1
|
Zhang M, Zhao J, Ji H, Tan Y, Zhou S, Sun J, Ding Y, Li X. Multi-omics insight into the molecular networks of mental disorder related genetic pathways in the pathogenesis of inflammatory bowel disease. Transl Psychiatry 2025; 15:91. [PMID: 40118833 PMCID: PMC11928517 DOI: 10.1038/s41398-025-03299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/16/2025] [Accepted: 02/24/2025] [Indexed: 03/24/2025] Open
Abstract
Mental disorders are associated with inflammatory bowel disease (IBD), but the genetic pathophysiology is not fully understood. We obtained data on mental disorder-related gene methylation, expression, protein levels, and summary statistics of IBD, and performed Summary data-based Mendelian randomization and colocalization analyses to explore the causal associations and shared causal genetic variants between multiple molecular traits and IBD. Integrating multi-omics data, we found QDPR, DBI and MAX are associated with ulcerative colitis (UC) risk, while HP is linked to IBD risk. Inverse associations between gene methylation (cg0880851 and cg26689483) and expression are observed in QDPR, consistent with their detrimental role in UC. Methylation of DBI (cg11066750) protects against UC by enhancing expression. Higher levels of DBI (OR = 0.79, 95%CI = 0.69-0.90) and MAX (OR = 0.74, 95%CI = 0.62-0.90) encoded proteins are inversely associated with UC risk, while higher QDPR (OR = 1.17, 95%CI = 1.07-1.28) and HP (OR = 1.09, 95%CI = 1.04-1.14) levels increase UC and IBD risk. Our findings advance the understanding of IBD's pathogenic mechanisms and gut-brain interaction.
Collapse
Affiliation(s)
- Meng Zhang
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, 310058, Zhejiang, China
| | - Jianhui Zhao
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haosen Ji
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuqian Tan
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Siyun Zhou
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jing Sun
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, China.
| | - Xue Li
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
2
|
Lawande NV, Conklin EA, Christian‐Hinman CA. Sex and gonadectomy modify behavioral seizure susceptibility and mortality in a repeated low-dose kainic acid systemic injection paradigm in mice. Epilepsia Open 2023; 8:1512-1522. [PMID: 37715318 PMCID: PMC10690657 DOI: 10.1002/epi4.12828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
OBJECTIVE Sex differences in epilepsy appear driven in part due to effects of gonadal steroids, with varying results in experimental models based on species, strain, and method of seizure induction. Furthermore, removing the main source of these steroids via gonadectomy may impact seizure characteristics differently in males and females. Repeated low-dose kainic acid (RLDKA) systemic injection paradigms were recently shown to reliably induce status epilepticus (SE) and hippocampal histopathology in C57BL/6J mice. Here, we investigated whether seizure susceptibility in a RLDKA injection protocol exhibits a sex difference and whether gonadectomy differentially influences response to this seizure induction paradigm in males and females. METHODS Adult C57BL/6J mice were left gonad-intact as controls or gonadectomized (females: ovariectomized, OVX; males: orchidectomized, ORX). At least 2 weeks later, KA was injected ip, every 30 minutes at 7.5 mg/kg or less until the animal reached SE, defined by at least 5 generalized seizures (GS, Racine stage 3 or higher). Parameters of susceptibility to GS induction, SE development, and mortality rates were quantified. RESULTS No differences in seizure susceptibility or mortality were observed between control males and control females. Gonadectomized mice exhibited increased susceptibility and reduced latency to both GS and SE in comparison to corresponding controls of the same sex, but the effects were stronger in males. In addition, ORX males, but not OVX females, exhibited strongly increased seizure-induced mortality. SIGNIFICANCE The RLDKA protocol is notable for its efficacy in inducing SE and seizure-induced histopathology in C57BL/6J mice, the background for many transgenic strains in current use in epilepsy research. The present results indicate that this protocol may be beneficial for investigating the effects of gonadal hormone replacement on seizure susceptibility, mortality, and seizure-induced histopathology, and that gonadectomy unmasks sex differences in susceptibility to seizures and mortality not observed in gonad-intact controls.
Collapse
Affiliation(s)
- Niraj V. Lawande
- Department of Molecular and Integrative PhysiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | | | - Catherine A. Christian‐Hinman
- Department of Molecular and Integrative PhysiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Neuroscience ProgramUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
3
|
Lawande NV, Conklin EA, Christian-Hinman CA. Sex and gonadectomy modify behavioral seizure susceptibility and mortality in a repeated low-dose kainic acid systemic injection paradigm in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541824. [PMID: 37292790 PMCID: PMC10245840 DOI: 10.1101/2023.05.22.541824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Objective Sex differences in epilepsy appear driven in part due to effects of gonadal steroids, with varying results in experimental models based on species, strain, and method of seizure induction. Furthermore, removing a main source of these steroids via gonadectomy may impact seizure characteristics differently in males and females. Repeated low-dose kainic acid (RLDKA) systemic injection paradigms were recently shown to reliably induce status epilepticus (SE) and hippocampal histopathology in C57BL/6J mice. Here, we investigated whether seizure susceptibility in a RLDKA injection protocol exhibits a sex difference, and whether gonadectomy differentially influences response to this seizure induction paradigm in males and females. Methods Adult C57BL/6J mice were left gonad-intact as controls or gonadectomized (females: ovariectomized, OVX; males: orchidectomized, ORX). At least 2 weeks later, KA was injected i.p. every 30 minutes at 7.5 mg/kg or less until the animal reached SE, defined by at least 5 generalized seizures (GS, Racine stage 3 or higher). Parameters of susceptibility to GS induction, SE development, and mortality rates were quantified. Results No differences in seizure susceptibility or mortality were observed between control males and control females. ORX males exhibited increased susceptibility and reduced latency to both GS and SE, but OVX females exhibited increased susceptibility and reduced latency to SE only. However, ORX males, but not OVX females, exhibited strongly increased seizure-induced mortality. Significance The RLDKA protocol is notable for its efficacy in inducing SE and seizure-induced histopathology in C57BL/6J mice, the background for many transgenic strains in current use in epilepsy research. The present results indicate that this protocol may be beneficial for investigating the effects of gonadal hormone replacement on seizure susceptibility, mortality, and seizure-induced histopathology, and that gonadectomy unmasks sex differences in susceptibility to seizures and mortality not observed in gonad-intact controls.
Collapse
Affiliation(s)
- Niraj V. Lawande
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
| | - Elisabeth A. Conklin
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
| | - Catherine A. Christian-Hinman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
| |
Collapse
|
4
|
ACBD3 Bioinformatic Analysis and Protein Expression in Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23168881. [PMID: 36012147 PMCID: PMC9408326 DOI: 10.3390/ijms23168881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
ACBD3 overexpression has previously been found to correlate with worse prognosis for breast cancer patients and, as an incredibly diverse protein in both function and cellular localisation, ACBD3 may have a larger role in breast cancer than previously thought. This study further investigated ACBD3′s role in breast cancer. Bioinformatic databases were queried to characterise ACBD3 expression and mutation in breast cancer and to investigate how overexpression affects breast cancer patient outcomes. Immunohistochemistry was carried out to examine ACBD3 location within cells and tissue structures. ACBD3 was more highly expressed in breast cancer than in any other cancer or matched normal tissue, and expression over the median level resulted in reduced relapse-free, overall, and distant metastasis-free survival for breast cancer patients as a whole, with some differences observed between subtypes. IHC analysis found that ACBD3 levels varied based on hormone receptor status, indicating that ACBD3 could be a candidate biomarker for poor patient prognosis in breast cancer and may possibly be a biomarker for ER signal reprogramming of precancerous breast tissue.
Collapse
|
5
|
Walters JM, Kim EC, Zhang J, Jeong HG, Bajaj A, Baculis B, Tracy G, Ibrahim B, Christian-Hinman CA, Llano DA, Huesmann GR, Chung HJ. Pharmacological inhibition of STriatal-Enriched protein tyrosine Phosphatase by TC-2153 reduces hippocampal excitability and seizure propensity. Epilepsia 2022; 63:1211-1224. [PMID: 35188269 PMCID: PMC9586517 DOI: 10.1111/epi.17192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/30/2021] [Accepted: 02/01/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific tyrosine phosphatase. Membrane-bound STEP61 is the only isoform expressed in hippocampus and cortex. Genetic deletion of STEP enhances excitatory synaptic currents and long-term potentiation in the hippocampus. However, whether STEP61 affects seizure susceptibility is unclear. Here we investigated the effects of STEP inhibitor TC-2153 on seizure propensity in a murine model displaying kainic acid (KA)-induced status epilepticus and its effect on hippocampal excitability. METHODS Adult male and female C57BL/6J mice received intraperitoneal injection of either vehicle (2.8% dimethylsulfoxide [DMSO] in saline) or TC-2153 (10 mg/kg) and then either saline or KA (30 mg/kg) 3 h later before being monitored for behavioral seizures. A subset of female mice was ovariectomized (OVX). Acute hippocampal slices from Thy1-GCaMP6s mice were treated with either DMSO or TC-2153 (10 μM) for 1 h, and then incubated in artificial cerebrospinal fluid (ACSF) and potassium chloride (15 mM) for 2 min prior to live calcium imaging. Pyramidal neurons in dissociated rat hippocampal culture (DIV 8-10) were pre-treated with DMSO or TC-2153 (10 µM) for 1 h before whole-cell patch-clamp recording. RESULTS TC-2153 treatment significantly reduced KA-induced seizure severity, with greater trend seen in female mice. OVX abolished this TC-2153-induced decrease in seizure severity in female mice. TC-2153 application significantly decreased overall excitability of acute hippocampal slices from both sexes. Surprisingly, TC-2153 treatment hyperpolarized resting membrane potential and decreased firing rate, sag voltage, and hyperpolarization-induced current (Ih ) of cultured hippocampal pyramidal neurons. SIGNIFICANCE This study is the first to demonstrate that pharmacological inhibition of STEP with TC-2153 decreases seizure severity and hippocampal activity in both sexes, and dampens hippocampal neuronal excitability and Ih . We propose that the antiseizure effects of TC-2153 are mediated by its unexpected action on suppressing neuronal intrinsic excitability.
Collapse
Affiliation(s)
- Jennifer M. Walters
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eung Chang Kim
- Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jiaren Zhang
- Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Han Gil Jeong
- Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Archit Bajaj
- Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Brian Baculis
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gregory Tracy
- Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Baher Ibrahim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Catherine A. Christian-Hinman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Daniel A. Llano
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Graham R. Huesmann
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Neurology, Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hee Jung Chung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
6
|
Alquier T, Christian-Hinman CA, Alfonso J, Færgeman NJ. From benzodiazepines to fatty acids and beyond: revisiting the role of ACBP/DBI. Trends Endocrinol Metab 2021; 32:890-903. [PMID: 34565656 PMCID: PMC8785413 DOI: 10.1016/j.tem.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/19/2023]
Abstract
Four decades ago Costa and colleagues identified a small, secreted polypeptide in the brain that can displace the benzodiazepine diazepam from the GABAA receptor, and was thus termed diazepam binding inhibitor (DBI). Shortly after, an identical polypeptide was identified in liver by its ability to induce termination of fatty acid synthesis, and was named acyl-CoA binding protein (ACBP). Since then, ACBP/DBI has been studied in parallel without a clear and integrated understanding of its dual roles. The first genetic loss-of-function models have revived the field, allowing targeted approaches to better understand the physiological roles of ACBP/DBI in vivo. We discuss the roles of ACBP/DBI in central and tissue-specific functions in mammals, with an emphasis on metabolism and mechanisms of action.
Collapse
Affiliation(s)
- Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pharmacology and Physiology, Biochemistry, and Neurosciences, Université de Montréal, Montreal, QC, Canada.
| | - Catherine A Christian-Hinman
- Department of Molecular and Integrative Physiology, Neuroscience Program, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Julieta Alfonso
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
7
|
Wang Z, Alderman MH, Asgari C, Taylor HS. Fetal Bisphenol-A Induced Changes in Murine Behavior and Brain Gene Expression Persisted in Adult-aged Offspring. Endocrinology 2020; 161:bqaa164. [PMID: 32926169 PMCID: PMC7609133 DOI: 10.1210/endocr/bqaa164] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
Abstract
In utero Bisphenol A (BPA) exposure has been linked to many deficits during brain development, including sexual differentiation, behavior, and motor coordination. Yet, how BPA induces these disorders and whether its effects are long lasting are largely unknown. In this study, using a mouse model, we demonstrated that in utero exposure to an environmentally relevant dose of BPA induced locomotor deficits, anxiety-like behavior, and declarative memory impairments that persisted into old age (18 months). Compared to the control animals, the BPA-exposed mice had a significant decrease in locomotor activity, exploratory tendencies, and long-term memory, and an increase in anxiety. The global brain gene expression profile was altered permanently by BPA treatment and showed regional and sexual differences. The BPA-treated male mice had more changes in the hippocampus, while female mice experienced more changes in the cortex. Overall, we demonstrate that in utero exposure to BPA induces permanent changes in brain gene expression in a region-specific and sex-specific manner, including a significant decrease in locomotor activity, learning ability, long-term memory, and an increase in anxiety. Fetal/early life exposures permanently affect neurobehavioral functions that deteriorate with age; BPA exposure may compound the effects of aging.
Collapse
Affiliation(s)
- Zhihao Wang
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Myles H Alderman
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Cyrus Asgari
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
8
|
Joseph A, Moriceau S, Sica V, Anagnostopoulos G, Pol J, Martins I, Lafarge A, Maiuri MC, Leboyer M, Loftus J, Bellivier F, Belzeaux R, Berna F, Etain B, Capdevielle D, Courtet P, Dubertret C, Dubreucq J, Thierry DA, Fond G, Gard S, Llorca PM, Mallet J, Misdrahi D, Olié E, Passerieux C, Polosan M, Roux P, Samalin L, Schürhoff F, Schwan R, Magnan C, Oury F, Bravo-San Pedro JM, Kroemer G. Metabolic and psychiatric effects of acyl coenzyme A binding protein (ACBP)/diazepam binding inhibitor (DBI). Cell Death Dis 2020; 11:502. [PMID: 32632162 PMCID: PMC7338362 DOI: 10.1038/s41419-020-2716-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Acyl coenzyme A binding protein (ACBP), also known as diazepam binding inhibitor (DBI) is a multifunctional protein with an intracellular action (as ACBP), as well as with an extracellular role (as DBI). The plasma levels of soluble ACBP/DBI are elevated in human obesity and reduced in anorexia nervosa. Accumulating evidence indicates that genetic or antibody-mediated neutralization of ACBP/DBI has anorexigenic effects, thus inhibiting food intake and inducing lipo-catabolic reactions in mice. A number of anorexiants have been withdrawn from clinical development because of their side effects including an increase in depression and suicide. For this reason, we investigated the psychiatric impact of ACBP/DBI in mouse models and patient cohorts. Intravenously (i.v.) injected ACBP/DBI protein conserved its orexigenic function when the protein was mutated to abolish acyl coenzyme A binding, but lost its appetite-stimulatory effect in mice bearing a mutation in the γ2 subunit of the γ-aminobutyric acid (GABA) A receptor (GABAAR). ACBP/DBI neutralization by intraperitoneal (i.p.) injection of a specific mAb blunted excessive food intake in starved and leptin-deficient mice, but not in ghrelin-treated animals. Neither i.v. nor i.p. injected anti-ACBP/DBI antibody affected the behavior of mice in the dark–light box and open-field test. In contrast, ACBP/DBI increased immobility in the forced swim test, while anti-ACBP/DBI antibody counteracted this sign of depression. In patients diagnosed with therapy-resistant bipolar disorder or schizophrenia, ACBP/DBI similarly correlated with body mass index (BMI), not with the psychiatric diagnosis. Patients with high levels of ACBP/DBI were at risk of dyslipidemia and this effect was independent from BMI, as indicated by multivariate analysis. In summary, it appears that ACBP/DBI neutralization has no negative impact on mood and that human depression is not associated with alterations in ACBP/DBI concentrations.
Collapse
Affiliation(s)
- Adrien Joseph
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Faculté de Médecine, Université de Paris Saclay, Kremlin Bicetre, France
| | - Stéphanie Moriceau
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Descartes-Sorbonne-Paris Cité, Paris, France
| | - Valentina Sica
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
| | - Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Faculté de Médecine, Université de Paris Saclay, Kremlin Bicetre, France
| | - Jonathan Pol
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Antoine Lafarge
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Faculté de Médecine, Université de Paris Saclay, Kremlin Bicetre, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Marion Leboyer
- Fondation FondaMental, Créteil, France.,Université Paris Est Créteil, Inserm U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France.,AP-HP, HU Henri Mondor, Departement Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Federation Hospitalo-Universitaire de Médecine de Precision (FHU IMPACT), F-94010, Créteil, France.,Fondation FondaMental Créteil, Créteil, France
| | - Josephine Loftus
- Fondation FondaMental, Créteil, France.,Pôle de Psychiatrie, Centre Hospitalier Princesse Grace, Monaco, France
| | - Frank Bellivier
- Fondation FondaMental, Créteil, France.,AP-HP, GH Saint-Louis-Lariboisière-Fernand Widal, Pôle Neurosciences Tête et Cou, INSERM UMRS 1144, University Paris Diderot, Paris, France
| | - Raoul Belzeaux
- Fondation FondaMental, Créteil, France.,Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, Marseille, France.,INT-UMR7289, CNRS Aix-Marseille Université, Marseille, France
| | - Fabrice Berna
- Fondation FondaMental, Créteil, France.,Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Bruno Etain
- Fondation FondaMental, Créteil, France.,AP-HP, GH Saint-Louis-Lariboisière-Fernand Widal, Pôle Neurosciences Tête et Cou, INSERM UMRS 1144, University Paris Diderot, Paris, France
| | - Delphine Capdevielle
- Fondation FondaMental, Créteil, France.,Service Universitaire de Psychiatrie Adulte, Hôpital la Colombière, CHRU Montpellier, Université Montpellier 1, Inserm 1061, Montpellier, France
| | - Philippe Courtet
- Fondation FondaMental, Créteil, France.,Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France.,PSNREC, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Caroline Dubertret
- Fondation FondaMental, Créteil, France.,AP-HP, Groupe Hospitalo-Universitaire Nord, DMU ESPRIT, Service de Psychiatrie et Addictologie. Hopital Louis Mourier, Colombes, Inserm U1266, Faculté de Médecine, Université de Paris, Paris, France
| | - Julien Dubreucq
- Fondation FondaMental, Créteil, France.,Centre Référent de Réhabilitation Psychosociale et de Remédiation Cognitive (C3R), CH, Alpes Isère, France
| | - D' Amato Thierry
- Fondation FondaMental, Créteil, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Equipe PSYR2, Centre Hospitalier Le Vinatier, Pole Est, 69678, Bron Cedex, France
| | - Guillaume Fond
- Fondation FondaMental, Créteil, France.,AP-HM, Aix-Marseille University, School of Medicine-La Timone Medical Campus, EA 3279, Marseille, France.,EReSS-Health Service Research and Quality of Life Center, 13005, Marseille, France
| | - Sebastien Gard
- Fondation FondaMental, Créteil, France.,Centre Expert Troubles Bipolaires, Service de Psychiatrie Adulte, Hôpital Charles-Perrens, Bordeaux, France
| | - Pierre-Michel Llorca
- Fondation FondaMental, Créteil, France.,CHU Clermont-Ferrand, Department of Psychiatry, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Jasmina Mallet
- Fondation FondaMental, Créteil, France.,AP-HP, Groupe Hospitalo-Universitaire Nord, DMU ESPRIT, Service de Psychiatrie et Addictologie. Hopital Louis Mourier, Colombes, Inserm U1266, Faculté de Médecine, Université de Paris, Paris, France
| | - David Misdrahi
- Fondation FondaMental, Créteil, France.,Centre Expert Troubles Bipolaires, Service de Psychiatrie Adulte, Hôpital Charles-Perrens, Bordeaux, France
| | - Emilie Olié
- Fondation FondaMental, Créteil, France.,Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
| | - Christine Passerieux
- Fondation FondaMental, Créteil, France.,Service Universitaire de Psychiatrie d'Adultes, Centre Hospitalier de Versailles, Le Chesnay, Université Paris-Saclay, UVSQ, Inserm, CESP, Team "DevPsy", 94807, Villejuif, France
| | - Mircea Polosan
- Fondation FondaMental, Créteil, France.,Université Grenoble Alpes, CHU de Grenoble et des Alpes, Grenoble Institut des Neurosciences (GIN) Inserm U 1216, Grenoble, France
| | - Paul Roux
- Fondation FondaMental, Créteil, France.,Service Universitaire de Psychiatrie d'Adultes, Centre Hospitalier de Versailles, Le Chesnay, Université Paris-Saclay, UVSQ, Inserm, CESP, Team "DevPsy", 94807, Villejuif, France
| | - Ludovic Samalin
- Fondation FondaMental, Créteil, France.,CHU Clermont-Ferrand, Department of Psychiatry, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Franck Schürhoff
- Fondation FondaMental, Créteil, France.,Université Paris Est Créteil, Inserm U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France.,AP-HP, HU Henri Mondor, Departement Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Federation Hospitalo-Universitaire de Médecine de Precision (FHU IMPACT), F-94010, Créteil, France.,Fondation FondaMental Créteil, Créteil, France
| | - Raymond Schwan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Université de Lorraine, CHRU de Nancy et Pôle de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy, Nancy, France
| | | | | | - Franck Oury
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Descartes-Sorbonne-Paris Cité, Paris, France
| | - José M Bravo-San Pedro
- University Complutense of Madrid. Faculty of Medicine. Department of Physiology, Madrid, Spain.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France. .,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
9
|
Islinger M, Costello JL, Kors S, Soupene E, Levine TP, Kuypers FA, Schrader M. The diversity of ACBD proteins - From lipid binding to protein modulators and organelle tethers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118675. [PMID: 32044385 PMCID: PMC7057175 DOI: 10.1016/j.bbamcr.2020.118675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Members of the large multigene family of acyl-CoA binding domain containing proteins (ACBDs) share a conserved motif required for binding of Coenzyme A esterified fatty acids of various chain length. These proteins are present in the three kingdoms of life, and despite their predicted roles in cellular lipid metabolism, knowledge about the precise functions of many ACBD proteins remains scarce. Interestingly, several ACBD proteins are now suggested to function at organelle contact sites, and are recognized as host interaction proteins for different pathogens including viruses and bacteria. Here, we present a thorough phylogenetic analysis of the ACBD family and discuss their structure and evolution. We summarize recent findings on the various functions of animal and fungal ACBDs with particular focus on peroxisomes, the role of ACBD proteins at organelle membranes, and their increasing recognition as targets for pathogens.
Collapse
Affiliation(s)
- Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Manheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Suzan Kors
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | - Frans A Kuypers
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| |
Collapse
|
10
|
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D, Morin F, Prevot V, Papadopoulos V, Troadec JD, Leprince J. Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol Ther 2020; 208:107386. [DOI: 10.1016/j.pharmthera.2019.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
11
|
Lawande NV, Ujjainwala AL, Christian CA. A Single Test to Study Social Behavior and Repetitive Self-grooming in Mice. Bio Protoc 2020; 10:e3499. [PMID: 32699808 DOI: 10.21769/bioprotoc.3499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The ability to recognize and interact with members of the same species is essential for social communication. Investigating the neural substrates of social interest and recognition may offer insights into the behavioral differences present in disorders affecting social behavior. Assays used to study social interest in rodents include the 3-chamber test, a partition test, and a social interaction test. Here, we present a single protocol that can be used to quantify the level of social interest displayed by mice, the ability to distinguish between different individual mice (social recognition), and the level of repetitive self-grooming displayed. In the first part of the protocol, a social habituation/dishabituation test, the time spent by a test mouse sniffing a stimulus mouse is quantified over 9 trials. In the first 8 interactions, the same stimulus mouse is used repeatedly; on the ninth trial, a novel stimulus mouse is presented. Intact social recognition is indicated by a progressive decrease in the investigation time over trials 1-8, and an increase in trial 9. The interval between each social trial is used to quantify self-grooming, a stereotyped repetitive behavior in mice. We also present a method for randomized, blinded analysis of these behaviors to increase rigor and reproducibility of results. Therefore, this single behavioral test enables ready assessment of phenotypes of both social and repetitive behaviors in an integrated manner in the same animals. This feature can be advantageous in understanding interactions between these behaviors and phenotypes in mouse models with genetic variants associated with autism and other neurodevelopmental or neuropsychiatric disorders, which are often characterized by these behavioral differences.
Collapse
Affiliation(s)
- Niraj V Lawande
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ammar L Ujjainwala
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Catherine A Christian
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
12
|
Bouyakdan K, Martin H, Liénard F, Budry L, Taib B, Rodaros D, Chrétien C, Biron É, Husson Z, Cota D, Pénicaud L, Fulton S, Fioramonti X, Alquier T. The gliotransmitter ACBP controls feeding and energy homeostasis via the melanocortin system. J Clin Invest 2019; 129:2417-2430. [PMID: 30938715 PMCID: PMC6546475 DOI: 10.1172/jci123454] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glial cells have emerged as key players in the central control of energy balance and etiology of obesity. Astrocytes play a central role in neural communication via the release of gliotransmitters. Acyl-CoA binding protein (ACBP)-derived endozepines are secreted peptides that modulate the GABAA receptor. In the hypothalamus, ACBP is enriched in arcuate nucleus (ARC) astrocytes, ependymocytes and tanycytes. Central administration of the endozepine octadecaneuropeptide (ODN) reduces feeding and improves glucose tolerance, yet the contribution of endogenous ACBP in energy homeostasis is unknown. We demonstrated that ACBP deletion in GFAP+ astrocytes, but not in Nkx2.1-lineage neural cells, promoted diet-induced hyperphagia and obesity in both male and female mice, an effect prevented by viral rescue of ACBP in ARC astrocytes. ACBP-astrocytes were observed in apposition with proopiomelanocortin (POMC) neurons and ODN selectively activated POMC neurons through the ODN-GPCR but not GABAA, and supressed feeding while increasing carbohydrate utilization via the melanocortin system. Similarly, ACBP overexpression in ARC astrocytes reduced feeding and weight gain. Finally, the ODN-GPCR agonist decreased feeding and promoted weight loss in ob/ob mice. These findings uncover ACBP as an ARC gliopeptide playing a key role in energy balance control and exerting strong anorectic effects via the central melanocortin system.
Collapse
Affiliation(s)
- Khalil Bouyakdan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Hugo Martin
- Université de Bordeaux, INRA, NutriNeuro, Bordeaux, France
- Bordeaux INP, NutriNeuro, Talence, France
| | - Fabienne Liénard
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, 1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Lionel Budry
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Bouchra Taib
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Demetra Rodaros
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Chloé Chrétien
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, 1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Éric Biron
- Faculty of Pharmacy, Université Laval and Laboratory of Medicinal Chemistry, Centre de Recherche du Centre Hospitalier Universitaire de Québec (CRCHUQ), Quebec, Quebec, Canada
| | - Zoé Husson
- Université de Bordeaux, INRA, NutriNeuro, Bordeaux, France
- Bordeaux INP, NutriNeuro, Talence, France
- INSERM, Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
| | - Daniela Cota
- INSERM, Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
| | - Luc Pénicaud
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, 1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
- Stromalab, CNRS ERL 5311, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Xavier Fioramonti
- Université de Bordeaux, INRA, NutriNeuro, Bordeaux, France
- Bordeaux INP, NutriNeuro, Talence, France
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, 1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Pichitpunpong C, Thongkorn S, Kanlayaprasit S, Yuwattana W, Plaingam W, Sangsuthum S, Aizat WM, Baharum SN, Tencomnao T, Hu VW, Sarachana T. Phenotypic subgrouping and multi-omics analyses reveal reduced diazepam-binding inhibitor (DBI) protein levels in autism spectrum disorder with severe language impairment. PLoS One 2019; 14:e0214198. [PMID: 30921354 PMCID: PMC6438570 DOI: 10.1371/journal.pone.0214198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The mechanisms underlying autism spectrum disorder (ASD) remain unclear, and clinical biomarkers are not yet available for ASD. Differences in dysregulated proteins in ASD have shown little reproducibility, which is partly due to ASD heterogeneity. Recent studies have demonstrated that subgrouping ASD cases based on clinical phenotypes is useful for identifying candidate genes that are dysregulated in ASD subgroups. However, this strategy has not been employed in proteome profiling analyses to identify ASD biomarker proteins for specific subgroups. METHODS We therefore conducted a cluster analysis of the Autism Diagnostic Interview-Revised (ADI-R) scores from 85 individuals with ASD to predict subgroups and subsequently identified dysregulated genes by reanalyzing the transcriptome profiles of individuals with ASD and unaffected individuals. Proteome profiling of lymphoblastoid cell lines from these individuals was performed via 2D-gel electrophoresis, and then mass spectrometry. Disrupted proteins were identified and compared to the dysregulated transcripts and reported dysregulated proteins from previous proteome studies. Biological functions were predicted using the Ingenuity Pathway Analysis (IPA) program. Selected proteins were also analyzed by Western blotting. RESULTS The cluster analysis of ADI-R data revealed four ASD subgroups, including ASD with severe language impairment, and transcriptome profiling identified dysregulated genes in each subgroup. Screening via proteome analysis revealed 82 altered proteins in the ASD subgroup with severe language impairment. Eighteen of these proteins were further identified by nano-LC-MS/MS. Among these proteins, fourteen were predicted by IPA to be associated with neurological functions and inflammation. Among these proteins, diazepam-binding inhibitor (DBI) protein was confirmed by Western blot analysis to be expressed at significantly decreased levels in the ASD subgroup with severe language impairment, and the DBI expression levels were correlated with the scores of several ADI-R items. CONCLUSIONS By subgrouping individuals with ASD based on clinical phenotypes, and then performing an integrated transcriptome-proteome analysis, we identified DBI as a novel candidate protein for ASD with severe language impairment. The mechanisms of this protein and its potential use as an ASD biomarker warrant further study.
Collapse
Affiliation(s)
- Chatravee Pichitpunpong
- M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Surangrat Thongkorn
- PhD Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- PhD Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wasana Yuwattana
- B.Sc. Program in Medical Technology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Waluga Plaingam
- College of Oriental Medicine, Rangsit University, Pathum Thani, Thailand
| | - Siriporn Sangsuthum
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Tewin Tencomnao
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie Wailin Hu
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Tewarit Sarachana
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Ujjainwala AL, Courtney CD, Wojnowski NM, Rhodes JS, Christian CA. Differential impacts on multiple forms of spatial and contextual memory in diazepam binding inhibitor knockout mice. J Neurosci Res 2019; 97:683-697. [PMID: 30680776 DOI: 10.1002/jnr.24393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 02/03/2023]
Abstract
Learning and memory are fundamental processes that are disrupted in many neurological disorders including Alzheimer's disease and epilepsy. The hippocampus plays an integral role in these functions, and modulation of synaptic transmission mediated by γ-aminobutyric acid (GABA) type-A receptors (GABAA Rs) impacts hippocampus-dependent learning and memory. The protein diazepam binding inhibitor (DBI) differentially modulates GABAA Rs in various brain regions, including hippocampus, and changes in DBI levels may be linked to altered learning and memory. The effects of genetic loss of DBI signaling on these processes, however, have not been determined. In these studies, we examined male and female constitutive DBI knockout mice and wild-type littermates to investigate the role of DBI signaling in modulating multiple forms of hippocampus-dependent spatial learning and memory. DBI knockout mice did not show impaired discrimination of objects in familiar and novel locations in an object location memory test, but did exhibit reduced time spent exploring the objects. Multiple parameters of Barnes maze performance, testing the capability to utilize spatial reference cues, were disrupted in DBI knockout mice. Furthermore, whereas most wild-type mice adopted a direct search strategy upon learning the location of the target hole, knockout mice showed higher rates of using an inefficient random strategy. In addition, DBI knockout mice displayed typical levels of contextual fear conditioning, but lacked a sex difference observed in wild-type mice. Together, these data suggest that DBI selectively influences certain forms of spatial learning and memory, indicating novel roles for DBI signaling in modulating hippocampus-dependent behavior in a task-specific manner.
Collapse
Affiliation(s)
- Ammar L Ujjainwala
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Connor D Courtney
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Natalia M Wojnowski
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Justin S Rhodes
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Catherine A Christian
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
15
|
Courtney CD, Christian CA. Subregion-Specific Impacts of Genetic Loss of Diazepam Binding Inhibitor on Synaptic Inhibition in the Murine Hippocampus. Neuroscience 2018; 388:128-138. [PMID: 30031126 DOI: 10.1016/j.neuroscience.2018.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/27/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022]
Abstract
Benzodiazepines are commonly prescribed to treat neurological conditions including epilepsy, insomnia, and anxiety. The discovery of benzodiazepine-specific binding sites on γ-aminobutyric acid type-A receptors (GABAARs) led to the hypothesis that the brain may produce endogenous benzodiazepine-binding site ligands. An endogenous peptide, diazepam binding inhibitor (DBI), which can bind these sites, is thought to be capable of both enhancing and attenuating GABAergic transmission in different brain regions. However, the role that DBI plays in modulating GABAARs in the hippocampus remains unclear. Here, we investigated the role of DBI in modulating synaptic inhibition in the hippocampus using a constitutive DBI knockout mouse. Miniature and evoked inhibitory postsynaptic currents (mIPSCs, eIPSCs) were recorded from CA1 pyramidal cells and dentate gyrus (DG) granule cells. Loss of DBI signaling increased mIPSC frequency and amplitude in CA1 pyramidal cells from DBI knockout mice compared to wild-types. In DG granule cells, conversely, the loss of DBI decreased mIPSC amplitude and increased mIPSC decay time, indicating bidirectional modulation of GABAAR-mediated transmission in specific subregions of the hippocampus. eIPSC paired-pulse ratios were consistent across genotypes, suggesting that alterations in mIPSC frequency were not due to changes in presynaptic release probability. Furthermore, cells from DBI knockout mice did not display altered responsiveness to pharmacological applications of diazepam, a benzodiazepine, nor flumazenil, a benzodiazepine-binding site antagonist. These results provide evidence that genetic loss of DBI alters synaptic inhibition in the adult hippocampus, and that the direction of DBI-mediated modulation can vary discretely between specific subregions of the same brain structure.
Collapse
Affiliation(s)
- Connor D Courtney
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Catherine A Christian
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|