1
|
Jing J, Hu M, Ngodup T, Ma Q, Lau SNN, Ljungberg MC, McGinley MJ, Trussell LO, Jiang X. Molecular logic for cellular specializations that initiate the auditory parallel processing pathways. Nat Commun 2025; 16:489. [PMID: 39788966 PMCID: PMC11717940 DOI: 10.1038/s41467-024-55257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity. The resulting comprehensive cell-type taxonomy reconciles anatomical position, morphological, physiological, and molecular criteria, enabling the determination of the molecular basis of the specialized cellular phenotypes in the CN. In particular, CN cell-type identity is encoded in a transcriptional architecture that orchestrates functionally congruent expression across a small set of gene families to customize projection patterns, input-output synaptic communication, and biophysical features required for encoding distinct aspects of acoustic signals. This high-resolution account of cellular heterogeneity from the molecular to the circuit level reveals the molecular logic driving cellular specializations, thus enabling the genetic dissection of auditory processing and hearing disorders with a high specificity.
Collapse
Affiliation(s)
- Junzhan Jing
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ming Hu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Tenzin Ngodup
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS, University of Washington, Seattle, WA, USA
| | - Qianqian Ma
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shu-Ning Natalie Lau
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - M Cecilia Ljungberg
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew J McGinley
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
| | - Xiaolong Jiang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Wang Y, Huang J, Ang TFA, Zhu Y, Tao Q, Mez J, Alosco M, Denis GV, Belkina A, Gurnani A, Ross M, Gong B, Han J, Lunetta KL, Stein TD, Au R, Farrer LA, Zhang X, Qiu WQ. The association between circulating CD34+CD133+ endothelial progenitor cells and reduced risk of Alzheimer's disease in the Framingham Heart Study. EXPLORATION OF MEDICINE 2024; 5:193-214. [PMID: 38854406 PMCID: PMC11160969 DOI: 10.37349/emed.2024.00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/22/2024] [Indexed: 06/11/2024] Open
Abstract
Aim Endothelial dysfunction has been associated with both cerebrovascular pathology and Alzheimer's disease (AD). However, the connection between circulating endothelial cells and the risk of AD remains uncertain. The objective was to leverage data from the Framingham Heart Study to investigate various circulating endothelial subtypes and their potential correlations with the risk of AD. Methods The study conducted data analyses using Cox proportional hazard regression and linear regression methods. Additionally, genome-wide association study (GWAS) was carried out to further explore the data. Results Among the eleven distinct circulating endothelial subtypes, only circulating endothelial progenitor cells (EPCs) expressing CD34+CD133+ were found to be negatively and dose-dependently associated with reduced AD risk. This association persisted even after adjusting for age, sex, years of education, apolipoprotein E (APOE) ε4 status, and various vascular diseases. Particularly noteworthy was the significant association observed in individuals with hypertension and cerebral microbleeds. Consistently, positive associations were identified between CD34+CD133+ EPCs and specific brain regions, such as higher proportions of circulating CD34+CD133+ cells correlating with increased volumes of white matter and the hippocampus. Additionally, a GWAS study unveiled that CD34+CD133+ cells influenced AD risk specifically in individuals with homozygous genotypes for variants in two stem cell-related genes: kirre like nephrin family adhesion molecule 3 (KIRREL3, rs580382 CC and rs4144611 TT) and exocyst complex component 6B (EXOC6B, rs61619102 CC). Conclusions The findings suggest that circulating CD34+CD133+ EPCs possess a protective effect and may offer a new therapeutic avenue for AD, especially in individuals with vascular pathology and those carrying specific genotypes of KIRREL3 and EXOC6B genes.
Collapse
Affiliation(s)
- Yixuan Wang
- Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jinghan Huang
- Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting Fang Alvin Ang
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Yibo Zhu
- Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Qiushan Tao
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jesse Mez
- Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Michael Alosco
- Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Gerald V. Denis
- Hematology & Medical Oncology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Anna Belkina
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Ashita Gurnani
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Mark Ross
- School of Energy, Geosciences, Infrastructure and Society, Institute of Life and Earth Sciences, Heriot-Watt University, EH14 4AS Edinburgh, UK
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jingyan Han
- Vascular Biology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Kathryn L. Lunetta
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Thor D. Stein
- Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- VA Boston Healthcare System, Boston, MA 02132, USA
| | - Rhoda Au
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Departments of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Lindsay A. Farrer
- Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
- Departments of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Xiaoling Zhang
- Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Wei Qiao Qiu
- Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
3
|
Martinez AP, Chung AC, Huang S, Bisogni AJ, Lin Y, Cao Y, Williams EO, Kim JY, Yang JY, Lin DM. Pcdh19 mediates olfactory sensory neuron coalescence during postnatal stages and regeneration. iScience 2023; 26:108220. [PMID: 37965156 PMCID: PMC10641745 DOI: 10.1016/j.isci.2023.108220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/12/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
The mouse olfactory system regenerates constantly throughout life. While genes critical for the initial projection of olfactory sensory neurons (OSNs) to the olfactory bulb have been identified, what genes are important for maintaining the olfactory map during regeneration are still unknown. Here we show a mutation in Protocadherin 19 (Pcdh19), a cell adhesion molecule and member of the cadherin superfamily, leads to defects in OSN coalescence during regeneration. Surprisingly, lateral glomeruli were more affected and males in particular showed a more severe phenotype. Single cell analysis unexpectedly showed OSNs expressing the MOR28 odorant receptor could be subdivided into two major clusters. We showed that at least one protocadherin is differentially expressed between OSNs coalescing on the medial and lateral glomeruli. Moreover, females expressed a slightly different complement of genes from males. These features may explain the differential effects of mutating Pcdh19 on medial and lateral glomeruli in males and females.
Collapse
Affiliation(s)
- Andrew P. Martinez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Alexander C. Chung
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Suihong Huang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Adam J. Bisogni
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Yingxin Lin
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - Yue Cao
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - Eric O. Williams
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Jin Y. Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Jean Y.H. Yang
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - David M. Lin
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
4
|
Pernold K, Rullman E, Ulfhake B. Bouts of rest and physical activity in C57BL/6J mice. PLoS One 2023; 18:e0280416. [PMID: 37363906 DOI: 10.1371/journal.pone.0280416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
The objective was to exploit the raw data output from a scalable home cage (type IIL IVC) monitoring (HCM) system (DVC®), to characterize pattern of undisrupted rest and physical activity (PA) of C57BL/6J mice. The system's tracking algorithm show that mice in isolation spend 67% of the time in bouts of long rest (≥40s). Sixteen percent is physical activity (PA), split between local movements (6%) and locomotion (10%). Decomposition revealed that a day contains ˜7100 discrete bouts of short and long rest, local and locomotor movements. Mice travel ˜330m per day, mainly during the dark hours, while travelling speed is similar through the light-dark cycle. Locomotor bouts are usually <0.2m and <1% are >1m. Tracking revealed also fits of abnormal behaviour. The starting positions of the bouts showed no preference for the rear over the front of the cage floor, while there was a strong bias for the peripheral (75%) over the central floor area. The composition of bouts has a characteristic circadian pattern, however, intrusive husbandry routines increased bout fragmentation by ˜40%. Extracting electrode activations density (EAD) from the raw data yielded results close to those obtained with the tracking algorithm, with 81% of time in rest (<1 EAD s-1) and 19% in PA. Periods ≥40 s of file when no movement occurs and there is no EAD may correspond to periods of sleep (˜59% of file time). We confirm that EAD correlates closely with movement distance (rs>0.95) and the data agreed in ˜97% of the file time. Thus, albeit EAD being less informative it may serve as a proxy for PA and rest, enabling monitoring group housed mice. The data show that increasing density from one female to two males, and further to three male or female mice had the same effect size on EAD (˜2). In contrast, the EAD deviated significantly from this stepwise increase with 4 mice per cage, suggesting a crowdedness stress inducing sex specific adaptations. We conclude that informative metrics on rest and PA can be automatically extracted from the raw data flow in near-real time (< 1 hrs). As discussed, these metrics relay useful longitudinal information to those that use or care for the animals.
Collapse
Affiliation(s)
- Karin Pernold
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eric Rullman
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Brun Ulfhake
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Wang Y, Huang J, Ang TFA, Zhu Y, Tao Q, Mez J, Alosco M, Denis GV, Belkina A, Gurnani A, Ross M, Gong B, Han J, Lunetta KL, Stein TD, Au R, Farrer LA, Zhang X, Qiu WQ. Circulating Endothelial Progenitor Cells Reduce the Risk of Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.16.23284571. [PMID: 36711847 PMCID: PMC9882408 DOI: 10.1101/2023.01.16.23284571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cerebrovascular damage coexists with Alzheimer's disease (AD) pathology and increases AD risk. However, it is unclear whether endothelial progenitor cells reduce AD risk via cerebrovascular repair. By using the Framingham Heart Study (FHS) offspring cohort, which includes data on different progenitor cells, the incidence of AD dementia, peripheral and cerebrovascular pathologies, and genetic data (n = 1,566), we found that elevated numbers of circulating endothelial progenitor cells with CD34+CD133+ co-expressions had a dose-dependent association with decreased AD risk (HR = 0.67, 95% CI: 0.46-0.96, p = 0.03) after adjusting for age, sex, years of education, and APOE ε4. With stratification, this relationship was only significant among those individuals who had vascular pathologies, especially hypertension (HTN) and cerebral microbleeds (CMB), but not among those individuals who had neither peripheral nor central vascular pathologies. We applied a genome-wide association study (GWAS) and found that the number of CD34+CD133+ cells impacted AD risk depending on the homozygous genotypes of two genes: KIRREL3 rs580382 CC carriers (HR = 0.31, 95% CI: 0.17-0.57, p<0.001), KIRREL3 rs4144611 TT carriers (HR = 0.29, 95% CI: 0.15-0.57, p<0.001), and EXOC6B rs61619102 CC carriers (HR = 0.49, 95% CI: 0.31-0.75, p<0.001) after adjusting for confounders. In contrast, the relationship did not exist in their counterpart genotypes, e.g. KIRREL3 TT/CT or GG/GT carriers and EXOC6B GG/GC carriers. Our findings suggest that circulating CD34+CD133+ endothelial progenitor cells can be therapeutic in reducing AD risk in the presence of cerebrovascular pathology, especially in KIRREL3 and EXOC6B genotype carriers.
Collapse
|
6
|
Wilde M, Constantin L, Thorne PR, Montgomery JM, Scott EK, Cheyne JE. Auditory processing in rodent models of autism: a systematic review. J Neurodev Disord 2022; 14:48. [PMID: 36042393 PMCID: PMC9429780 DOI: 10.1186/s11689-022-09458-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022] Open
Abstract
Autism is a complex condition with many traits, including differences in auditory sensitivity. Studies in human autism are plagued by the difficulty of controlling for aetiology, whereas studies in individual rodent models cannot represent the full spectrum of human autism. This systematic review compares results in auditory studies across a wide range of established rodent models of autism to mimic the wide range of aetiologies in the human population. A search was conducted in the PubMed and Web of Science databases to find primary research articles in mouse or rat models of autism which investigate central auditory processing. A total of 88 studies were included. These used non-invasive measures of auditory function, such as auditory brainstem response recordings, cortical event-related potentials, electroencephalography, and behavioural tests, which are translatable to human studies. They also included invasive measures, such as electrophysiology and histology, which shed insight on the origins of the phenotypes found in the non-invasive studies. The most consistent results across these studies were increased latency of the N1 peak of event-related potentials, decreased power and coherence of gamma activity in the auditory cortex, and increased auditory startle responses to high sound levels. Invasive studies indicated loss of subcortical inhibitory neurons, hyperactivity in the lateral superior olive and auditory thalamus, and reduced specificity of responses in the auditory cortex. This review compares the auditory phenotypes across rodent models and highlights those that mimic findings in human studies, providing a framework and avenues for future studies to inform understanding of the auditory system in autism.
Collapse
Affiliation(s)
- Maya Wilde
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lena Constantin
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter R Thorne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Section of Audiology, School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ethan K Scott
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.,Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Juliette E Cheyne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
7
|
Yang B, Zhang X, Zhou H, Zhang X, Yang W, Lu J, Guo Z, Dong Z, Wu Q, Tian F. Preliminary study on the role and mechanism of KIRREL3 in the development of esophageal squamous cell carcinoma. Pathol Res Pract 2022; 237:154025. [PMID: 35863131 DOI: 10.1016/j.prp.2022.154025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor of the digestive tract, which is very harmful to human health. The JAK-STAT signaling pathway is a recognized carcinogenic pathway that plays a role in the proliferation, apoptosis, migration, and invasion of a variety of cancer cells. Some studies have shown that the activation status of STAT3 affects the expression of KIRREL3. However, the expression of KIRREL3 in ESCC and its relationship with KIRREL3 or the JAK-STAT signaling pathway is still unclear. METHODS In this study, we used immunohistochemistry and western blotting to analyze the protein expression levels of KIRREL3 in tumor tissues and ESCC cell lines. We applied proliferation assays, plate clone formation assays, Transwell assays, flow cytometry analysis, and CDX animal models to examine the role of KIRREL3 in ESCC. RESULTS The results indicate that KIRREL3 is highly expressed to varying degrees in ESCC tissues and cell lines. Knocking down KIRREL3 expression in ESCC cells could correspondingly inhibit cell proliferation, colony formation, invasion, and migration, and had some effects on cell cycle progression and apoptosis. In addition, overexpressing KIRREL3 in these cells had opposite effects. Tumor formation in nude mice experiments also confirmed that KIRREL3 is involved in the growth of ESCC cells in vivo. CONCLUSIONS These data suggest that KIRREL3 plays a key role in the development of ESCC, and KIRREL3 is a potential new target for the early diagnosis and clinical treatment of this disease.
Collapse
Affiliation(s)
- Bingbing Yang
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450001, China
| | - Xiane Zhang
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, China; Second People's Hospital of Henan Province, Zhengzhou 451191, China
| | - Hao Zhou
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450001, China
| | - Xiaoyan Zhang
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450001, China
| | - Wanjing Yang
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450001, China
| | - Jing Lu
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450001, China
| | - Zhiyu Guo
- SanQuan College of XinXiang Medical University, Xinxiang 453003, China
| | - Ziming Dong
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450001, China
| | - Qinghua Wu
- Center of Genetics and Prenatal Diagnosis, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fang Tian
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Ciaccio C, Leonardi E, Polli R, Murgia A, D'Arrigo S, Granocchio E, Chiapparini L, Pantaleoni C, Esposito S. A Missense De Novo Variant in the CASK-interactor KIRREL3 Gene Leading to Neurodevelopmental Disorder with Mild Cerebellar Hypoplasia. Neuropediatrics 2021; 52:484-488. [PMID: 33853164 DOI: 10.1055/s-0041-1725964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
KIRREL3 is a gene important for the central nervous system development-in particular for the process of neuronal migration, axonal fasciculation, and synaptogenesis-and colocalizes and cooperates in neurons with CASK gene. Alterations of KIRREL3 have been linked to neurodevelopmental disorders, ranging from developmental delay, to autism spectrum disorder, to attention deficit/hyperactivity disorder. The underlying mechanism is not yet fully understood, as it has been hypothesized a fully dominant effect, a risk factor role of KIRREL3 partially penetrating variants, and a recessive inheritance pattern. We report a novel and de novo KIRREL3 mutation in a child affected by severe neurodevelopmental disorder and with brain magnetic resonance imaging evidence of mega cisterna magna and mild cerebellar hypoplasia. This case strengthens the hypothesis that dominant KIRREL3 variants may lead to neurodevelopmental disruption; furthermore, given the strong interaction between KIRREL3 and CASK, we discuss as posterior fossa anomalies may also be part of the phenotype of KIRREL3-related syndrome.
Collapse
Affiliation(s)
- Claudia Ciaccio
- Department of Developmental Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emanuela Leonardi
- Molecular Genetics of Neurodevelopment, Department of Women's and Children's Health, University of Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padova, Italy
| | - Roberta Polli
- Molecular Genetics of Neurodevelopment, Department of Women's and Children's Health, University of Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padova, Italy
| | - Alessandra Murgia
- Molecular Genetics of Neurodevelopment, Department of Women's and Children's Health, University of Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padova, Italy
| | - Stefano D'Arrigo
- Department of Developmental Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisa Granocchio
- Department of Developmental Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luisa Chiapparini
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pantaleoni
- Department of Developmental Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Esposito
- Department of Developmental Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
9
|
Wang J, Vaddadi N, Pak JS, Park Y, Quilez S, Roman CA, Dumontier E, Thornton JW, Cloutier JF, Özkan E. Molecular and structural basis of olfactory sensory neuron axon coalescence by Kirrel receptors. Cell Rep 2021; 37:109940. [PMID: 34731636 PMCID: PMC8628261 DOI: 10.1016/j.celrep.2021.109940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/30/2021] [Accepted: 10/13/2021] [Indexed: 01/21/2023] Open
Abstract
Projections from sensory neurons of olfactory systems coalesce into glomeruli in the brain. The Kirrel receptors are believed to homodimerize via their ectodomains and help separate sensory neuron axons into Kirrel2- or Kirrel3-expressing glomeruli. Here, we present the crystal structures of homodimeric Kirrel receptors and show that the closely related Kirrel2 and Kirrel3 have evolved specific sets of polar and hydrophobic interactions, respectively, disallowing heterodimerization while preserving homodimerization, likely resulting in proper segregation and coalescence of Kirrel-expressing axons into glomeruli. We show that the dimerization interface at the N-terminal immunoglobulin (IG) domains is necessary and sufficient to create homodimers and fail to find evidence for a secondary interaction site in Kirrel ectodomains. Furthermore, we show that abolishing dimerization of Kirrel3 in vivo leads to improper formation of glomeruli in the mouse accessory olfactory bulb as observed in Kirrel3-/- animals. Our results provide evidence for Kirrel3 homodimerization controlling axonal coalescence.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Neelima Vaddadi
- The Neuro-Montreal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Yeonwoo Park
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sabrina Quilez
- The Neuro-Montreal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada
| | - Christina A Roman
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Emilie Dumontier
- The Neuro-Montreal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada
| | - Joseph W Thornton
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA; Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Jean-François Cloutier
- The Neuro-Montreal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada.
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Pernold K, Rullman E, Ulfhake B. Major oscillations in spontaneous home-cage activity in C57BL/6 mice housed under constant conditions. Sci Rep 2021; 11:4961. [PMID: 33654141 PMCID: PMC7925671 DOI: 10.1038/s41598-021-84141-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
The mouse is the most important mammalian model in life science research and the behavior of the mouse is a key read-out of experimental interventions and genetic manipulations. To serve this purpose a solid understanding of the mouse normal behavior is a prerequisite. Using 14-19 months of cumulative 24/7 home-cage activity recorded with a non-intrusive technique, evidence is here provided for a highly significant circannual oscillation in spontaneous activity (1-2 SD of the mean, on average 65% higher during peak of highs than lows; P = 7E-50) of male and female C57BL/6 mice held under constant conditions. The periodicity of this hitherto not recognized oscillation is in the range of 2-4 months (average estimate was 97 days across cohorts of cages). It off-sets responses to environmental stimuli and co-varies with the feeding behavior but does not significantly alter the preference for being active during the dark hours. The absence of coordination of this rhythmicity between cages with mice or seasons of the year suggest that the oscillation of physical activity is generated by a free-running intrinsic oscillator devoid of external timer. Due to the magnitude of this rhythmic variation it may be a serious confounder in experiments on mice if left unrecognized.
Collapse
Affiliation(s)
- Karin Pernold
- grid.465198.7Division Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Solna, Sweden
| | - Eric Rullman
- grid.465198.7Division Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Solna, Sweden
| | - Brun Ulfhake
- grid.465198.7Division Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
11
|
Gunaseelan S, Wang Z, Tong VKJ, Ming SWS, Razar RBBA, Srimasorn S, Ong WY, Lim KL, Chua JJE. Loss of FEZ1, a gene deleted in Jacobsen syndrome, causes locomotion defects and early mortality by impairing motor neuron development. Hum Mol Genet 2021; 30:5-20. [PMID: 33395696 DOI: 10.1093/hmg/ddaa281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023] Open
Abstract
FEZ1-mediated axonal transport plays important roles in central nervous system development but its involvement in the peripheral nervous system is not well-characterized. FEZ1 is deleted in Jacobsen syndrome (JS), an 11q terminal deletion developmental disorder. JS patients display impaired psychomotor skills, including gross and fine motor delay, suggesting that FEZ1 deletion may be responsible for these phenotypes, given its association with the development of motor-related circuits. Supporting this hypothesis, our data show that FEZ1 is selectively expressed in the rat brain and spinal cord. Its levels progressively increase over the developmental course of human motor neurons (MN) derived from embryonic stem cells. Deletion of FEZ1 strongly impaired axon and dendrite development, and significantly delayed the transport of synaptic proteins into developing neurites. Concurring with these observations, Drosophila unc-76 mutants showed severe locomotion impairments, accompanied by a strong reduction of synaptic boutons at neuromuscular junctions. These abnormalities were ameliorated by pharmacological activation of UNC-51/ATG1, a FEZ1-activating kinase, with rapamycin and metformin. Collectively, the results highlight a role for FEZ1 in MN development and implicate its deletion as an underlying cause of motor impairments in JS patients.
Collapse
Affiliation(s)
- Saravanan Gunaseelan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ziyin Wang
- National Neuroscience Institute, Singapore, Singapore
| | - Venetia Kok Jing Tong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National Neuroscience Institute, Singapore, Singapore
| | - Sylvester Wong Shu Ming
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Sumitra Srimasorn
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kah-Leong Lim
- National Neuroscience Institute, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
12
|
Kirrel3-Mediated Synapse Formation Is Attenuated by Disease-Associated Missense Variants. J Neurosci 2020; 40:5376-5388. [PMID: 32503885 DOI: 10.1523/jneurosci.3058-19.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Missense variants in Kirrel3 are repeatedly identified as risk factors for autism spectrum disorder and intellectual disability, but it has not been reported if or how these variants disrupt Kirrel3 function. Previously, we studied Kirrel3 loss of function using KO mice and showed that Kirrel3 is a synaptic adhesion molecule necessary to form one specific type of hippocampal synapse in vivo Here, we developed an in vitro, gain-of-function assay for Kirrel3 using neuron cultures prepared from male and female mice and rats. We find that WT Kirrel3 induces synapse formation selectively between Kirrel3-expressing neurons via homophilic, transcellular binding. We tested six disease-associated Kirrel3 missense variants and found that five attenuate this synaptogenic function. All variants tested traffic to the cell surface and localize to synapses similar to WT Kirrel3. Two tested variants lack homophilic transcellular binding, which likely accounts for their reduced synaptogenic function. Interestingly, we also identified variants that bind in trans but cannot induce synapses, indicating that Kirrel3 transcellular binding is necessary but not sufficient for its synaptogenic function. Collectively, these results suggest Kirrel3 functions as a synaptogenic, cell-recognition molecule, and this function is attenuated by missense variants associated with autism spectrum disorder and intellectual disability. Thus, we provide critical insight to the mechanism of Kirrel3 function and the consequences of missense variants associated with autism and intellectual disability.SIGNIFICANCE STATEMENT Here, we advance our understanding of mechanisms mediating target-specific synapse formation by providing evidence that Kirrel3 transcellular interactions mediate target recognition and signaling to promote synapse development. Moreover, this study tests the effects of disease-associated Kirrel3 missense variants on synapse formation, and thereby, increases understanding of the complex etiology of neurodevelopmental disorders arising from rare missense variants in synaptic genes.
Collapse
|
13
|
Jankovic MJ, Kapadia PP, Krishnan V. Home-cage monitoring ascertains signatures of ictal and interictal behavior in mouse models of generalized seizures. PLoS One 2019; 14:e0224856. [PMID: 31697745 PMCID: PMC6837443 DOI: 10.1371/journal.pone.0224856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022] Open
Abstract
Epilepsy is a significant contributor to worldwide disability. In epilepsy, disability can be broadly divided into two components: ictal (pertaining to the burden of unpredictable seizures and associated medical complications including death) and interictal (pertaining to more pervasive debilitating changes in cognitive and emotional behavior). In this study, we objectively and noninvasively appraise aspects of ictal and interictal behavior in mice using instrumented home-cage chambers designed to assay kinematic and appetitive behavioral measures. Through daily intraperitoneal injections of the chemoconvulsant pentylenetetrazole (PTZ) applied to C57BL/6J mice, we coordinately measure how “behavioral severity” (complex dynamic changes in movement and sheltering behavior) and convulsive severity (latency and occurrence of convulsive seizures) evolve or kindle with repeated injections. By closely studying long epochs between PTZ injections, we identify an interictal syndrome of nocturnal hypoactivity and increased sheltering behavior which remits with the cessation of seizure induction. We observe elements of this interictal behavioral syndrome in seizure-prone DBA/2J mice and in mice with a pathogenic Scn1a mutation (modeling Dravet syndrome). Through analyzing their responses to PTZ, we illustrate how convulsive severity and “behavioral” severity are distinct and independent aspects of the overall severity of a PTZ-induced seizure. Our results illustrate the utility of an ethologically centered automated approach to quantitatively appraise murine expressions of disability in mouse models of seizures and epilepsy. In doing so, this study highlights the very unique psychopharmacological profile of PTZ.
Collapse
Affiliation(s)
- Miranda J. Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
| | - Paarth P. Kapadia
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
| | - Vaishnav Krishnan
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
14
|
Vaddadi N, Iversen K, Raja R, Phen A, Brignall A, Dumontier E, Cloutier JF. Kirrel2 is differentially required in populations of olfactory sensory neurons for the targeting of axons in the olfactory bulb. Development 2019; 146:dev.173310. [PMID: 31142543 DOI: 10.1242/dev.173310] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/15/2019] [Indexed: 01/25/2023]
Abstract
The formation of olfactory maps in the olfactory bulb (OB) is crucial for the control of innate and learned mouse behaviors. Olfactory sensory neurons (OSNs) expressing a specific odorant receptor project axons into spatially conserved glomeruli within the OB and synapse onto mitral cell dendrites. Combinatorial expression of members of the Kirrel family of cell adhesion molecules has been proposed to regulate OSN axonal coalescence; however, loss-of-function experiments have yet to establish their requirement in this process. We examined projections of several OSN populations in mice that lacked either Kirrel2 alone, or both Kirrel2 and Kirrel3. Our results show that Kirrel2 and Kirrel3 are dispensable for the coalescence of MOR1-3-expressing OSN axons to the most dorsal region (DI) of the OB. In contrast, loss of Kirrel2 caused MOR174-9- and M72-expressing OSN axons, projecting to the DII region, to target ectopic glomeruli. Our loss-of-function approach demonstrates that Kirrel2 is required for axonal coalescence in subsets of OSNs that project axons to the DII region and reveals that Kirrel2/3-independent mechanisms also control OSN axonal coalescence in certain regions of the OB.
Collapse
Affiliation(s)
- Neelima Vaddadi
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Katrine Iversen
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Reesha Raja
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Alina Phen
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Alexandra Brignall
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Emilie Dumontier
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada
| | - Jean-François Cloutier
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada .,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| |
Collapse
|