1
|
Dai S, Zheng J, Chen Y, Zhu J, Wang X, Peng Y, Luo Y, Lin T, Li Y, Ma M, Shi Z, Meng X, Sun L, Zhou JC. A cross-sectional survey on the health status of patients with Charcot-Marie-Tooth disease in a Chinese national patient group. J Neurol 2025; 272:322. [PMID: 40198420 DOI: 10.1007/s00415-025-13063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Charcot-Marie-Tooth disease (CMT) is a rare inherited peripheral neuropathy, and the health status of CMT patients in China is not well understood without a national disease registry system. We aimed to obtain the related epidemiological data to support effective work on CMT. METHODS The online cross-sectional study included patients definitively diagnosed with CMT nationwide. Descriptive analyses were conducted on CMT's disease characteristics, diagnostic results, walking condition, rehabilitation status, comorbidities, family history, etc. RESULTS: CMT1A, CMT2A, CMTX1, CMT2S, CMT1E, and CMT1B were the top six types accounting for 64.4% of the 523 eligible patients. PMP22, MFN2, GJB1, MPZ, GDAP1, and IGHMBP2 ranked as the top six genes among the collected 44 pathogenic genes. The median ages of symptom onset and diagnosis were 7.3 and 18.7 years, respectively, with a median interval of 3.8 years between symptom onset and genetic confirmation. Only 8.3% exhibited unaffected walking speed and balance, the remaining experienced varying degrees of motor impairment, and 42.1% employed rehabilitation. Moreover, 26.8% experienced initial misdiagnosis, and 47.0% were estimated to suffer from depression. Of comorbidities complained by the 94 patients, gastrointestinal was most common (17/94) followed by hypertension (13/94), and hiatal hernia (2/94) was first reported. Family history was documented in 35.2% of the surveyed patients. CONCLUSION Chinese patients with CMT were in complicated and poor health status with predominant disease types and pathogenic genes generally as anticipated. A national CMT registry system is highly wanted to collect comprehensive information to guide further research and improve patients' health status.
Collapse
Affiliation(s)
- Shimiao Dai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiayin Zheng
- China Alliance for Rare Diseases (CHARD), Beijing, 100020, China
| | - Yuqing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Junying Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xinling Wang
- China Alliance for Rare Diseases (CHARD), Beijing, 100020, China
| | - Yuxuan Peng
- Qianlixing CMT Mutual Supporting Family, Kunming, 650500, China
| | - Yuping Luo
- Qianlixing CMT Mutual Supporting Family, Kunming, 650500, China
| | - Tian Lin
- Qianlixing CMT Mutual Supporting Family, Kunming, 650500, China
| | - Yao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Miaomiao Ma
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- Gansu Provincial Health Supervision and Security Center, Lanzhou, 730013, China
| | - Zhan Shi
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xinru Meng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
- Guangdong Province Engineering Laboratory for Nutrition Translation, Shenzhen, 518107, China.
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
2
|
Lin Y, Lee C, Sung J, Chen C. Genetic exploration of roles of acid-sensing ion channel subtypes in neurosensory mechanotransduction including proprioception. Exp Physiol 2024; 109:66-80. [PMID: 37489658 PMCID: PMC10988671 DOI: 10.1113/ep090762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
Although acid-sensing ion channels (ASICs) are proton-gated ion channels responsible for sensing tissue acidosis, accumulating evidence has shown that ASICs are also involved in neurosensory mechanotransduction. However, in contrast to Piezo ion channels, evidence of ASICs as mechanically gated ion channels has not been found using conventional mechanoclamp approaches. Instead, ASICs are involved in the tether model of mechanotransduction, with the channels gated via tethering elements of extracellular matrix and intracellular cytoskeletons. Methods using substrate deformation-driven neurite stretch and micropipette-guided ultrasound were developed to reveal the roles of ASIC3 and ASIC1a, respectively. Here we summarize the evidence supporting the roles of ASICs in neurosensory mechanotransduction in knockout mouse models of ASIC subtypes and provide insight to further probe their roles in proprioception.
Collapse
Affiliation(s)
- Yi‐Chen Lin
- Department of Neurology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- The Ph.D. Program for Translational MedicineTaipei Medical University and Academia SinicaNew Taipei CityTaiwan
- Taipei Neuroscience InstituteTaipei Medical UniversityNew Taipei CityTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Cheng‐Han Lee
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
- Neuroscience Program of Academia SinicaAcademia SinicaTaipeiTaiwan
| | - Jia‐Ying Sung
- Department of Neurology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Taipei Neuroscience InstituteTaipei Medical UniversityNew Taipei CityTaiwan
- Department of Neurology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Chih‐Cheng Chen
- The Ph.D. Program for Translational MedicineTaipei Medical University and Academia SinicaNew Taipei CityTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
- Neuroscience Program of Academia SinicaAcademia SinicaTaipeiTaiwan
- Taiwan Mouse Clinic – National Comprehensive Mouse Phenotyping and Drug Testing CenterAcademia SinicaTaipeiTaiwan
- TMU Neuroscience Research Center, Taipei Medical UniversityNew Taipei CityTaiwan
| |
Collapse
|
3
|
Kotaich F, Caillol D, Bomont P. Neurofilaments in health and Charcot-Marie-Tooth disease. Front Cell Dev Biol 2023; 11:1275155. [PMID: 38164457 PMCID: PMC10758125 DOI: 10.3389/fcell.2023.1275155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024] Open
Abstract
Neurofilaments (NFs) are the most abundant component of mature neurons, that interconnect with actin and microtubules to form the cytoskeleton. Specifically expressed in the nervous system, NFs present the particularity within the Intermediate Filament family of being formed by four subunits, the neurofilament light (NF-L), medium (NF-M), heavy (NF-H) proteins and α-internexin or peripherin. Here, we review the current knowledge on NF proteins and neurofilaments, from their domain structures and their model of assembly to the dynamics of their transport and degradation along the axon. The formation of the filament and its behaviour are regulated by various determinants, including post-transcriptional (miRNA and RBP proteins) and post-translational (phosphorylation and ubiquitination) modifiers. Altogether, the complex set of modifications enable the neuron to establish a stable but elastic NF array constituting the structural scaffold of the axon, while permitting the local expression of NF proteins and providing the dynamics necessary to fulfil local demands and respond to stimuli and injury. Thus, in addition to their roles in mechano-resistance, radial axonal outgrowth and nerve conduction, NFs control microtubule dynamics, organelle distribution and neurotransmission at the synapse. We discuss how the studies of neurodegenerative diseases with NF aggregation shed light on the biology of NFs. In particular, the NEFL and NEFH genes are mutated in Charcot-Marie-Tooth (CMT) disease, the most common inherited neurological disorder of the peripheral nervous system. The clinical features of the CMT forms (axonal CMT2E, CMT2CC; demyelinating CMT1F; intermediate I-CMT) with symptoms affecting the central nervous system (CNS) will allow us to further investigate the physiological roles of NFs in the brain. Thus, NF-CMT mouse models exhibit various degrees of sensory-motor deficits associated with CNS symptoms. Cellular systems brought findings regarding the dominant effect of NF-L mutants on NF aggregation and transport, although these have been recently challenged. Neurofilament detection without NF-L in recessive CMT is puzzling, calling for a re-examination of the current model in which NF-L is indispensable for NF assembly. Overall, we discuss how the fundamental and translational fields are feeding each-other to increase but also challenge our knowledge of NF biology, and to develop therapeutic avenues for CMT and neurodegenerative diseases with NF aggregation.
Collapse
Affiliation(s)
| | | | - Pascale Bomont
- ERC team, NeuroMyoGene Institute-Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| |
Collapse
|
4
|
Cardoso J, Rogean de Jesus Alves de Baptista C, Parra Buzzetti B, Dallemole Sartor C, Marques Júnior W, de Camargo Neves Sacco I, Mattiello-Sverzut AC. Vibration perception among children and adolescents with Charcot-Marie-tooth disease and implications for foot posture. Clin Biomech (Bristol, Avon) 2023; 110:106114. [PMID: 37804594 DOI: 10.1016/j.clinbiomech.2023.106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Alterations in vibration perception among children and adolescents with Charcot-Marie-Tooth disease might explain observed changes in foot posture. Therefore, this cross-sectional study compared the vibration perception of the lower limbs in youths with and without Charcot-Marie-Tooth disease and verified the cut-off value of the distal vibration perception for the Charcot-Marie-Tooth group. In addition, associations between dynamic plantar pressure, vibration perception and isometric muscle strength were investigated. METHODS Participants aged 9-18 (Charcot-Marie-Tooth group n = 32; Typical group n = 32) had vibration perception measured by a 128-Hz graduated tuning fork. The static and dynamic foot posture were evaluated by the Foot Posture Index and pressure distribution measuring system, respectively. For the Charcot-Marie-Tooth group, a hand-held dynamometer evaluated the isometric muscle strength of the lower limbs. FINDINGS Children with Charcot-Marie-Tooth disease presented impaired vibration perception at the distal phalanx of the hallux and head of the first metatarsal compared to their typically developing peers, while adolescents with Charcot-Marie-Tooth disease showed impairment in all the tested regions compared to their typically developing peers. The cut-off value for vibration perception for participants with Charcot-Marie-Tooth disease was 5.7, considering the original grade of the tuning-fork 128 Hz. Among the associations established for the Charcot-Marie-Tooth group, a greater vibration perception at the distal phalanx of the hallux was associated with a longer rearfoot contact time (β = 31.02, p = 0.04). INTERPRETATION These new findings may guide the clinical evaluation and rehabilitation treatment for children and adolescents with Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Juliana Cardoso
- Health Science Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Beatriz Parra Buzzetti
- Health Science Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Cristina Dallemole Sartor
- Physical Therapy, Speech, and Occupational Therapy Department, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Wilson Marques Júnior
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Isabel de Camargo Neves Sacco
- Physical Therapy, Speech, and Occupational Therapy Department, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
5
|
Dumas SA, Villalón E, Bergman EM, Wilson KJ, Marugan JJ, Lorson CL, Burnett BG. A combinatorial approach increases SMN level in SMA model mice. Hum Mol Genet 2022; 31:2989-3000. [PMID: 35419606 PMCID: PMC9433732 DOI: 10.1093/hmg/ddac068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/01/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by reduced expression of the survival motor neuron (SMN) protein. Current disease-modifying therapies increase SMN levels and dramatically improve survival and motor function of SMA patients. Nevertheless, current treatments are not cures and autopsy data suggest that SMN induction is variable. Our group and others have shown that combinatorial approaches that target different modalities can improve outcomes in rodent models of SMA. Here we explore if slowing SMN protein degradation and correcting SMN splicing defects could synergistically increase SMN production and improve the SMA phenotype in model mice. We show that co-administering ML372, which inhibits SMN ubiquitination, with an SMN-modifying antisense oligonucleotide (ASO) increases SMN production in SMA cells and model mice. In addition, we observed improved spinal cord, neuromuscular junction and muscle pathology when ML372 and the ASO were administered in combination. Importantly, the combinatorial approach resulted in increased motor function and extended survival of SMA mice. Our results demonstrate that a combination of treatment modalities synergistically increases SMN levels and improves pathophysiology of SMA model mice over individual treatment.
Collapse
Affiliation(s)
- Samantha A Dumas
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Herbert School of Medicine, Bethesda, MD 20814, USA
| | - Eric Villalón
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | - Elizabeth M Bergman
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Herbert School of Medicine, Bethesda, MD 20814, USA
| | - Kenneth J Wilson
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20892-2152, USA
| | - Juan J Marugan
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20892-2152, USA
| | - Christian L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Barrington G Burnett
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Herbert School of Medicine, Bethesda, MD 20814, USA
| |
Collapse
|
6
|
Lian W, Hao F, Hao P, Zhao W, Gao Y, Rao JS, Duan H, Yang Z, Li X. Distribution Heterogeneity of Muscle Spindles Across Skeletal Muscles of Lower Extremities in C57BL/6 Mice. Front Neuroanat 2022; 16:838951. [PMID: 35370570 PMCID: PMC8968039 DOI: 10.3389/fnana.2022.838951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/02/2022] [Indexed: 12/05/2022] Open
Abstract
Muscle spindles, an important proprioceptor scattered in the skeletal muscle, participate in maintaining muscle tension and the fine regulation of random movement. Although muscle spindles exist in all skeletal muscles, explanations about the distribution and morphology of muscle spindles remain lacking for the indetermination of spindle location across muscles. In this study, traditional time-consuming histochemical technology was utilized to determine the muscle spindle anatomical and morphological characteristics in the lower extremity skeletal muscle in C57BL/6 mice. The relative distance from spindles to nerve-entry points varied from muscles in the ventral-dorsal direction, in which spindles in the lateral of gastrocnemius were not considered to be close to its nerve-entry point. In the longitudinal pattern, the domain with the highest abundance of spindles corresponded to the nerve-entry point, excluding the tibialis anterior. Spindles are mainly concentrated at the middle and rostral domain in all muscles. The results suggest a heterogeneity of the distribution of spindles in different muscles, but the distribution trend generally follows the location pattern of the nerve-entry point. Histochemical staining revealed that the spindle did not have a symmetrical structure along the equator, and this result does not agree with previous findings. Exploring the distribution and structural characteristics of muscle spindles in skeletal muscle can provide some anatomical basis for the study of muscle spindles at the molecular level and treatment of exercise-related diseases and provide a comprehensive understanding of muscle spindle morphology.
Collapse
Affiliation(s)
- Wenxi Lian
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Peng Hao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Yudan Gao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: Jia-Sheng Rao,
| | - Hongmei Duan
- Department of Neurobiology, Capital Medical University, Beijing, China
- Hongmei Duan,
| | - Zhaoyang Yang
- Department of Neurobiology, Capital Medical University, Beijing, China
- Zhaoyang Yang,
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Department of Neurobiology, Capital Medical University, Beijing, China
- Xiaoguang Li,
| |
Collapse
|
7
|
Stone EJ, Kolb SJ, Brown A. A review and analysis of the clinical literature on Charcot-Marie-Tooth disease caused by mutations in neurofilament protein L. Cytoskeleton (Hoboken) 2021; 78:97-110. [PMID: 33993654 PMCID: PMC10174713 DOI: 10.1002/cm.21676] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common inherited neurological disorders and can be caused by mutations in over 100 different genes. One of the causative genes is NEFL on chromosome 8 which encodes neurofilament light protein (NEFL), one of five proteins that co-assemble to form neurofilaments. At least 34 different CMT-causing mutations in NEFL have been reported which span the head, rod, and tail domains of the protein. The majority of these mutations are inherited dominantly, but some are inherited recessively. The resulting disease is classified variably in clinical reports based on electrodiagnostic studies as either axonal (type 2; CMT2E), demyelinating (type 1; CMT1F), or a form intermediate between the two (dominant intermediate; DI-CMTG). In this article, we first present a brief introduction to CMT and neurofilaments. We then collate and analyze the data from the clinical literature on the disease classification, age of onset and electrodiagnostic test results for the various mutations. We find that mutations in the head, rod, and tail domains can all cause disease with early onset and profound neurological impairment, with a trend toward greater severity for head domain mutations. We also find that the disease classification does not correlate with specific mutation or domain. In fact, different individuals with the same mutation can be classified as having axonal, demyelinating, or dominant intermediate forms of the disease. This suggests that the classification of the disease as CMT2E, CMT1F or DI-CMTG has more to do with variable disease presentation than to differences in the underlying disease mechanism, which is most likely primarily axonal in all cases.
Collapse
Affiliation(s)
- Elizabeth J Stone
- Department of Neuroscience, Ohio State University, Columbus, Ohio, USA.,Neuroscience Graduate Program, Ohio State University, Columbus, Ohio, USA
| | - Stephen J Kolb
- Department of Neurology, Ohio State University, Columbus, Ohio, USA.,Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio, USA
| | - Anthony Brown
- Department of Neuroscience, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Moss KR, Bopp TS, Johnson AE, Höke A. New evidence for secondary axonal degeneration in demyelinating neuropathies. Neurosci Lett 2021; 744:135595. [PMID: 33359733 PMCID: PMC7852893 DOI: 10.1016/j.neulet.2020.135595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/31/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Taylor S Bopp
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anna E Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
9
|
Kröger S, Watkins B. Muscle spindle function in healthy and diseased muscle. Skelet Muscle 2021; 11:3. [PMID: 33407830 PMCID: PMC7788844 DOI: 10.1186/s13395-020-00258-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
Almost every muscle contains muscle spindles. These delicate sensory receptors inform the central nervous system (CNS) about changes in the length of individual muscles and the speed of stretching. With this information, the CNS computes the position and movement of our extremities in space, which is a requirement for motor control, for maintaining posture and for a stable gait. Many neuromuscular diseases affect muscle spindle function contributing, among others, to an unstable gait, frequent falls and ataxic behavior in the affected patients. Nevertheless, muscle spindles are usually ignored during examination and analysis of muscle function and when designing therapeutic strategies for neuromuscular diseases. This review summarizes the development and function of muscle spindles and the changes observed under pathological conditions, in particular in the various forms of muscular dystrophies.
Collapse
Affiliation(s)
- Stephan Kröger
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.
| | - Bridgette Watkins
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
10
|
|
11
|
Lancaster E, Li J, Hanania T, Liem R, Scheideler MA, Scherer SS. Myelinated axons fail to develop properly in a genetically authentic mouse model of Charcot-Marie-Tooth disease type 2E. Exp Neurol 2018; 308:13-25. [PMID: 29940160 DOI: 10.1016/j.expneurol.2018.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 11/25/2022]
Abstract
We have analyzed a mouse model of Charcot-Marie-Tooth disease 2E (CMT2E) harboring a heterozygous p.Asn98Ser (p.N98S) Nefl mutation, whose human counterpart results in a severe, early-onset neuropathy. Behavioral, electrophysiological, and pathological analyses were done on separate cohorts of NeflN98S/+ mutant mice and their wild type Nefl+/+ littermates between 8 and 48 weeks of age. The motor performance of NeflN98S/+ mice, as evidenced by altered balance and gait measures, was impaired at every age examined (from 6 to 25 weeks of age). At all times examined, myelinated axons were smaller and contained markedly fewer neurofilaments in NeflN98S/+ mice, in all examined aspects of the PNS, from the nerve roots to the distal ends of the sciatic and caudal nerves. Similarly, the myelinated axons in the various tracts of the spinal cord and in the optic nerves were smaller and contained fewer neurofilaments in mutant mice. The myelinated axons in both the PNS and the CNS of mutant mice had relatively thicker myelin sheaths. The amplitude and the nerve conduction velocity of the caudal nerves were reduced in proportion with the diminished sizes of myelinated axons. Conspicuous aggregations of neurofilaments were only seen in primary sensory and motor neurons, and were largely confined to the cell bodies and proximal axons. There was evidence of axonal degeneration and regeneration of myelinated axons, mostly in distal nerves. In summary, the p.N98S mutation causes a profound reduction of neurofilaments in the myelinated axons of the PNS and CNS, resulting in substantially reduced axonal diameters, particularly of large myelinated axons, and distal axon loss in the PNS.
Collapse
Affiliation(s)
- Eunjoo Lancaster
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jian Li
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Taleen Hanania
- Psychogenics Inc 215 College Road Paramus, NJ 07652, United States
| | - Ronald Liem
- Department of Pathology, Columbia University College of Physicians & Surgeons, New York, NY 10032, United States
| | | | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|