1
|
Park JY, Lengacher CA, Rodriguez CS, Meng H, Kip KE, Morgan S, Joshi A, Hueluer G, Wang JR, Tinsley S, Cox C, Kiluk J, Donovan KA, Moscoso M, Bornstein E, Lucas JM, Fonseca T, Krothapalli M, Padgett LS, Nidamanur S, Hornback E, Patel D, Chamkeri R, Reich RR. The Moderating Role of Genetics on the Effectiveness of the Mindfulness-Based Stress Reduction for Breast Cancer (MBSR(BC)) Program on Cognitive Impairment. Biol Res Nurs 2025; 27:216-228. [PMID: 39413359 DOI: 10.1177/10998004241289629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
BACKGROUND Genetics may influence symptoms experienced by breast cancer survivors (BCS) by moderating the effects of stress-reducing interventions, including the Mindfulness-Based Stress Reduction (MBSR(BC)) program, to reduce symptom severity. As part of a larger clinical trial, the aim of this study was to evaluate genetic variants as moderators of MBSR(BC) on improvements among BCS in cognitive functioning and symptoms. METHODS BCS (n = 128) were randomized to MBSR(BC) or the Breast Cancer Education Support Program. Objective neuropsychological and subjective measures of cognitive performance, and psychological and physical symptoms were collected at baseline, 6, 12, and 26 weeks. Linear mixed models were implemented to identify MBSR(BC)'s effects over time. A total of 22 single nucleotide polymorphisms (SNPs) from 20 genes known to be related to these symptoms were investigated using genomic DNA. These SNPs were tested as moderators of MBSR(BC) program effects. RESULTS Results showed MBSR(BC) participants experienced significantly greater benefits in cognitive functioning, however, the level of benefit varied based on one's genetic profile. Effects sizes, consistency across similar measures were investigated. Among 22 candidate SNPs, rs4680 in COMT, rs1800497 in ANKK1, and rs6277 in DRD2 demonstrated the strongest, most consistent positive effects in moderating MBSR(BC)'s impact on cognitive outcomes. CONCLUSIONS Although the effects were small, this translational research may potentially identify BCS with genotypes that would be most influenced by the MBSR(BC) program. These results may be used to develop personalized intervention programs tailored to the genetic profile of each breast cancer survivor who received chemotherapy or chemotherapy and radiation. TRIAL REGISTRATION ClinicalTrials.gov, https://www.ClinicalTrials.gov Registration Number: NCT02786797.
Collapse
Affiliation(s)
| | | | | | - Hongdao Meng
- College of Behavioral and Community Sciences, University of South Florida, Tampa, FL, USA
| | - Kevin E Kip
- UPMC Health Services Division, Pittsburgh, PA, USA
| | - Sandra Morgan
- University of South Florida College of Nursing, Tampa, FL, USA
| | | | | | - Julia R Wang
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Charles Cox
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | | | | | | | - Jean M Lucas
- Sarasota Memorial Health Care System, Sarasota, FL, USA
| | | | | | - Lynne S Padgett
- Veteran Affairs Office of Research & Development, Washington, DC, USA
| | | | | | - Diya Patel
- College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| | - Ramya Chamkeri
- College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| | | |
Collapse
|
2
|
Thakran S, Guin D, Singh P, Uppili B, Ramachandran S, Kushwaha SS, Kukreti R. Genome-Wide Association Study Reveals Genetic Architecture of Common Epilepsies. Clin Genet 2025. [PMID: 39904507 DOI: 10.1111/cge.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/26/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Epilepsy, affecting approximately 50 million individuals worldwide, exhibits a genetic heritability of 32%. While several genes/loci associated with epilepsy have been identified through candidate and genome-wide association studies (GWAS), exploration of population-specific markers remains underexplored. We conducted the first GWAS in north Indian population (~1500 samples) to identify genetic variants/loci associated with epilepsy risk, validated using targeted next-generation sequencing (NGS). Our GWAS revealed 30 variants across seven loci associated with epilepsy risk, including six novel loci. Subtype analysis based on etiology and seizure types, identified 57 variants across 11 loci, 10 of which are novel. Gene-set analysis unveiled enrichment in genes associated with glutathione synthesis and recycling and regulation of dopaminergic neuron differentiation pivotal in epilepsy pathophysiology. Furthermore, PRS analysis revealed a significant genetic contribution to the epilepsy with an R2 of 0.00573. Additionally, targeted NGS showed ~95% concordance with GSA genotypes. Our study highlights six novel loci rs17031055/4q31.3(DCHS2), rs73182224/3q27.2(DGKG), rs9322462/6q25.2(CNKSR3), rs75328617/8q24.23(RNU1-35P), rs2938010/10q26.13(CTBP2) and rs11652575/17p11.2(SLC5A10) associated with epilepsy risk. These findings offer valuable insights into the genetic landscape of epilepsy in the north Indian population, providing foundation for future exploratory studies.
Collapse
Affiliation(s)
- Sarita Thakran
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Priyanka Singh
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bharathram Uppili
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Srinivasan Ramachandran
- Department of Biotechnology and Allied Life Science, Manav Rachna International Institute of Research and Studies, Faridabad, India
| | - Suman S Kushwaha
- Institute of Human Behavior & Allied Sciences (IHBAS), Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Jia Z, Zhang H, Lv Y, Yu L, Cui Y, Zhang L, Yang C, Liu H, Zheng T, Xia W, Xu S, Li Y. Intrauterine chromium exposure and cognitive developmental delay: The modifying effect of genetic predisposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174350. [PMID: 38960203 DOI: 10.1016/j.scitotenv.2024.174350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
There is limited evidence on the effects of intrauterine chromium (Cr) exposure on children's cognitive developmental delay (CDD). Further, little is known about the genetic factors in modifying the association between intrauterine Cr exposure and CDD. The present study involved 2361 mother-child pairs, in which maternal plasma Cr concentrations were assessed, a polygenic risk score for the child was constructed, and the child's cognitive development was evaluated using the Bayley Scales of Infant Development. The risks of CDD conferred by intrauterine Cr exposure in children with different genetic backgrounds were evaluated by logistic regression. The additive interaction between intrauterine Cr exposure and genetic factors was evaluated by calculating the relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP), and synergy index (SI). According to present study, higher intrauterine Cr exposure was significantly associated with increased CDD risk [each unit increase in ln-transformed maternal plasma Cr concentration (ln-Cr): adjusted OR (95 % CI), 1.18 (1.04-1.35); highest vs lowest quartile: adjusted OR (95 % CI), 1.57 (1.10-2.23)]. The dose-response relationship of intrauterine Cr exposure and CDD for children with high genetic risk was more prominent [each unit increased ln-Cr: adjusted OR (95 % CI), 1.36 (1.09-1.70)]. Joint effects between intrauterine Cr exposure and genetic factors were found. Specifically, for high genetic risk carriers, the association between intrauterine Cr exposure and CDD was more evident [highest vs lowest quartile: adjusted OR (95 % CI), 2.33 (1.43-3.80)]. For those children with high intrauterine Cr exposure and high genetic risk, the adjusted AP was 0.39 (95 % CI, 0.07-0.72). Conclusively, intrauterine Cr exposure was a high-risk factor for CDD in children, particularly for those with high genetic risk. Intrauterine Cr exposure and one's adverse genetic background jointly contribute to an increased risk of CDD in children.
Collapse
Affiliation(s)
- Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, Hubei, People's Republic of China
| | - Yiqing Lv
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ling Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuan Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Liping Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chenhui Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, People's Republic of China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Chen D, Zhou Y, Zhang Y, Zeng H, Wu L, Liu Y. Unraveling shared susceptibility loci and Mendelian genetic associations linking educational attainment with multiple neuropsychiatric disorders. Front Psychiatry 2024; 14:1303430. [PMID: 38250258 PMCID: PMC10797721 DOI: 10.3389/fpsyt.2023.1303430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Background Empirical studies have demonstrated that educational attainment (EA) is associated with neuropsychiatric disorders (NPDs), suggesting a shared etiological basis between them. However, little is known about the shared genetic mechanisms and causality behind such associations. Methods This study explored the shared genetic basis and causal relationships between EA and NPDs using the high-definition likelihood (HDL) method, cross phenotype association study (CPASSOC), transcriptome-wide association study (TWAS), and bidirectional Mendelian randomization (MR) with summary-level data for EA (N = 293,723) and NPDs (N range = 9,725 to 455,258). Results Significant genetic correlations between EA and 12 NPDs (rg range - 0.49 to 0.35; all p < 3.85 × 10-3) were observed. CPASSOC identified 37 independent loci shared between EA and NPDs, one of which was novel (rs71351952, mapped gene: ARFGEF2). Functional analyses and TWAS found shared genes were enriched in brain tissue, especially in the cerebellum and highlighted the regulatory role of neuronal signaling, purine nucleotide metabolic process, and cAMP-mediated signaling pathways. CPASSOC and TWAS supported the role of three regions of 6q16.1, 3p21.31, and 17q21.31 might account for the shared causes between EA and NPDs. MR confirmed higher genetically predicted EA lower the risk of ADHD (ORIVW: 0.50; 95% CI: 0.39 to 0.63) and genetically predicted ADHD decreased the risk of EA (Causal effect: -2.8 months; 95% CI: -3.9 to -1.8). Conclusion These findings provided evidence of shared genetics and causation between EA and NPDs, advanced our understanding of EA, and implicated potential biological pathways that might underlie both EA and NPDs.
Collapse
Affiliation(s)
- Dongze Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yi Zhou
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Huatang Zeng
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Liqun Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yuyang Liu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| |
Collapse
|
5
|
An Alzheimer’s Disease Patient-Derived Olfactory Stem Cell Model Identifies Gene Expression Changes Associated with Cognition. Cells 2022; 11:cells11203258. [PMID: 36291125 PMCID: PMC9601087 DOI: 10.3390/cells11203258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
An early symptom of Alzheimer’s disease (AD) is an impaired sense of smell, for which the molecular basis remains elusive. Here, we generated human olfactory neurosphere-derived (ONS) cells from people with AD and mild cognitive impairment (MCI), and performed global RNA sequencing to determine gene expression changes. ONS cells expressed markers of neuroglial differentiation, providing a unique cellular model to explore changes of early AD-associated pathways. Our transcriptomics data from ONS cells revealed differentially expressed genes (DEGs) associated with cognitive processes in AD cells compared to MCI, or matched healthy controls (HC). A-Kinase Anchoring Protein 6 (AKAP6) was the most significantly altered gene in AD compared to both MCI and HC, and has been linked to cognitive function. The greatest change in gene expression of all DEGs occurred between AD and MCI. Gene pathway analysis revealed defects in multiple cellular processes with aging, intellectual deficiency and alternative splicing being the most significantly dysregulated in AD ONS cells. Our results demonstrate that ONS cells can provide a cellular model for AD that recapitulates disease-associated differences. We have revealed potential novel genes, including AKAP6 that may have a role in AD, particularly MCI to AD transition, and should be further examined.
Collapse
|
6
|
Park JY, Lengacher CA, Reich RR, Park HY, Whiting J, Nguyen AT, Rodríguez C, Meng H, Tinsley S, Chauca K, Gordillo-Casero L, Wittenberg T, Joshi A, Lin K, Ismail-Khan R, Kiluk JV, Kip KE. Translational Genomic Research: The Association between Genetic Profiles and Cognitive Functioning or Cardiac Function Among Breast Cancer Survivors Completing Chemotherapy. Biol Res Nurs 2022; 24:433-447. [PMID: 35499926 PMCID: PMC9630728 DOI: 10.1177/10998004221094386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction: Emerging evidence suggests that Chemotherapy (CT) treated breast cancer survivors (BCS) who have "risk variants" in genes may be more susceptible to cognitive impairment (CI) and/or poor cardiac phenotypes. The objective of this preliminary study was to examine whether there is a relationship between genetic variants and objective/subjective cognitive or cardiac phenotypes. Methods and Analysis: BCS were recruited from Moffitt Cancer Center, Morsani College of Medicine, AdventHealth Tampa and Sarasota Memorial Hospital. Genomic DNA were collected at baseline for genotyping analysis. A total of 16 single nucleotide polymorphisms (SNPs) from 14 genes involved in cognitive or cardiac function were evaluated. Three genetic models (additive, dominant, and recessive) were used to test correlation coefficients between genetic variants and objective/subjective measures of cognitive functioning and cardiac outcomes (heart rate, diastolic blood pressure, systolic blood pressure, respiration rate, and oxygen saturation). Results: BCS (207 participants) with a mean age of 56 enrolled in this study. The majority were non-Hispanic white (73.7%), married (63.1%), and received both CT and radiation treatment (77.3%). Three SNPs in genes related to cognitive functioning (rs429358 in APOE, rs1800497 in ANKK1, rs10119 in TOMM40) emerged with the most consistent significant relationship with cognitive outcomes. Among five candidate SNPs related to cardiac functioning, rs8055236 in CDH13 and rs1801133 in MTHER emerged with potential significant relationships with cardiac phenotype. Conclusions: These preliminary results provide initial targets to further examine whether BCS with specific genetic profiles may preferentially benefit from interventions designed to improve cognitive and cardiac functioning following CT.
Collapse
Affiliation(s)
- Jong Y. Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Richard R. Reich
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Hyun Y. Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Junmin Whiting
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Anh Thy Nguyen
- Department of Epidemiology and
Biostatistics, USF College of Public Health, University of South
Florida, Tampa, FL, USA
| | | | - Hongdao Meng
- School of Aging Studies, College of
Behavioral and Community Sciences, University of South
Floridaa, Tampa, FL, USA
| | - Sara Tinsley
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | - Anisha Joshi
- University of South Florida College
of Nursing, Tampa, FL, USA
| | - Katherine Lin
- University of South Florida College
of Nursing, Tampa, FL, USA
| | - Roohi Ismail-Khan
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - John V. Kiluk
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kevin E. Kip
- UPMC Health Services
Division, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Gao Y, Felsky D, Reyes-Dumeyer D, Sariya S, Rentería MA, Ma Y, Klein HU, Cosentino S, De Jager PL, Bennett DA, Brickman AM, Schellenberg GD, Mayeux R, Barral S. Integration of GWAS and brain transcriptomic analyses in a multiethnic sample of 35,245 older adults identifies DCDC2 gene as predictor of episodic memory maintenance. Alzheimers Dement 2022; 18:1797-1811. [PMID: 34873813 PMCID: PMC9170841 DOI: 10.1002/alz.12524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 01/28/2023]
Abstract
Identifying genes underlying memory function will help characterize cognitively resilient and high-risk declining subpopulations contributing to precision medicine strategies. We estimated episodic memory trajectories in 35,245 ethnically diverse older adults representing eight independent cohorts. We conducted apolipoprotein E (APOE)-stratified genome-wide association study (GWAS) analyses and combined individual cohorts' results via meta-analysis. Three independent transcriptomics datasets were used to further interpret GWAS signals. We identified DCDC2 gene significantly associated with episodic memory (Pmeta = 3.3 x 10-8 ) among non-carriers of APOE ε4 (N = 24,941). Brain transcriptomics revealed an association between episodic memory maintenance and (1) increased dorsolateral prefrontal cortex DCDC2 expression (P = 3.8 x 10-4 ) and (2) lower burden of pathological Alzheimer's disease (AD) hallmarks (paired helical fragment tau P = .003, and amyloid beta load P = .008). Additional transcriptomics results comparing AD and cognitively healthy brain samples showed a downregulation of DCDC2 levels in superior temporal gyrus (P = .007) and inferior frontal gyrus (P = .013). Our work identified DCDC2 gene as a novel predictor of memory maintenance.
Collapse
Affiliation(s)
- Yizhe Gao
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction
and Mental Health, Toronto, ON, Canada.,Department of Psychiatry & Institute of Medical
Science, University of Toronto, Toronto, ON, Canada
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,G.H. Sergievsky Center, Vagelos College of Physicians and
Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | - Sanjeev Sariya
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA
| | - Miguel Arce Rentería
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | - Yiyi Ma
- Center for Translational & Computational
Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center,
New York, NY, 10032, USA
| | - Hans-Ulrich Klein
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,Center for Translational & Computational
Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center,
New York, NY, 10032, USA
| | - Stephanie Cosentino
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,G.H. Sergievsky Center, Vagelos College of Physicians and
Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | - Philip L. De Jager
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,Center for Translational & Computational
Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center,
New York, NY, 10032, USA.,Cell Circuits Program, Broad Institute, Cambridge, MA,
USA
| | - David A. Bennett
- Rush University Medical Center, Rush Alzheimer’s
Disease Center, Chicago, IL, USA.,Rush University Medical Center, Department of Neurological
Sciences, Chicago, IL, USA
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,G.H. Sergievsky Center, Vagelos College of Physicians and
Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine,
University of Pennsylvania, Philadelphia, PA, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,G.H. Sergievsky Center, Vagelos College of Physicians and
Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | - Sandra Barral
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,G.H. Sergievsky Center, Vagelos College of Physicians and
Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | -
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
8
|
Cataloging the potential SNPs (single nucleotide polymorphisms) associated with quantitative traits, viz. BMI (body mass index), IQ (intelligence quotient) and BP (blood pressure): an updated review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Single nucleotide polymorphism (SNP) variants are abundant, persistent and widely distributed across the genome and are frequently linked to the development of genetic diseases. Identifying SNPs that underpin complex diseases can aid scientists in the discovery of disease-related genes by allowing for early detection, effective medication and eventually disease prevention.
Main body
Various SNP or polymorphism-based studies were used to categorize different SNPs potentially related to three quantitative traits: body mass index (BMI), intelligence quotient (IQ) and blood pressure, and then uncovered common SNPs for these three traits. We employed SNPedia, RefSNP Report, GWAS Catalog, Gene Cards (Data Bases), PubMed and Google Scholar search engines to find relevant material on SNPs associated with three quantitative traits. As a result, we detected three common SNPs for all three quantitative traits in global populations: SNP rs6265 of the BDNF gene on chromosome 11p14.1, SNP rs131070325 of the SL39A8 gene on chromosome 4p24 and SNP rs4680 of the COMT gene on chromosome 22q11.21.
Conclusion
In our review, we focused on the prevalent SNPs and gene expression activities that influence these three quantitative traits. These SNPs have been used to detect and map complex, common illnesses in communities for homogeneity testing and pharmacogenetic studies. High blood pressure, diabetes and heart disease, as well as BMI, schizophrenia and IQ, can all be predicted using common SNPs. Finally, the results of our work can be used to find common SNPs and genes that regulate these three quantitative features across the genome.
Collapse
|
9
|
Devyatkin VA, Redina OE, Kolosova NG, Muraleva NA. Single-Nucleotide Polymorphisms Associated with the Senescence-Accelerated Phenotype of OXYS Rats: A Focus on Alzheimer's Disease-Like and Age-Related-Macular-Degeneration-Like Pathologies. J Alzheimers Dis 2021; 73:1167-1183. [PMID: 31929160 DOI: 10.3233/jad-190956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) and age-related macular degeneration (AMD) are two complex incurable neurodegenerative disorders the common pathogenesis of which is actively discussed. There are overlapping risk factors and molecular mechanisms of the two diseases; at the same time, there are arguments in favor of the notion that susceptibility to each of these diseases is associated with a distinct genetic background. Here we identified single-nucleotide polymorphisms (SNPs) that are specific for senescence-accelerated OXYS rats, which simulate key characteristics of both sporadic AD and AMD. Transcriptomes of the hippocampus, prefrontal cortex, and retina (data of RNA-Seq) were analyzed. We detected SNPs in genes Rims2, AABR07072639.2, Lemd2, and AABR07045405.1, which thus can express significantly truncated proteins lacking functionally important domains. Additionally, 33 mutations in genes-which are related to various metabolic and signaling pathways-cause nonsynonymous amino acid substitutions presumably leading to disturbances in protein structure or functions. Some of the genes carrying these SNPs are associated with aging, neurodegenerative, and mental diseases. Thus, we revealed the SNPs can lead to abnormalities in protein structure or functions and affect the development of the senescence-accelerated phenotype of OXYS rats. Our data are consistent with the latest results of genome-wide association studies that highlight the importance of multiple pathways for the pathogenesis of AD and AMD. Identified SNPs can serve as promising research objects for further studies on the molecular mechanisms underlying this particular rat model as well as for the prediction of potential biomarkers of AD and AMD.
Collapse
Affiliation(s)
- Vasiliy A Devyatkin
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Olga E Redina
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | | |
Collapse
|
10
|
Looking for Sunshine: Genetic Predisposition to Sun Seeking in 265,000 Individuals of European Ancestry. J Invest Dermatol 2021; 141:779-786. [DOI: 10.1016/j.jid.2020.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/04/2020] [Accepted: 08/05/2020] [Indexed: 11/23/2022]
|
11
|
Mustafin RN, Kazantseva AV, Enikeeva RF, Malykh SB, Khusnutdinova EK. Longitudinal genetic studies of cognitive characteristics. Vavilovskii Zhurnal Genet Selektsii 2021; 24:87-95. [PMID: 33659785 PMCID: PMC7716536 DOI: 10.18699/vj20.599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The present review describes longitudinal studies of cognitive traits and functions determining the causes of their variations and their possible correction to prevent cognitive impairment. The present study reviews the involvement of such environmental factors as nutrition, prenatal maternal stress, social isolation and others in cognitive functioning. The role of epigenetic factors in the implementation of environmental effects in cognitive characteristics is revealed. Considering the epigenome significance, several studies were focused on the design of substances affecting methylation and histone modification, which can be used for the treatment of cognitive disorders. The appropriate correction of epigenetic factors related to environmental differences in cognitive abilities requires to determine the mechanisms of chromatin modifications and variations in DNA methylation. Transposons representing stress-sensitive DNA elements appeared to mediate the environmental influence on epigenetic modifications. They can explain the mechanism of transgenerational transfer of information on cognitive abilities. Recently, large-scale meta-analyses based on the results of studies, which identified genetic associations with various cognitive traits, were carried out. As a result, the role of genes actively expressed in the brain, such as BDNF, COMT, CADM2, CYP2D6, APBA1, CHRNA7, PDE1C, PDE4B, and PDE4D in cognitive abilities was revealed. The association between cognitive functioning and genes, which have been previously involved in developing psychiatric disorders (MEF2C, CYP2D6, FAM109B, SEPT3, NAGA, TCF20, NDUFA6 genes), was revealed, thus indicating the role of the similar mechanisms of genetic and neural networks in both normal cognition and cognitive impairment. An important role in both processes belongs to common epigenetic factors. The genes involved in DNA methylation (DNMT1, DNMT3B, and FTO), histone modifications (CREBBP, CUL4B, EHMT1, EP300, EZH2, HLCS, HUWE1, KAT6B, KMT2A, KMT2D, KMT2C, NSD1, WHSC1, and UBE2A) and chromatin remodeling (ACTB, ARID1A, ARID1B, ATRX, CHD2, CHD7, CHD8, SMARCA2, SMARCA4, SMARCB1, SMARCE1, SRCAP, and SS18L1) are associated with increased risk of psychiatric diseases with cognitive deficiency together with normal cognitive functioning. The data on the correlation between transgenerational epigenetic inheritance of cognitive abilities and the insert of transposable elements in intergenic regions is discussed. Transposons regulate genes functioning in the brain due to the processing of their transcripts into non-coding RNAs. The content, quantity and arrangement of transposable elements in human genome, which do not affect changes in nucleotide sequences of protein encoding genes, but affect their expression, can be transmitted to the next generation.
Collapse
Affiliation(s)
| | - A V Kazantseva
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - R F Enikeeva
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - S B Malykh
- Psychological Institute of the Russian Academy of Education, Moscow, Russia M.V. Lomonosov Moscow State University, Laboratory of psychology of professions and conflicts, Moscow, Russia
| | - E K Khusnutdinova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia M.V. Lomonosov Moscow State University, Laboratory of psychology of professions and conflicts, Moscow, Russia
| |
Collapse
|
12
|
Mustafin RN, Kazantseva AV, Malykh SB, Khusnutdinova EK. Genetic Mechanisms of Cognitive Development. RUSS J GENET+ 2020. [DOI: 10.1134/s102279542007011x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Shikov AE, Skitchenko RK, Predeus AV, Barbitoff YA. Phenome-wide functional dissection of pleiotropic effects highlights key molecular pathways for human complex traits. Sci Rep 2020; 10:1037. [PMID: 31974475 PMCID: PMC6978431 DOI: 10.1038/s41598-020-58040-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Over the recent decades, genome-wide association studies (GWAS) have dramatically changed the understanding of human genetics. A recent genetic data release by UK Biobank (UKB) has allowed many researchers worldwide to have comprehensive look into the genetic architecture of thousands of human phenotypes. In this study, we used GWAS summary statistics derived from the UKB cohort to investigate functional mechanisms of pleiotropic effects across the human phenome. We find that highly pleiotropic variants often correspond to broadly expressed genes with ubiquitous functions, such as matrisome components and cell growth regulators; and tend to colocalize with tissue-shared eQTLs. At the same time, signaling pathway components are more prevalent among highly pleiotropic genes compared to regulatory proteins such as transcription factors. Our results suggest that protein-level pleiotropy mediated by ubiquitously expressed genes is the most prevalent mechanism of pleiotropic genetic effects across the human phenome.
Collapse
Affiliation(s)
- Anton E Shikov
- Bioinformatics Institute, Saint Petersburg, Russia
- City Hospital No. 40, Saint Petersburg, Russia
- All-Russian Research Institute for Agricultural Microbiology (ARRIAM), Saint Petersburg, Russia
| | - Rostislav K Skitchenko
- Bioinformatics Institute, Saint Petersburg, Russia
- ITMO University, Saint Petersburg, Russia
| | | | - Yury A Barbitoff
- Bioinformatics Institute, Saint Petersburg, Russia.
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia.
| |
Collapse
|
14
|
Zhong VW, Kuang A, Danning RD, Kraft P, van Dam RM, Chasman DI, Cornelis MC. A genome-wide association study of bitter and sweet beverage consumption. Hum Mol Genet 2019; 28:2449-2457. [PMID: 31046077 PMCID: PMC6606847 DOI: 10.1093/hmg/ddz061] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/14/2018] [Accepted: 08/09/2018] [Indexed: 01/07/2023] Open
Abstract
Except for drinking water, most beverages taste bitter or sweet. Taste perception and preferences are heritable and determinants of beverage choice and consumption. Consumption of several bitter- and sweet-tasting beverages has been implicated in development of major chronic diseases. We performed a genome-wide association study (GWAS) of self-reported bitter and sweet beverage consumption among ~370 000 participants of European ancestry, using a two-staged analysis design. Bitter beverages included coffee, tea, grapefruit juice, red wine, liquor and beer. Sweet beverages included artificially and sugar sweetened beverages (SSBs) and non-grapefruit juices. Five loci associated with total bitter beverage consumption were replicated (in/near GCKR, ABCG2, AHR, POR and CYP1A1/2). No locus was replicated for total sweet beverage consumption. Sub-phenotype analyses targeting the alcohol, caffeine and sweetener components of beverages yielded additional loci: (i) four loci for bitter alcoholic beverages (GCKR, KLB, ADH1B and AGBL2); (ii) five loci for bitter non-alcoholic beverages (ANXA9, AHR, POR, CYP1A1/2 and CSDC2); (iii) 10 loci for coffee; six novel loci (SEC16B, TMEM18, OR8U8, AKAP6, MC4R and SPECC1L-ADORA2A); (iv) FTO for SSBs. Of these 17 replicated loci, 12 have been associated with total alcohol consumption, coffee consumption, plasma caffeine metabolites or BMI in previous GWAS; none was involved in known sweet and bitter taste transduction pathways. Our study suggests that genetic variants related to alcohol consumption, coffee consumption and obesity were primary genetic determinants of bitter and sweet beverage consumption. Whether genetic variants related to taste perception are associated with beverage consumption remains to be determined.
Collapse
Affiliation(s)
- Victor W Zhong
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alan Kuang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rebecca D Danning
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health and Department of Biostatistics, Boston, MA, USA
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
15
|
Suryavanshi SV, Jadhav SM, McConnell BK. Polymorphisms/Mutations in A-Kinase Anchoring Proteins (AKAPs): Role in the Cardiovascular System. J Cardiovasc Dev Dis 2018; 5:E7. [PMID: 29370121 PMCID: PMC5872355 DOI: 10.3390/jcdd5010007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
A-kinase anchoring proteins (AKAPs) belong to a family of scaffolding proteins that bind to protein kinase A (PKA) by definition and a variety of crucial proteins, including kinases, phosphatases, and phosphodiesterases. By scaffolding these proteins together, AKAPs build a "signalosome" at specific subcellular locations and compartmentalize PKA signaling. Thus, AKAPs are important for signal transduction after upstream activation of receptors ensuring accuracy and precision of intracellular PKA-dependent signaling pathways. Since their discovery in the 1980s, AKAPs have been studied extensively in the heart and have been proven essential in mediating cyclic adenosine monophosphate (cAMP)-PKA signaling. Although expression of AKAPs in the heart is very low, cardiac-specific knock-outs of several AKAPs have a noteworthy cardiac phenotype. Moreover, single nucleotide polymorphisms and genetic mutations in crucial cardiac proteins play a substantial role in the pathophysiology of cardiovascular diseases (CVDs). Despite the significant role of AKAPs in the cardiovascular system, a limited amount of research has focused on the role of genetic polymorphisms and/or mutations in AKAPs in increasing the risk of CVDs. This review attempts to overview the available literature on the polymorphisms/mutations in AKAPs and their effects on human health with a special focus on CVDs.
Collapse
Affiliation(s)
- Santosh V Suryavanshi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Texas Medical Center, Houston, TX 77204, USA.
| | - Shweta M Jadhav
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Texas Medical Center, Houston, TX 77204, USA.
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Texas Medical Center, Houston, TX 77204, USA.
| |
Collapse
|