinical Psychology and Addiction, Eötvös Loránd University, Hungary
| | - F Marcelo
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - K Dushaj
- Division of Clinical Neurology, PATH Foundation NY, New York, NY, USA
| | - L Fried
- Division of Neuroscience Research and Addiction Therapy, Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA
| | - R D Badgaiyan
- Department of Psychiatry, Laboratory of Molecular and Functional Imaging, University at Minnesota, Minneapolis, MN, USA
| |
Collapse
|