1
|
Zhou Y, Liu F, Yuan M, Liu X, Li Q, Zhao H. Herbicide prometryn aggravates the detrimental effects of heat stress on the potential for mutualism of Symbiodiniaceae. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137389. [PMID: 39893977 DOI: 10.1016/j.jhazmat.2025.137389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Ocean warming threatens the health of corals globally, and superimposed coastal environmental pollution can result in severe and irreversible coral bleaching. However, the responses of the coral symbiont Symbiodiniaceae to multiple stresses remain largely unknown. This study investigated the response of the coral symbiotic algae Cladocopium sp. to short-term exposure (4 days) to an environmentally relevant concentration (1 μg L-1) of the photosystem II (PSII) herbicide prometryn under heat stress (32 ℃) through physiological and omic analyses. These results showed that co-stress affected the photosynthetic efficiency of Cladocopium sp. negatively. Overproduction of reactive oxygen species and subsequent oxidative stress under co-stress activated distinct regulatory pathways in Cladocopium sp. Transcriptomic and proteomic analyses revealed that prometryn exacerbated heat stress-induced photosystem damage and reduced the regulatory capacity of Cladocopium sp. Moreover, co-stress disrupted energy metabolism, and further impaired nitrogen assimilation and nutrient transfer processes, potentially compromising the symbiotic potential between corals and Symbiodiniaceae. In summary, this study offers a valuable insight into understanding the molecular responses of Symbiodiniaceae to thermal and prometryn co-stress. It helps uncover the potential toxicity mechanisms induced by herbicide on coral symbionts in the context of climate change.
Collapse
Affiliation(s)
- Yanyu Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou 570228, China
| | - Fucun Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou 570228, China
| | - Meile Yuan
- School of Environmental Science and Engineering, Tianjin University, Yaguan Road, Tianjin 300350, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Yaguan Road, Tianjin 300350, China
| | - Qipei Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou 570228, China.
| | - Hongwei Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Agbayani S, Nelson JC, Schweitzer C, Vaidyanathan T, Murray CC. Stability and reliability of regional cumulative impact mapping: A Canadian Pacific case study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123105. [PMID: 39488182 DOI: 10.1016/j.jenvman.2024.123105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Cumulative impact mapping is a commonly applied spatial representation of the impacts of human activities on the ocean. This spatial model has been applied at varying scales around the world, in part due to its ability to visually communicate complicated information in a simple way. The application of the model to decision-making processes requires an understanding of the reliability and stability of its outputs. This paper represents both an updated regional application in Pacific Canada and an evaluation of the tool over two iterations, 2015 and 2023. The regional application utilised higher model resolution and new and improved data inputs including 38 habitats and 46 activities across five sectors. High impact hotspots were found around major population centres and ports, as well as in fishing and shipping areas along the continental shelf. Commercial fishing, shipping, and climate change (sea surface temperature change) remained the major drivers of cumulative impacts in the region, and cumulative impacts per unit area continued to be highest in kelp and seagrass. Results suggest evidence of decreased impacts where improved protection for sponge reefs were implemented but show an overall increase in cumulative impacts for the region. Results showed consistency and reliability in the location of cumulative impact hotspots. Refinements in data quality and resolution of spatial data inputs contributed towards increasing the spatial precision of hot spot areas identified. Confidence in the cumulative impact mapping outputs and applications for marine spatial planning, marine protected area designation and management, research, and decision support are discussed.
Collapse
Affiliation(s)
- Selina Agbayani
- Institute of Ocean Sciences, Fisheries and Oceans Canada, 9860 West Saanich Road, Sidney, British Columbia, Canada.
| | - Jocelyn C Nelson
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, British Columbia, Canada.
| | - Craig Schweitzer
- Institute of Ocean Sciences, Fisheries and Oceans Canada, 9860 West Saanich Road, Sidney, British Columbia, Canada; Campbell River Regional Office, Fisheries and Oceans Canada, 940 Alder Street, Campbell River, British Columbia, Canada.
| | - Tanvi Vaidyanathan
- Institute of Ocean Sciences, Fisheries and Oceans Canada, 9860 West Saanich Road, Sidney, British Columbia, Canada; Regional Headquarters, Fisheries and Oceans Canada, 401 Burrard Street, Vancouver, British Columbia, Canada.
| | - Cathryn Clarke Murray
- Institute of Ocean Sciences, Fisheries and Oceans Canada, 9860 West Saanich Road, Sidney, British Columbia, Canada.
| |
Collapse
|
3
|
McMahon JM, Turner RDR, Smart JCR, Shortle JS, Ramsay I, Correa DF, Chamberlain D, Mao Y, Warne MSJ. Offset integrity reduces environmental risk: Using lessons from biodiversity and carbon offsetting to inform water quality offsetting in the catchments of the Great Barrier Reef. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175786. [PMID: 39197774 DOI: 10.1016/j.scitotenv.2024.175786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/24/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Environmental offsetting has been developed as a mechanism to facilitate the benefits from economic development while avoiding or minimizing environmental harm. This is achieved by compensating for environmental impacts at one location by generating equivalent environmental improvements elsewhere. However, experience with biodiversity and carbon offsetting indicates it can be difficult to ensure the integrity of offsets. Under recent legislation in the catchments of the Great Barrier Reef (GBR), Australia, it is mandatory for water quality emissions from new or expanded point source development to be offset by reducing pollution elsewhere, frequently through reducing non-point source pollution (NPSP). Therefore, informed by experience with biodiversity and carbon offsetting, we summarised sources of uncertainty in NPSP reduction that would influence water quality offset integrity; estimated the maximum potential demand for water quality offsets from sewage treatment plants, the largest point source emitter of total nitrogen (TN) in the GBR catchments, between 2018 and 2050; and discussed the implications of both on the ability of offsetting to counterbalance the impact of economic development in catchments where nitrogen loads have a large influence on the health of important GBR ecosystems. The catchments surrounding the population centres of Cairns and Mackay had both a potentially high future demand for nitrogen water quality offsets and nitrogen loads with a strong influence on the health of the GBR. Consequently, any low integrity water quality offsets in these catchments could jeopardise progress toward the water quality improvements needed to ensure the continued health of the GBR. Water quality offsetting has numerous strengths as a policy instrument however substantial uncertainties remain related to environmental outcomes. Until further research can reduce these uncertainties, water quality offsets that are implemented near increased point source emissions and have a high certainty of effectiveness may provide a balance between scientific rigour and policy workability.
Collapse
Affiliation(s)
- J M McMahon
- Reef Catchments Science Partnership, School of the Environment, University of Queensland, Brisbane, QLD 4108, Australia; Australian Rivers Institute, Griffith University, Brisbane, QLD 4111, Australia.
| | - R D R Turner
- Reef Catchments Science Partnership, School of the Environment, University of Queensland, Brisbane, QLD 4108, Australia; Water Quality and Investigations, Department of Environment, Science and Innovation, Brisbane, Queensland, Australia
| | - J C R Smart
- Australian Rivers Institute, Griffith University, Brisbane, QLD 4111, Australia
| | - J S Shortle
- Department of Agricultural Economics, Sociology, and Education, The Pennsylvania State University, 111D Ferguson Building, University Park, PA 16802, USA
| | - I Ramsay
- Department of Environment and Science, PO Box 5078, Brisbane, QLD 4001, Australia
| | - D F Correa
- Reef Catchments Science Partnership, School of the Environment, University of Queensland, Brisbane, QLD 4108, Australia
| | - D Chamberlain
- Reef Catchments Science Partnership, School of the Environment, University of Queensland, Brisbane, QLD 4108, Australia
| | - Y Mao
- Reef Catchments Science Partnership, School of the Environment, University of Queensland, Brisbane, QLD 4108, Australia
| | - M St J Warne
- Reef Catchments Science Partnership, School of the Environment, University of Queensland, Brisbane, QLD 4108, Australia; Water Quality and Investigations, Department of Environment, Science and Innovation, Brisbane, Queensland, Australia; Centre for Agroecology, Water and Resilience, Coventry University, Coventry, UK
| |
Collapse
|
4
|
Wang Y, Chen Y, Zhang F, Li L, Ru S, Yang L. Responses of coastal phytoplankton communities to seasonal herbicide inputs: Tolerance or degeneration? JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135671. [PMID: 39213765 DOI: 10.1016/j.jhazmat.2024.135671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Herbicide-induced phytoplankton inhibition threatens coastal biodiversity and ecosystem function. Although studies employing single-frequence exposure aid in understanding the phytoplankton community's responses to herbicides, it's difficult to objectively assess their response to cyclic herbicide inputs (long-term low-dose and short-term high-dose) in marine ecosystems. Here, we analyzed the concentration and distribution of herbicides in global coastal waters and simulated this cyclic process through a two-phase atrazine exposure mesocosm experiment and laboratory tests. The results indicated that, the herbicide concentrations (0.82 nmol L-1, 95 % CI 0.55, 1.74) from May to August were significantly higher than that (0.14 nmol L-1, 95 % CI 0.02, 0.38) in the remainder months, and highest concentrations typically emerged in summer; the changes in phytoplankton community composition under environmental concentrations of triazine herbicides could recover in the short term, but sustained inhibition of biomass was produced; the dominant populations were more likely to develop tolerance through preexposure and recover from subsequent impulse of atrazine, but this process was accompanied by the loss of rare groups and a decrease in biodiversity, meanwhile, affected the bacterial community in phycosphere. Consequently, we considered that the cyclic herbicide inputs may cause more detrimental effects than single-frequence exposure, potentially leading to a large-scale decline in coastal primary productivity.
Collapse
Affiliation(s)
- Yunsheng Wang
- College of Marine Life Sciences, Ocean University of China, 266101 Qingdao, China
| | - Ying Chen
- College of Marine Life Sciences, Ocean University of China, 266101 Qingdao, China
| | - Fuwei Zhang
- College of Marine Life Sciences, Ocean University of China, 266101 Qingdao, China
| | - Lingxiao Li
- College of Marine Life Sciences, Ocean University of China, 266101 Qingdao, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 266101 Qingdao, China
| | - Liqiang Yang
- College of Marine Life Sciences, Ocean University of China, 266101 Qingdao, China.
| |
Collapse
|
5
|
Sun C, Huang Y, Bakhtiari AR, Yuan D, Zhou Y, Zhao H. Long-term exposure to climbazole may affect the health of stress-tolerant coral Galaxea fascicularis. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106679. [PMID: 39153271 DOI: 10.1016/j.marenvres.2024.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The persistence of coral reefs globally is threatened by various forms of chemical pollution. Climbazole, an azole antibacterial agent extensively utilized in pharmaceuticals and personal care products (PPCPs) in everyday life, has been detected in various environment media and proved to have significant adverse effects on aquatic organism. However, the effects of climbazole on coral remain largely unknown. Therefore, in this study, we conducted a 42-day investigation to examine the effects of varying concentrations of climbazole on Galaxea fascicularis (G. fascicularis), a stress-tolerant coral species. Our investigations included coral color observations, physiological experiments, and assessments of microbial diversity. The results showed that, after 42 days of exposure, the coral color in the treatment group exposed to 100 μg/L climbazole significantly decreased by one color category on the reference chart (D6 shifted to D5), while there was no change in the control group. This was accompanied by an increase in oxidative stress and a decrease in photosynthetic capacity in coral specimens. Additionally, there was a notable alteration in microbial diversity, resulting in reduced community stability. Elevated levels of climbazole (100 μg/L) stress led to an increased abundance of potentially pathogenic bacteria such as unclassified Erysipelotrichaceae. However, at an environmentally relevant concentration of 1 μg/L, climbazole decreased the photosynthetic efficiency and induced oxidative stress in the stress-tolerant coral G. fascicularis, while not significantly impacting the microbial community diversity of the coral. The findings of our study have important implications for the protection and management of nearshore coral reefs and offer essential data for ecological risk assessment of climbazole.
Collapse
Affiliation(s)
- Chuhan Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yuehua Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Dongdan Yuan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yanyu Zhou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Hongwei Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China.
| |
Collapse
|
6
|
Thomson T, Ellis JI, Fusi M, Prinz N, Lundquist CJ, Bury SJ, Shankar U, Cary SC, Pilditch CA. Effects of catchment land use on temperate mangrove forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173579. [PMID: 38823713 DOI: 10.1016/j.scitotenv.2024.173579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/25/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Human land use changes are threatening the integrity and health of coastal ecosystems worldwide. Intensified land use for anthropogenic purposes increases sedimentation rates, pollutants, and nutrient concentrations into adjacent coastal areas, often with detrimental effects on marine life and ecosystem functioning. However, how these factors interact to influence ecosystem health in mangrove forests is poorly understood. This study investigates the effects of catchment human land use on mangrove forest architecture and sedimentary attributes at a landscape-scale. Thirty sites were selected along a gradient of human land use within a narrow latitudinal range, to minimise the effects of varying climatic conditions. Land use was quantified using spatial analysis tools with existing land use databases (LCDB5). Twenty-six forest architectural and sedimentary variables were collected from each site. The results revealed a significant effect of human land use on ten out of 26 environmental variables. Eutrophication, characterised by changes in redox potential, pH, and sediment nutrient concentrations, was strongly associated with increasing human land use. The δ15N values of sediments and leaves also indicated increased anthropogenic nitrogen input. Furthermore, the study identified a positive correlation between human land use and tree density, indicating that increased nutrient delivery from catchments contributes to enhanced mangrove growth. Propagule and seedling densities were also positively correlated with human land use, suggesting potential recruitment success mechanisms. This research underpins the complex interactions between human land use and mangrove ecosystems, revealing changes in carbon dynamics, potential alterations in ecosystem services, and a need for holistic management approaches that consider the interconnectedness of species and their environment. These findings provide essential insights for regional ecosystem models, coastal management, and restoration strategies to address the impacts of human pressures on temperate mangrove forests, even in estuaries that may be relatively healthy.
Collapse
Affiliation(s)
- Timothy Thomson
- University of Waikato, School of Science, Tauranga, New Zealand.
| | - Joanne I Ellis
- University of Waikato, School of Science, Tauranga, New Zealand
| | - Marco Fusi
- Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne 1NE 7RU, United Kingdom
| | - Natalie Prinz
- University of Waikato, School of Science, Tauranga, New Zealand
| | - Carolyn J Lundquist
- National Institute of Water and Atmospheric Research, Hamilton, New Zealand; School of Environment, University of Auckland, Auckland, New Zealand
| | - Sarah J Bury
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Ude Shankar
- National Institute of Water and Atmospheric Research, Christchurch, New Zealand
| | - S Craig Cary
- School of Science, University of Waikato, Hamilton, New Zealand
| | | |
Collapse
|
7
|
Brown CJ, Campbell MD, Collier CJ, Turschwell MP, Saunders MI, Connolly RM. Speeding up the recovery of coastal habitats through management interventions that address constraints on dispersal and recruitment. Proc Biol Sci 2024; 291:20241065. [PMID: 39043234 PMCID: PMC11391320 DOI: 10.1098/rspb.2024.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Plans for habitat restoration will benefit from predictions of timescales for recovery. Theoretical models have been a powerful tool for informing practical guidelines in planning marine protected areas, suggesting restoration planning could also benefit from a theoretical framework. We developed a model that can predict recovery times following restoration action, under dispersal, recruitment and connectivity constraints. We apply the model to a case study of seagrass restoration and find recovery times following restoration action can vary greatly, from <1 to >20 years. The model also shows how recovery can be accelerated when restoration actions are matched to the constraints on recovery. For example, spreading of propagules can be used when connectivity is the critical restriction. The recovery constraints we articulated mathematically also apply to the restoration of coral reefs, mangroves, saltmarsh, shellfish reefs and macroalgal forests, so our model provides a general framework for choosing restoration actions that accelerate coastal habitat recovery.
Collapse
Affiliation(s)
- Christopher J Brown
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
- Coastal and Marine Research Centre, School of Environment and Science, Australian Rivers Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Max D Campbell
- Coastal and Marine Research Centre, School of Environment and Science, Australian Rivers Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Catherine J Collier
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Cairns, Queensland 4870, Australia
| | - Mischa P Turschwell
- Coastal and Marine Research Centre, School of Environment and Science, Australian Rivers Institute, Griffith University, Gold Coast, Queensland, Australia
| | | | - Rod M Connolly
- Coastal and Marine Research Centre, School of Environment and Science, Australian Rivers Institute, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
8
|
Du J, Yan Z, Hu C, Wang K, Liu G, Jiang B, Song L, Xie H. Occurrence, distribution and risk assessment of antibiotics and pesticides in mariculture area around Liaodong Peninsula. MARINE POLLUTION BULLETIN 2024; 205:116588. [PMID: 38889666 DOI: 10.1016/j.marpolbul.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/17/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Mariculture stands as a pivotal enterprise aimed at enhancing the quality of human existence. However, the utilization of antibiotics and pesticides in the mariculture process poses threats to both the environment and human well-being. Therefore, it is of great significance to investigate the occurrence, distribution and risk of antibiotics and pesticides in mariculture areas. In this study, 11 kinds of antibiotics and 12 kinds of pesticides were screened in four mariculture areas around Liaodong Peninsula in China. The pollution characteristics of pollutants were investigated in three different mariculture stages. The pollution in the reproduction stage was the most serious, indicating that mariculture may have a potential impact on the surrounding seawater. Health risk assessment results indicate that the pollutants have a significant risk to human health, therefore it is necessary to strengthen the control of chemicals used in mariculture in future.
Collapse
Affiliation(s)
- Jing Du
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zhenhui Yan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Chaokui Hu
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Kun Wang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Guiying Liu
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Bing Jiang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Lun Song
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| | - Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| |
Collapse
|
9
|
Abe H, Hayashi S, Sakuma A, Yamano H. Priority sites for coral aquaculture in Kume Island based on numerical simulation. ESTUARINE, COASTAL AND SHELF SCIENCE 2024; 303:108797. [DOI: 10.1016/j.ecss.2024.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Yang Q, Ling J, Zhang Y, Zhou W, Wei Z, Li J, Zhang Y, Dong J, Qian P. Microbial nitrogen removal in reef-building corals: A light-sensitive process. CHEMOSPHERE 2024; 359:142394. [PMID: 38777199 DOI: 10.1016/j.chemosphere.2024.142394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Scleractinian corals are the main framework-building groups in tropical coral reefs. In the coral holobiont, nitrogen-cycling mediated by microbes is fundamental for sustaining the coral reef ecosystems. However, little direct evidence characterizing the activities of microbial nitrogen removal via complete denitrification and anaerobic ammonium oxidation (anammox) in stony corals has been presented. In this study, multiple incubation experiments using 15N-tracer were conducted to identify and characterize N2 production by denitrification and anammox in the stony coral Pocillopora damicornis. The rates of denitrification and anammox were recorded up to 0.765 ± 0.162 and 0.078 ± 0.009 nmol N2 cm-2 h-1 respectively. Denitrification contributed the majority (∼90%) of N2 production by microbial nitrogen removal in stony corals. The microbial nitrogen removal activities showed diel rhythms, which might correspond to photosynthetic oxygen production. The N2 production rates of anammox and denitrification increased with incubation time. To the authors' knowledge, this study is the first to confirm and characterize the activities of complete denitrification and anammox in stony corals via stable isotope techniques. This study extends the understanding on nitrogen-cycling in coral reefs and how it participates in corals' resilience to environmental stressors.
Collapse
Affiliation(s)
- Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhangliang Wei
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Ocean School, Yantai University, Yantai, China.
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Tropical Marine Biological Research Station in Hainan, CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China; Shantou Marine Plants Experiment Station, Chinese Academy of Sciences, Shantou, China.
| | - Peiyuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
11
|
Pan X, Wang M, Pu C. Effect of marine ecological compensation policy on coastal water pollution: Evidence from China based on a multiple period difference-in-differences approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171469. [PMID: 38453061 DOI: 10.1016/j.scitotenv.2024.171469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024]
Abstract
With the development and utilization of marine resources, coastal water pollution has become increasingly prominent. The marine ecological compensation (MEC) is a key measure to balance the utilization of marine resources and the protection of marine environment. This paper attempts to explore the governance effect of MEC policy on coastal water pollution. Based on panel data of coastal cities in China from 2006 to 2020, a multiple period difference-in-differences (DID) model is used to estimate the impact of MEC policy on coastal water pollution. The research results show that the coastal water pollution has decreased significantly in the polit cities after implementing the MEC policy. The governance effect of MEC policy on coastal water pollution will last for three year and cover areas within a geographical distance of 200 km. The transmission mechanisms of MEC policy on coastal water pollution are the reduction of land-based sewage, marine technological progress and optimization of industrial structure. Further, this paper provides operational suggestions for strengthening the governance effect of MEC policy on coastal water pollution.
Collapse
Affiliation(s)
- Xiongfeng Pan
- School of Economics and Management, Dalian University of Technology, Dalian, China
| | - Mengyang Wang
- School of Economics and Management, Dalian University of Technology, Dalian, China.
| | - Chenxi Pu
- School of Economics and Management, Dalian University of Technology, Dalian, China
| |
Collapse
|
12
|
Giglio VJ, Aued AW, Cordeiro CAMM, Eggertsen L, S Ferrari D, Gonçalves LR, Hanazaki N, Luiz OJ, Luza AL, Mendes TC, Pinheiro HT, Segal B, Waechter LS, Bender MG. A Global Systematic Literature Review of Ecosystem Services in Reef Environments. ENVIRONMENTAL MANAGEMENT 2024; 73:634-645. [PMID: 38006452 DOI: 10.1007/s00267-023-01912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 11/05/2023] [Indexed: 11/27/2023]
Abstract
Ecosystem services (ES) embrace contributions of nature to human livelihood and well-being. Reef environments provide a range of ES with direct and indirect contributions to people. However, the health of reef environments is declining globally due to local and large-scale threats, affecting ES delivery in different ways. Mapping scientific knowledge and identifying research gaps on reefs' ES is critical to guide their management and conservation. We conducted a systematic assessment of peer-reviewed articles published between 2007 and 2022 to build an overview of ES research on reef environments. We analyzed the geographical distribution, reef types, approaches used to assess ES, and the potential drivers of change in ES delivery reported across these studies. Based on 115 articles, our results revealed that coral and oyster reefs are the most studied reef ecosystems. Cultural ES (e.g., subcategories recreation and tourism) was the most studied ES in high-income countries, while regulating and maintenance ES (e.g., subcategory life cycle maintenance) prevailed in low and middle-income countries. Research efforts on reef ES are biased toward the Global North, mainly North America and Oceania. Studies predominantly used observational approaches to assess ES, with a marked increase in the number of studies using statistical modeling during 2021 and 2022. The scale of studies was mostly local and regional, and the studies addressed mainly one or two subcategories of reefs' ES. Overexploitation, reef degradation, and pollution were the most commonly cited drivers affecting the delivery of provisioning, regulating and maintenance, and cultural ES. With increasing threats to reef environments, the growing demand for assessing the contributions to humans provided by reefs will benefit the projections on how these ES will be impacted by anthropogenic pressures. The incorporation of multiple and synergistic ecosystem mechanisms is paramount to providing a comprehensive ES assessment, and improving the understanding of functions, services, and benefits.
Collapse
Affiliation(s)
- Vinicius J Giglio
- Universidade Federal do Oeste do Pará, Campus Oriximiná, PA, Brazil.
| | - Anaide W Aued
- Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Cesar A M M Cordeiro
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - Linda Eggertsen
- Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, Kaneohe, HI, 96744, USA
| | - Débora S Ferrari
- Programa de Pós Graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Natalia Hanazaki
- Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Osmar J Luiz
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - André L Luza
- Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Thiago C Mendes
- Departamento de Biologia Marinha, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Hudson T Pinheiro
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, SP, Brazil
| | - Bárbara Segal
- Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Luiza S Waechter
- Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Mariana G Bender
- Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
13
|
Naik PA, Amer M, Ahmed R, Qureshi S, Huang Z. Stability and bifurcation analysis of a discrete predator-prey system of Ricker type with refuge effect. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:4554-4586. [PMID: 38549340 DOI: 10.3934/mbe.2024201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The refuge effect is critical in ecosystems for stabilizing predator-prey interactions. The purpose of this research was to investigate the complexities of a discrete-time predator-prey system with a refuge effect. The analysis investigated the presence and stability of fixed points, as well as period-doubling and Neimark-Sacker (NS) bifurcations. The bifurcating and fluctuating behavior of the system was controlled via feedback and hybrid control methods. In addition, numerical simulations were performed as evidence to back up our theoretical findings. According to our findings, maintaining an optimal level of refuge availability was critical for predator and prey population cohabitation and stability.
Collapse
Affiliation(s)
- Parvaiz Ahmad Naik
- Department of Mathematics and Computer Science, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Muhammad Amer
- Department of Mathematics, Air University Multan Campus, Multan, Pakistan
| | - Rizwan Ahmed
- Department of Mathematics, Air University Multan Campus, Multan, Pakistan
| | - Sania Qureshi
- Department of Computer Science and Mathematics, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
- Department of Basic Sciences and Related Studies, Mehran University of Engineering & Technology, Jamshoro, Pakistan
- Department of Mathematics, Near East University, Mersin, Turkey
| | - Zhengxin Huang
- Department of Mathematics and Computer Science, Youjiang Medical University for Nationalities, Baise 533000, China
| |
Collapse
|
14
|
Yang L, He X, Ru S, Zhang Y. Herbicide leakage into seawater impacts primary productivity and zooplankton globally. Nat Commun 2024; 15:1783. [PMID: 38413588 PMCID: PMC10899588 DOI: 10.1038/s41467-024-46059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Predicting the magnitude of herbicide impacts on marine primary productivity remains challenging because the extent of worldwide herbicide pollution in coastal waters and the concentration-response relationships of phytoplankton communities to multiple herbicides are unclear. By analyzing the spatiotemporal distribution of herbicides at 661 bay and gulf stations worldwide from 1990 to 2022, we determined median, third quartile and maximum concentrations of 12 triazine herbicides of 0.18 nmol L-1, 1.27 nmol L-1 and 29.50 nmol L-1 (95%Confidence Interval: CI 1.06, 1.47), respectively. Under current herbicide stress, phytoplankton primary productivity was inhibited by more than 5% at 25% of the sites and by more than 10% at 10% of the sites (95%CI 3.67, 4.34), due to the inhibition of highly abundant sensitive species, community structure/particle size succession (from Bacillariophyta to Dinophyceae and from nano-phytoplankton to micro-phytoplankton), and resulting growth rate reduction. Concurrently, due to food chain cascade effects, the dominant micro-zooplankton population shifted from larger copepod larvae to smaller unicellular ciliates, which might prolong the transmission process in marine food chain and reduce the primary productivity transmission efficiency. As herbicide application rates on farmlands worldwide are correlated with residues in their adjacent seas, a continued future increase in herbicide input may seriously affect the stability of coastal waters.
Collapse
Affiliation(s)
- Liqiang Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China
| | - Xiaotong He
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Yongyu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China.
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China.
| |
Collapse
|
15
|
Lodhi I. Extract or conserve? The Hartwick-rule and sustainable environmental governance. Heliyon 2024; 10:e24631. [PMID: 38322846 PMCID: PMC10844106 DOI: 10.1016/j.heliyon.2024.e24631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
The legal safeguards for sustainable environmental governance are often inadequate, inefficient, and amenable to political maneuverings. Australia recently approved the Carmichael coal mine, rail, and expansion of the Abbot Port projects. These projects, along with many others in the region, have dire consequences for the groundwater system (Currell et al., 2017) [5], the Great Barrier Reef (Kroon et al., 2016; Grech et al., 2016) [6,7], and climate change (Taylor and Meinshausen, 2014) [8]. Here we show that incorporating the Hartwick-rule in economic analysis renders many of these projects unviable with or without the opportunity and externality costs. The Hartwick-rule dictates that exhaustible resource extraction can ensure weak sustainability if resource rents can be invested in such a way that the produced capital outweighs the consumed natural capital (Hartwick, 1977) [9]. We put forward two main arguments; one, resource rents belong to the society and many projects are only viable when these rents are invested with a certain growth rate; second, economic analysis shall incorporate the Hartwick-rule and shall be applied prior to recourse to the legal safeguards. Our analysis can be applied to any non-renewable natural resource extraction decision making.
Collapse
Affiliation(s)
- Iftikhar Lodhi
- The school of Global Affairs and Public Policy, American University in Cairo, 11835, New Cairo, Egypt
| |
Collapse
|
16
|
Niu X, Wang H, Wang T, Zhang P, Zhang H, Wang H, Kong X, Xie S, Xu J. The combination of multiple environmental stressors strongly alters microbial community assembly in aquatic ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119594. [PMID: 37995485 DOI: 10.1016/j.jenvman.2023.119594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/14/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Microorganisms play a critical role in maintaining the delicate balance of ecosystem services. However, the assembly processes that shape microbial communities are vulnerable to a range of environmental stressors, such as climate change, eutrophication, and the use of herbicides. Despite the importance of these stressors, little is known about their cumulative impacts on microbial community assembly in aquatic ecosystems. To address this knowledge gap, we established 48 mesocosm experiments that simulated shallow lake ecosystems and subjected them to warming (including continuous warming (W) and heat waves (H)), glyphosate-based herbicides (G), and nutrient loading (E). Our study revealed that in the control group, both deterministic and stochastic processes codominated the assembly of microbial communities in water, whereas in sediment, the processes were primarily stochastic. Interestingly, the effects of multiple stress factors on assembly in these two habitats were completely opposite. Specifically, stressors promoted the dominance of stochastic processes in water but increased the importance of deterministic processes in sediment. Furthermore, warming amplified the effects of herbicides but exerted an opposite and stronger influence on assembly compared to nutrients, emphasizing the complexity of these mechanisms and the significance of considering multiple stressors. The interaction of some factors significantly affected assembly (p < 0.05), with the effects of WEG being most pronounced in water. Both water and sediment exhibited homogeneous assembly of microbial communities (mean NTI >0), but the phylogenetic clustering of microbial communities in water was more closely related (NTI >2). Our research revealed the response model of microbial community assembly in aquatic ecosystems to multiple environmental stresses, such as agricultural pollution, climate change, and eutrophication, and indicated that microbial community changes in sediment may be an important predictor of lake ecosystem development. This provides scientific evidence that better environmental management can reduce impacts on aquatic ecosystems under the threat of future warming.
Collapse
Affiliation(s)
- Xiaofeng Niu
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Huan Wang
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Hongxia Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Xianghong Kong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Songguang Xie
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Jun Xu
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
17
|
Li L, Wang Y, Liu L, Gao C, Ru S, Yang L. Occurrence, ecological risk, and advanced removal methods of herbicides in waters: a timely review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3297-3319. [PMID: 38095790 DOI: 10.1007/s11356-023-31067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/12/2023] [Indexed: 01/19/2024]
Abstract
Coastal pollution caused by the importation of agricultural herbicides is one of the main environmental problems that directly affect the coastal primary productivity and even the safety of human seafood. It is urgent to evaluate the ecological risk objectively and explore feasible removal strategies. However, existing studies focus on the runoff distribution and risk assessment of specific herbicides in specific areas, and compared with soil environment, there are few studies on remediation methods for water environment. Therefore, we systematically reviewed the current situation of herbicide pollution in global coastal waters and the dose-response relationships of various herbicides on phytoplankton and higher trophic organisms from the perspective of ecological risks. In addition, we believe that compared with the traditional single physical and chemical remediation methods, biological remediation and its combined technology are the most promising methods for herbicide pollution remediation currently. Therefore, we focus on the application prospects, challenges, and management strategies of new bioremediation systems related to biology, such as constructed wetlands, membrane bioreactor processes, and microbial co-metabolism, in order to provide more advanced methods for reducing herbicide pollution in the water environment.
Collapse
Affiliation(s)
- Lingxiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunsheng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Lijuan Liu
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, China
| | - Chen Gao
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Liqiang Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
18
|
Chen XW, Chen H, Zhao HL, Li DW, Ou LJ. Triazine herbicide reduced the toxicity of the harmful dinoflagellate Karenia mikimotoi by impairing its photosynthetic systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115740. [PMID: 38042131 DOI: 10.1016/j.ecoenv.2023.115740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Triazine herbicides are common contaminants in coastal waters, and they are recognized as inhibitors of photosystem II, causing significant hinderance to the growth and reproduction of phytoplankton. However, the influence of these herbicides on microalgal toxin production remains unclear. This study aimed to examine this relationship by conducting a comprehensive physiological and 4D label-free quantitative proteomic analysis on the harmful dinoflagellate Karenia mikimotoi in the presence of the triazine herbicide dipropetryn. The findings demonstrated a significant decrease in photosynthetic activity and pigment content, as well as reduced levels of unsaturated fatty acids, reactive oxygen species (ROS), and hemolytic toxins in K. mikimotoi when exposed to dipropetryn. The proteomic analysis revealed a down-regulation in proteins associated with photosynthesis, ROS response, and energy metabolism, such as fatty acid biosynthesis, chlorophyll metabolism, and nitrogen metabolism. In contrast, an up-regulation of proteins related to energy-producing processes, such as fatty acid β-oxidation, glycolysis, and the tricarboxylic acid cycle, was observed. This study demonstrated that dipropetryn disrupts the photosynthetic systems of K. mikimotoi, resulting in a notable decrease in algal toxin production. These findings provide valuable insights into the underlying mechanisms of toxin production in toxigenic microalgae and explore the potential effect of herbicide pollution on harmful algal blooms in coastal environments.
Collapse
Affiliation(s)
- Xiang-Wu Chen
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Heng Chen
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Hai-Ling Zhao
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Da-Wei Li
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China.
| | - Lin-Jian Ou
- College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
19
|
Cui Y, Dong J, Wang H, Shang M, Xie H, Du Y, Li Y, Wang Y. Spatiotemporal response of water quality in fragmented mangroves to anthropogenic activities and recommendations for restoration. ENVIRONMENTAL RESEARCH 2023; 237:117075. [PMID: 37683780 DOI: 10.1016/j.envres.2023.117075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Mangroves have received substantial attention for their pivotal role as ecological barriers between land and sea, owing to their capacity to effectively capture considerable quantities of terrestrial pollutants. Mangrove fragmentation has been a widespread global trend. There is limited information on the water quality status of these small scattered mangrove patches in coastal sub-developed areas, coupled with a paucity of efficient and intuitive assessment methodologies. To address this gap, the Water Quality Index (WQI) was introduced to evaluate the spatiotemporal characteristics of mangrove water quality. The major sources of pollution and anthropogenic activities that affect mangrove water quality were identified. The results revealed an average WQI value of 44.1 ± 13.3 for mangrove patches, consistently indicating a "low" water quality classification throughout all seasons. Both the size and natural conditions impact the water quality of mangroves. The large artificial patch (WQI: 56.4 ± 7.61) and the natural patch (WQI: 46.6 ± 13.6) exhibited relatively superior water quality, while the WQI value of a size-equivalent artificial patch compared with the natural patch is 38.6 ± 11.8. Aquaculture was the primary human activity that adversely affected the water quality of mangroves, and the potential sources of pollution were rainfall runoff and river discharge. These findings elucidate the unfavorable water quality characteristics and dominant pollution of fragmented mangroves, and validate the applicability of the WQI method for long-term evaluation of the water quality in mangrove patches. This study provides a basis for decision-making in water quality assessment and management of coastal wetlands and marine ecosystems. Scientific guidance to the management for mangrove protection and restoration was offered, such as regulating aquaculture activities, controlling non-point source pollution, implementing mangrove reforestation by using native species in historical mangrove sites.
Collapse
Affiliation(s)
- Yang Cui
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jianwei Dong
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Hongbing Wang
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou, 571172, China.
| | - Meiqi Shang
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Hui Xie
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongfen Du
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yufeng Li
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yang Wang
- Lu'an Three Gorges Corporation Water Co., Ltd, Lu'an, 237010, China
| |
Collapse
|
20
|
Kroon FJ, Crosswell JR, Robson BJ. The effect of catchment load reductions on water quality in the crown-of-thorn starfish outbreak initiation zone. MARINE POLLUTION BULLETIN 2023; 195:115255. [PMID: 37688804 DOI: 10.1016/j.marpolbul.2023.115255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 09/11/2023]
Abstract
Crown-of-Thorns Starfish (CoTS) population outbreaks contribute to coral cover decline on Indo-Pacific reefs. On the Great Barrier Reef (GBR), enhanced catchment nutrient loads are hypothesised to increase phytoplankton food for CoTS larvae in the outbreak initiation zone. This study examines whether catchment load reductions will improve water quality in this zone during the larval period. We defined the i) initiation zone's spatial extent; ii) larval stage's temporal extent; and iii) water quality thresholds related to larval food, from published information. We applied these to model simulations, developed to quantify the effect of catchment load reductions on GBR water quality (Baird et al., 2021), and found a consistently weak response of chlorophyll-a, total organic nitrogen and large zooplankton concentrations in the initiation zone. Model results indicate marine and atmospheric forcing are more likely to control the planktonic biomass in this zone, even during major flooding events purported to precede CoTS outbreaks.
Collapse
Affiliation(s)
- Frederieke J Kroon
- Australian Institute of Marine Science, Townsville, Qld 4810, Australia.
| | | | - Barbara J Robson
- Australian Institute of Marine Science, Townsville, Qld 4810, Australia; AIMS@JCU.
| |
Collapse
|
21
|
Li Q, Fu D, Zhou Y, Li Y, Chen L, Wang Z, Wan Y, Huang Z, Zhao H. Individual and combined effects of herbicide prometryn and nitrate enrichment at environmentally relevant concentrations on photosynthesis, oxidative stress, and endosymbiont community diversity of coral Acropora hyacinthus. CHEMOSPHERE 2023; 339:139729. [PMID: 37543226 DOI: 10.1016/j.chemosphere.2023.139729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/30/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Nitrogen pollution and pesticides such as photosystem II (PSII) inhibitor herbicides have several detrimental impacts on coral reefs, including breakdown of the symbiosis between host corals and photosynthetic symbionts. Although nitrogen and PSII herbicide pollution separately cause coral bleaching, the combined effects of these stressors at environmentally relevant concentrations on corals have not been assessed. Here, we report the combined effects of nitrate enrichment and PSII herbicide (prometryn) exposure on photosynthesis, oxidative status and endosymbiont community diversity of the reef-building coral Acropora hyacinthus. Coral fragments were exposed in a mesocosm system to nitrate enrichment (9 μmol/L) and two prometryn concentrations (1 and 5 μg/L). The results showed that sustained prometryn exposure in combination with nitrate enrichment stress had significant detrimental impacts on photosynthetic apparatus [the maximum quantum efficiency of photosystem II (Fv/Fm), nonphotochemical quenching (NPQ) and oxidative status in the short term. Nevertheless, the adaptive mechanism of corals allowed the normal physiological state to be recovered following 1 μg/L prometryn and 9 μmol/L nitrate enrichment individual exposure. Moreover, exposure for 9 days was insufficient to trigger a shift in Symbiodiniaceae community. Most importantly, the negative impact of exposure to the combined environmental concentrations of 1 μg/L prometryn and 9 μmol/L nitrate enrichment was found to be significantly greater on the Fv/Fm, quantum yield of non-regulated energy dissipation [Y(NO)], NPQ, and oxidative status of corals compared to the impact of individual stressors. Our results show that interactions between prometryn stress and nitrate enrichment have a synergistic impact on the photosynthetic and oxidative stress responses of corals. This study provides valuable insights into combined effects of nitrate enrichment and PSII herbicides pollution for coral's physiology. Environmental concentrations of PSII herbicides may be more harmful to photosystems and antioxidant systems of corals under nitrate enrichment stress. Thus, future research and management of seawater quality stressors should consider combined impacts on corals rather than just the impacts of individual stressors alone.
Collapse
Affiliation(s)
- Qiuli Li
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, 570228, China; Haikou Marine Geological Survey Center, China Geological Survey, Haikou, 571127, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Dinghui Fu
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou, 571127, China
| | - Yanyu Zhou
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Yuanchao Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Liang Chen
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou, 571127, China
| | - Zhaofan Wang
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou, 571127, China
| | - Yinglang Wan
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Zanhui Huang
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou, 571127, China.
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| |
Collapse
|
22
|
Xie Z, Wu Z, Wang O, Liu F. Unexpected growth promotion of Chlorella sacchrarophila triggered by herbicides DCMU. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131216. [PMID: 36934629 DOI: 10.1016/j.jhazmat.2023.131216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/13/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
The ecotoxicological effects of herbicide contamination on the autotrophic growth of microalgae in aquatic environments have been major concerns. However, little is known about the influence of herbicides on the mixotrophic growth of microalgae. This study investigated the ecotoxicological effect of 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea (DCMU) on the mixotrophic growth of Chlorella sacchrarophila FACHB 4. Results showed that C. sacchrarophila in mixotrophy was more resistant to DCMU than in photoautotrophy. Moreover, a low content of DCMU (20-80 μg·L-1) promoted the mixotrophic growth of C. sacchrarophila, and the promotion effect was obviously enhanced with the increase in light intensity. The chlorophyll content and glucose absorption rate of C. sacchrarophila were found to increase after incubation with DCMU for 24 h. Transcriptome analyses revealed that the mechanism of DCMU to promote the mixotrophic growth of C. sacchrarophila was probably through accelerating glucose uptake and utilization, which was accomplished by reducing photodamage and increasing the chlorophyll content of C. sacchrarophila. This study not only revealed an unexpected bloom of mixotrophic microalgae triggered by herbicides, but it also shed new light on an effective and low-cost strategy to improve the microalgae productivity for utilization.
Collapse
Affiliation(s)
- Zhangzhang Xie
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Zhiyu Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Oumei Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Fanghua Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, PR China.
| |
Collapse
|
23
|
Falk MT, Hagsten E. Threat Perception and Adaptive Capacity of Natural World Heritage Site Management. ENVIRONMENTAL MANAGEMENT 2023; 71:285-303. [PMID: 36639605 PMCID: PMC9892164 DOI: 10.1007/s00267-022-01780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
This study offers new insights into the largest threats to natural and mixed World Heritage sites in developed countries as considered by their management. In addition to this, the capacity of the management to deal with threats is examined. An Ordered Probit model is used that distinguishes three groups of threats and four categories of adaptive capacity of the management. Data originate from the 2014 UNESCO Periodic Report II for sites in economically advanced countries (Europe, North America, Australia, New Zealand, Japan and South Korea) linked to the World Heritage Site database. Estimation results reveal that the probability of a major threat to World Heritage sites is perceived to be highest in the category of climate change and extreme weather events, followed by local conditions affecting the physical structure (temperature, rain, dust). Sites in tropical climates are perceived as significantly more threatened, as are those earlier listed as in danger. The likelihood of perceiving a major threat is highest in Turkey, Italy, Norway and North America. Threats related to climate change are those the management has the lowest capacity to deal with when other important aspects are controlled for. Large and natural areas have a higher perceived administrative capacity to deal with threats than others.
Collapse
Affiliation(s)
- Martin Thomas Falk
- School of Business, Department of Business and IT, University of South-Eastern Norway, Campus Bø, Gullbringvegen 36, 3800, Bø, Norway
| | - Eva Hagsten
- School of Business, Department of Business and IT, University of South-Eastern Norway, Campus Bø, Gullbringvegen 36, 3800, Bø, Norway.
| |
Collapse
|
24
|
Zhao L, Yang M, Yu X, Liu L, Gao C, Li H, Fu S, Wang W, Wang J. Presence and distribution of triazine herbicides and their effects on microbial communities in the Laizhou Bay, Northern China. MARINE POLLUTION BULLETIN 2023; 186:114460. [PMID: 36521363 DOI: 10.1016/j.marpolbul.2022.114460] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the distribution of triazine herbicides in the Laizhou Bay, China and found that the total concentrations of triazine herbicides in the seawater and sediments were 111.15-234.85 ng/L and 0.902-4.661 μg/kg, respectively. Triazine herbicides especially ametryn, atrazine, and simazine were negatively correlated with prokaryote diversity in the seawater. While ametryn, desethylatrazine and desisopropylatrazine had positively significant effects on eukaryotes Dinophyceae, Bacillariophyta, and Cercozoa in the sediments. Moreover, the degree of fragmentation of eukaryotic networks increased dramatically with the increasing numbers of removed nodes, but prokaryotic networks did not change with the decrease of nodes. In addition, the stability analysis and neutral community models revealed that eukaryotes were more sensitive to triazine herbicides than prokaryotes. These results suggest that triazine herbicides might affect the structure and interactions of microbial communities. Therefore, more attentions should be paid to the ecological risk of triazine herbicides in marine ecosystems.
Collapse
Affiliation(s)
- Lingchao Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mengyao Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaowen Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lijuan Liu
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Chen Gao
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Huaxin Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Sui Fu
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
25
|
Abouelsaad O, Matta E, Hinkelmann R. Evaluating the eutrophication risk of artificial lagoons-case study El Gouna, Egypt. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:172. [PMID: 36462031 PMCID: PMC9719455 DOI: 10.1007/s10661-022-10767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Eutrophication problem in El Gouna shallow artificial coastal lagoons in Egypt was investigated using 2D TELEMAC-EUTRO-WAQTEL module. Eight reactive components were presented, among them dissolved oxygen (DO), phosphorus, nitrogen, and phytoplankton biomass (PHY). The effect of warmer surface water on the eutrophication problem was investigated. Also, the spatial and temporal variability of the eutrophication was analyzed considering different weather conditions: tide wave, different wind speeds and directions. Moreover, effect of pollution from a nearby desalination plant was discussed considering different pollution degrees of brine discharge, different discharge quantities and different weather conditions. Finally, new precautions for better water quality were discussed. The results show that tide wave created fluctuations in DO concentrations, while other water quality components were not highly influenced by tide's fluctuations. Also, it was found that high water temperatures and low wind speeds highly decreased water quality producing low DO concentrations and high nutrients rates. High water quality was produced beside inflow boundaries when compared to outflow boundaries in case of mean wind. Moreover, the results show that the average water quality was not highly deteriorated by the nearby desalination operation, while the area just beside the desalination inflow showed relatively strong effects. Different weather conditions controlled the brine's propagation inside the lagoons. Moreover, increasing the width of the inflow boundaries and injecting tracer during tide and mean wind condition are new precautions which may help to preserve the water quality in a future warmer world. This study is one of the first simulations for eutrophication in manmade lagoons.
Collapse
Affiliation(s)
- Omnia Abouelsaad
- Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
- Irrigation and Hydraulics Department, Mansoura University, Mansoura City, Egypt.
| | - Elena Matta
- Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
- Politecnico Di Milano - Department of Electronics, Information, and Bioengineering, Environmental Intelligence for Global Change Lab, Milano, Italy
| | - Reinhard Hinkelmann
- Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| |
Collapse
|
26
|
Thorburn PJ, Biggs JS, McCosker K, Northey A. Assessing water quality for cropping management practices: A new approach for dissolved inorganic nitrogen discharged to the Great Barrier Reef. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115932. [PMID: 35973290 DOI: 10.1016/j.jenvman.2022.115932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Applications of nitrogen (N) fertiliser to agricultural lands impact many marine and aquatic ecosystems, and improved N fertiliser management is needed to reduce these water quality impacts. Government policies need information on water quality and risk associated with improved practices to evaluate the benefits of their adoption. Policies protecting Great Barrier Reef (GBR) ecosystems are an example of this situation. We developed a simple metric for assessing the risk of N discharge from sugarcane cropping, the biggest contributor of dissolved inorganic N to the GBR. The metric, termed NiLRI, is the ratio of N fertiliser applied to crops and the cane yield achieved (i.e. kg N (t cane)-1). We defined seven classes of water quality risk using NiLRI values derived from first principles reasoning. NiLRI values calculated from (1) results of historical field experiments and (2) survey data on the management of 170,177 ha (or 53%) of commercial sugarcane cropping were compared to the classes. The NiLRI values in both the experiments and commercial crops fell into all seven classes, showing that the classes were both biophysically sensible (c.f. the experiments) and relevant to farmers' experience. We then used machine learning to explore the association between crop management practices recorded in the surveys and associated NiLRI values. Practices that most influenced NiLRI values had little apparent direct impact on N management. They included improving fallow management and reducing tillage and compaction, practices that have been promoted for production rather than N discharge benefits. The study not only provides a metric for the change in N water quality risk resulting from adoption of improved practices, it also gives the first clear empirical evidence of the agronomic practices that could be promoted to reduce water quality risk while maintaining or improving yields of sugarcane crops grown in catchments adjacent to the GBR. Our approach has relevance to assessing the environmental risk of N fertiliser management in other countries and cropping systems.
Collapse
Affiliation(s)
- Peter J Thorburn
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Qld, 4067, Australia.
| | - Jody S Biggs
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Qld, 4067, Australia
| | - Kevin McCosker
- Queensland Department Agriculture and Fisheries, 25 Yeppoon Road, Parkhurst, Qld, 4700, Australia
| | - Adam Northey
- Queensland Department Agriculture and Fisheries, 25 Yeppoon Road, Parkhurst, Qld, 4700, Australia
| |
Collapse
|
27
|
Hernández-Blanco M, Costanza R, Chen H, deGroot D, Jarvis D, Kubiszewski I, Montoya J, Sangha K, Stoeckl N, Turner K, van 't Hoff V. Ecosystem health, ecosystem services, and the well-being of humans and the rest of nature. GLOBAL CHANGE BIOLOGY 2022; 28:5027-5040. [PMID: 35621920 DOI: 10.1111/gcb.16281] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
An ecosystem is healthy if it is active, maintains its organization and autonomy over time, and is resilient to stress. Healthy ecosystems provide human well-being via ecosystem services, which are produced in interaction with human, social, and built capital. These services are affected by different ecosystem stewardship schemes. Therefore, society should be aiming for ecosystem health stewardship at all levels to maintain and improve ecosystem services. We review the relationship between ecosystem health and ecosystem services, based on a logic chain framework starting with (1) a development or conservation policy, (2) a management decision or origin of the driver of change, (3) the driver of change itself, (4) the change in ecosystem health, (5) the change in the provision of ecosystem services, and (6) the change in their value to humans. We review two case studies to demonstrate the application of this framework. We analyzed 6,131 records from the Ecosystem Services Valuation Database (ESVD) and found that in approximately 58% of the records data on ecosystem health were lacking. Finally, we describe how the United Nations' System of Environmental-Economic Accounting (SEEA) incorporates ecosystem health as part of efforts to account for natural capital appreciation or depreciation at the national level. We also provide recommendations for improving this system.
Collapse
Affiliation(s)
| | | | - Haojie Chen
- The Australian National University, Canberra, Australia
| | - Dolf deGroot
- Foundation for Sustainable Development, Wageningen, The Netherlands
| | | | | | - Javier Montoya
- Center for International Forestry Research (CIFOR) - World Agroforestry (ICRAF), Lima, Peru
| | | | | | | | | |
Collapse
|
28
|
Williams BA, Watson JEM, Beyer HL, Klein CJ, Montgomery J, Runting RK, Roberson LA, Halpern BS, Grantham HS, Kuempel CD, Frazier M, Venter O, Wenger A. Global rarity of intact coastal regions. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13874. [PMID: 34907590 DOI: 10.1111/cobi.13874] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Management of the land-sea interface is essential for global conservation and sustainability objectives because coastal regions maintain natural processes that support biodiversity and the livelihood of billions of people. However, assessments of coastal regions have focused strictly on either the terrestrial or marine realm. Consequently, understanding of the overall state of Earth's coastal regions is poor. We integrated the terrestrial human footprint and marine cumulative human impact maps in a global assessment of the anthropogenic pressures affecting coastal regions. Of coastal regions globally, 15.5% had low anthropogenic pressure, mostly in Canada, Russia, and Greenland. Conversely, 47.9% of coastal regions were heavily affected by humanity, and in most countries (84.1%) >50% of their coastal regions were degraded. Nearly half (43.3%) of protected areas across coastal regions were exposed to high human pressures. To meet global sustainability objectives, all nations must undertake greater actions to preserve and restore the coastal regions within their borders.
Collapse
Affiliation(s)
- Brooke A Williams
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, Queensland, Australia
| | - James E M Watson
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, Queensland, Australia
| | - Hawthorne L Beyer
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, Queensland, Australia
| | - Carissa J Klein
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jamie Montgomery
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, California, USA
| | - Rebecca K Runting
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Leslie A Roberson
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, Queensland, Australia
| | - Benjamin S Halpern
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, California, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California, USA
| | - Hedley S Grantham
- Wildlife Conservation Society, Global Conservation Program, New York, New York, USA
| | - Caitlin D Kuempel
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Queensland, Australia
| | - Melanie Frazier
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, California, USA
| | - Oscar Venter
- Natural Resource and Environmental Studies Institute, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Amelia Wenger
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, Queensland, Australia
- Wildlife Conservation Society, Global Marine Program, New York, New York, USA
| |
Collapse
|
29
|
Souza-Araujo JD, Hussey NE, Hauser-Davis RA, Rosa AH, Lima MDO, Giarrizzo T. Human risk assessment of toxic elements (As, Cd, Hg, Pb) in marine fish from the Amazon. CHEMOSPHERE 2022; 301:134575. [PMID: 35421445 DOI: 10.1016/j.chemosphere.2022.134575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The present study evaluated As, Hg, Pb and Cd burdens in both ecologically and commercially important 314 marine fishes belonging to 47 species sampled along the Amazon Coast. We specifically investigated variations in these four elements among different habitats and their relationships with trophic position and estimated potential human health risk by calculating the hazard quotient (HQ), hazard index (HI), and target cancer risk (TR). Our analyses revealed that Hg concentrations in reef-associated fish were over 2-fold those recorded in demersal fish (p < 0.001). A stable isotope analysis indicated that most of the fish species analyzed herein are secondary consumers (i.e., TP > 2.9) and their trophic positions exhibited a significant negative correlation to As, Pb and Cd. Positive significant relationships were noted between As-Cd, As-Pb, As-Hg, Hg-Cd and Cd-Pb, suggesting that these elements exhibit similar dispersion properties and bioaccumulation homology, probably arising from natural fluvial inputs from the Amazon basin system. Detected As concentrations were higher than established guidelines and legal limits in 63.8% of the examined species (n = 30), whereas Cd, Hg and Pb levels were generally very low. Estimated daily intake (EDI) of iAs, Hg and Pb were above reference dose (RfD) in more almost half of species analyzed and HQ values were each found to pose potential non-carcinogenic health risks if high amounts are consumed over time. HI indicates that the determined elements attained levels considered as potential human health hazards trough consumption of eight cartilaginous fish. The TR values of iAs and Pb were higher than the guideline value and given this, individuals who continuously consume cartilaginous fish contaminated with the toxic elements determined here will likely be under increased cancer risks in the long term.
Collapse
Affiliation(s)
- Juliana de Souza-Araujo
- Grupo de Ecologia Aquática, Espaço Inovação do Parque de Ciência e Tecnologia do Guamá, Belém, PA, Brazil; Laboratório de Biogeoquímica Ambiental. Instituto de Ciência e Tecnologia, Universidade Estadual Paulista, Sorocaba, SP, Brazil.
| | - Nigel E Hussey
- Integrative Biology. University of Windsor, Windsor, Ontario, Canada.
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | - André Henrique Rosa
- Laboratório de Biogeoquímica Ambiental. Instituto de Ciência e Tecnologia, Universidade Estadual Paulista, Sorocaba, SP, Brazil.
| | | | - Tommaso Giarrizzo
- Grupo de Ecologia Aquática, Espaço Inovação do Parque de Ciência e Tecnologia do Guamá, Belém, PA, Brazil; Instituto de Ciencias do Mar (LABOMAR), Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
30
|
Lloyd-Jones LR, Kuhnert PM, Lawrence E, Lewis SE, Waterhouse J, Gruber RK, Kroon FJ. Sampling re-design increases power to detect change in the Great Barrier Reef's inshore water quality. PLoS One 2022; 17:e0271930. [PMID: 35901047 PMCID: PMC9333274 DOI: 10.1371/journal.pone.0271930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Monitoring programs are fundamental to understanding the state and trend of aquatic ecosystems. Sampling designs are a crucial component of monitoring programs and ensure that measurements evaluate progress toward clearly stated management objectives, which provides a mechanism for adaptive management. Here, we use a well-established marine monitoring program for inshore water quality in the Great Barrier Reef (GBR), Australia to investigate whether a sampling re-design has increased the program's capacity to meet its primary objectives. Specifically, we use bootstrap resampling to assess the change in statistical power to detect temporal water quality trends in a 15-year inshore marine water quality data set that includes data from both before and after the sampling re-design. We perform a comprehensive power analysis for six water quality analytes at four separate study areas in the GBR Marine Park and find that the sampling re-design (i) increased power to detect trends in 23 of the 24 analyte-study area combinations, and (ii) resulted in an average increase in power of 34% to detect increasing or decreasing trends in water quality analytes. This increase in power is attributed more to the addition of sampling locations than increasing the sampling rate. Therefore, the sampling re-design has substantially increased the capacity of the program to detect temporal trends in inshore marine water quality. Further improvements in sampling design need to focus on the program's capability to reliably detect trends within realistic timeframes where inshore improvements to water quality can be expected to occur.
Collapse
Affiliation(s)
- Luke R. Lloyd-Jones
- Data61, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland, Australia
| | - Petra M. Kuhnert
- Data61, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland, Australia
| | - Emma Lawrence
- Data61, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland, Australia
| | - Stephen E. Lewis
- Centre for Tropical Water & Aquatic Ecosystem Research, James Cook University, Townsville, Queensland, Australia
| | - Jane Waterhouse
- Centre for Tropical Water & Aquatic Ecosystem Research, James Cook University, Townsville, Queensland, Australia
| | - Renee K. Gruber
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | | |
Collapse
|
31
|
Li Y, Wang K, Kong Y, Lv Y, Xu K. Toxicity and tissue accumulation characteristics of the herbicide pendimethalin under silicon application in ginger (Zingiber officinale Roscoe). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25263-25275. [PMID: 34839461 DOI: 10.1007/s11356-021-17740-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Environmental health and food safety issues potentially caused by the dinitroaniline herbicide pendimethalin (PM) are a worldwide concern. The toxicity response of ginger and tissue accumulation effects of PM on ginger biomass were studied by utilizing PM (CK (clean water), PM1 (0.4%), PM2 (0.67%), PM3 (1.0%), and PM4 (1.67%)) in a dose-response study. It significantly reduced the biomass of ginger under PM4, which is attributed to root damage. The net photosynthetic rate of ginger under PM4 was 11.37% lower than that of CK, which is mainly caused by stomatal limitation. In addition, the ultrastructure of chloroplasts has changed. PM4 caused the accumulation of reactive oxygen species (ROS) in ginger. The activity of superoxide dismutase (SOD) and peroxidase (POD) increased accordingly, maintaining the dynamic balance of ROS content. PM had no significant effect on the expression of ginger α-tubulin genes. PM was significantly accumulated in ginger roots, but not rhizomes. Si increased the productivity of ginger under PM4, which is mainly related to the increase of root development (root application of silicon) and photosynthetic efficiency (foliar application of silicon). Si reduced the ROS content due to the increase in SOD, POD, and catalase (CAT) activity and photosynthetic efficiency.
Collapse
Affiliation(s)
- Yanyan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Kai Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Yuwen Kong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China.
- Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China.
- State Key Laboratory of Crop Biology, Taian, 271018, China.
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China.
- Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China.
- State Key Laboratory of Crop Biology, Taian, 271018, China.
| |
Collapse
|
32
|
Sediment Prediction in the Great Barrier Reef using Vision Transformer with finite element analysis. Neural Netw 2022; 152:311-321. [DOI: 10.1016/j.neunet.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/26/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022]
|
33
|
Vilas MP, Shaw M, Rohde K, Power B, Donaldson S, Foley J, Silburn M. Ten years of monitoring dissolved inorganic nitrogen in runoff from sugarcane informs development of a modelling algorithm to prioritise organic and inorganic nutrient management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150019. [PMID: 34500267 DOI: 10.1016/j.scitotenv.2021.150019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Reducing nitrogen (N) losses from cropping systems to aquatic ecosystems is a global priority. In Australia, N losses from sugarcane production in catchments adjacent to the Great Barrier Reef (GBR) are threatening the health of this World Heritage-listed coral reef ecosystem. N losses from sugarcane can be reduced by improving fertiliser management. However, little is known about the contribution of organic sources of N, such as mill mud. We used more than 10 years of data from two of the main Australian sugarcane regions, a high (Wet Tropics) and moderate (Mackay Whitsundays) rainfall area, to calibrate and validate a model to predict dissolved inorganic nitrogen (DIN) losses in runoff from both inorganic and organic fertilisers. DIN losses in runoff were well simulated (RMSE = 0.37 and 2.0 kg N ha-1 for the Wet Tropics and Mackay Whitsunday regions, respectively). Long-term simulations of rate and fertiliser deductions to account for N from organic sources showed that adopting best management practices for organic fertiliser (applying ≤50 wet t ha-1 mill mud) can significantly reduce DIN in runoff losses compared with applications of 150 wet t ha-1. Simulations of typical farmer practices in relation to fallow management (bare fallow vs. legume fallow) and organic fertiliser placement (buried in a fallow but surface applied to a green cane trash blanket in ratoons) showed that inorganic fertiliser rates need to be adjusted to account for N inputs from both mill mud and legume crops. Rates of application of organic N had a larger impact on DIN runoff losses than placement or timing of application. This work presents a DIN in runoff modelling algorithm that can be coupled with nitrogen models readily available in agricultural models to assess the impact of nutrient management on the quality of water leaving agricultural systems.
Collapse
Affiliation(s)
- Maria P Vilas
- Department of Resources, Queensland Government, Brisbane, Queensland, Australia.
| | - Melanie Shaw
- Department of Resources, Queensland Government, Brisbane, Queensland, Australia
| | - Ken Rohde
- Department of Resources, Queensland Government, Mackay, Queensland, Australia
| | - Brendan Power
- Department of Resources, Queensland Government, Toowoomba, Queensland, Australia
| | - Stephen Donaldson
- Department of Resources, Queensland Government, Mackay, Queensland, Australia
| | - Jenny Foley
- Department of Resources, Queensland Government, Toowoomba, Queensland, Australia
| | - Mark Silburn
- Department of Resources, Queensland Government, Toowoomba, Queensland, Australia
| |
Collapse
|
34
|
Duarte de Paula Costa M, Lovelock CE, Waltham NJ, Moritsch MM, Butler D, Power T, Thomas E, Macreadie PI. Modelling blue carbon farming opportunities at different spatial scales. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113813. [PMID: 34607133 DOI: 10.1016/j.jenvman.2021.113813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
There is a growing interest in including blue carbon ecosystems (i.e., mangroves, tidal marshes and seagrasses) in climate mitigation programs in national and sub-national policies, with restoration and conservation of these ecosystems identified as potential activities to increase carbon accumulation through time. However, there is still a gap on the spatial scales needed to produce carbon offsets comparable with terrestrial or agricultural ecosystems. Here, we used the Coastal Blue Carbon InVEST 3.7.0 model to estimate future net carbon sequestration in blue carbon ecosystems along Australia's Great Barrier Reef (hereafter GBR) catchments, considering different management scenarios (i.e., reintroduction of tidal exchange through the removal of barriers, sea level rise, restoring low lying land) at three different spatial scales: whole GBR coastline, regional (14,000-16,300 ha), and local (335-370 ha) scales. The focus of the restoration (i.e., tidal marshes and/or mangroves) was dependent on data availability for each scenario. Furthermore, we also estimated the monetary value of carbon sequestration under each management scenario and spatial scale assessed in the study. We found that large scale restoration of tidal marshes could potentially sequester an additional ∼800,000 tonnes of CO2e by 2045 (potentially generating AU$12 million based on the average Australia carbon price), with greater opportunities when sea level rise is accounted for in the modelling. Also, we found that regional and local projects would generate up to 23 tonnes CO2e ha-1 by the end of the crediting period. Our results can guide future decisions in the blue carbon market and financing schemes, however, the return on investment is dependent on the carbon price and funding scheme available for project implementation.
Collapse
Affiliation(s)
- Micheli Duarte de Paula Costa
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, VIC, 3125, Australia.
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Nathan J Waltham
- Centre for Tropical Water and Aquatic Ecosystem Research, College of Science and Engineering, James Cook University, Cairns, QLD, 4870, Australia
| | - Monica M Moritsch
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, Santa Cruz, CA, 95060, USA; School of Life and Environmental Sciences, Deakin University, Warrnambool Campus, Warrnambool, VIC, 3280, Australia
| | - Don Butler
- Department of Environment and Science, Brisbane, QLD, 4000, Australia
| | - Trent Power
- Catchment Solutions, Mackay, QLD, 4750, Australia
| | - Evan Thomas
- Department of Environment and Science, Brisbane, QLD, 4000, Australia
| | - Peter I Macreadie
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, VIC, 3125, Australia
| |
Collapse
|
35
|
Sun Y, Zhang X, Reis S, Chen D, Xu J, Gu B. Dry Climate Aggravates Riverine Nitrogen Pollution in Australia by Water Volume Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16455-16464. [PMID: 34882400 DOI: 10.1021/acs.est.1c06242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Freshwater is a scarce resource, and maintaining water quality is of great importance in dryland Australia. How water quality is affected by the dry climate and socio-economic influences in Australia remains widely unknown. Here, we find that agriculture activity dominates reactive nitrogen (Nr) emissions to water bodies. Such emissions not only contribute to deteriorating water quality in Southeastern Australia but also harm marine ecosystems, including the Great Barrier Reef, a World Natural Heritage site. A dry and warm climate reduces the share of Nr emitted directly to water bodies; however, it increases the Nr concentration in surface water due to reduced water volume, leading to a 3-fold higher water Nr concentration compared to major rivers globally, e.g., in the US or China. Business-as-usual socioeconomic development would increase the total Nr emitted to surface water by at least 43% by 2050, while effective mitigation measures could reduce N runoff by about 27%. Advanced agricultural management strategies should be considered to reduce future environmental pressures due to N runoff in Australia.
Collapse
Affiliation(s)
- Yi Sun
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiuming Zhang
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Stefan Reis
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, U.K
- University of Exeter Medical School, European Centre for Environment and Health, Knowledge Spa, Truro TR1 3HD, U.K
| | - Deli Chen
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, P.R. China
| | - Baojing Gu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
36
|
Kroon FJ, Barneche DR, Emslie MJ. Fish predators control outbreaks of Crown-of-Thorns Starfish. Nat Commun 2021; 12:6986. [PMID: 34880205 PMCID: PMC8654818 DOI: 10.1038/s41467-021-26786-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/19/2021] [Indexed: 11/12/2022] Open
Abstract
Outbreaks of corallivorous Crown-of-Thorns Starfish (CoTS, Acanthaster spp.) have caused persistent and widespread loss of coral cover across Indo-Pacific coral reefs. The potential drivers of these outbreaks have been debated for more than 50 years, hindering effective management to limit their destructive impacts. Here, we show that fish biomass removal through commercial and recreational fisheries may be a major driver of CoTS population outbreaks. CoTS densities increase systematically with increasing fish biomass removal, including for known CoTS predators. Moreover, the biomass of fish species and families that influence CoTS densities are 1.4 to 2.1-fold higher on reefs within no-take marine reserves, while CoTS densities are 2.8-fold higher on reefs that are open to fishing, indicating the applicability of fisheries-based management to prevent CoTS outbreaks. Designing targeted fisheries management with consideration of CoTS population dynamics may offer a tangible and promising contribution to effectively reduce the detrimental impacts of CoTS outbreaks across the Indo-Pacific.
Collapse
Affiliation(s)
- Frederieke J Kroon
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia.
| | - Diego R Barneche
- Australian Institute of Marine Science, Crawley, WA, 6009, Australia
- Oceans Institute, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Michael J Emslie
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| |
Collapse
|
37
|
Fox RJ, Fisher TR, Gustafson AB, Koontz EL, Lepori-Bui M, Kvalnes KL, Bunnell-Young DE, Gardner JR, Lewis J, Winsten JR, Fisher KA, Silaphone K. An evaluation of the Chesapeake Bay management strategy to improve water quality in small agricultural watersheds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113478. [PMID: 34488113 DOI: 10.1016/j.jenvman.2021.113478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Chesapeake Bay water quality has been a concern since 1970. In rural areas, agriculture is the dominant N and P source, and the voluntary application of best management practices (BMPs) is the primary management tool. Here we test the hypothesis that the current management approach of primarily voluntary, untargeted BMP implementation is insufficient to create detectable, widespread reductions in N, P, and total suspended solid (TSS) concentrations in agricultural watersheds of the Choptank basin, a tributary of Chesapeake Bay. To test this hypothesis, we assessed BMP implementation and sampled water quality on participating farms, at intermediate streams within each watershed, and at watershed outlets of four watersheds from 2013 to 2014. We also present water quality data from 2003 to 2014 at the outlets of 12 additional agricultural and one forested watershed and survey-directed interviews of farmers. By the end of 2014, large numbers of BMPs, both structural and cultural, had been implemented. Of the 16 agricultural watersheds, 50% showed significant decreases in baseflow N, 37.5% showed no changes, and 12.5% showed increasing TN. Baseflow P significantly decreased at just one watershed, increased at one, and remained stable at 14. Stormflow N was similar to baseflow, but stormflow P was 5 times higher than baseflow. These data partially support our hypothesis. Surveys suggested farmers considered themselves responsible for the quality of water leaving their farms, but out-of-pocket cost was the major impediment to further BMP adoption. We suggest that greater outreach and more financial support for farmers to implement BMPs is required to increase the types and densities of BMPs needed to achieve regional water quality goals.
Collapse
Affiliation(s)
- R J Fox
- Department of Environmental Science and Studies, Washington College, 300 Washington Ave., Chestertown, MD, 21620, USA; Horn Point Laboratory, Center for Environmental Science, University of Maryland, Cambridge, MD, 21613, USA.
| | - T R Fisher
- Horn Point Laboratory, Center for Environmental Science, University of Maryland, Cambridge, MD, 21613, USA
| | - A B Gustafson
- Horn Point Laboratory, Center for Environmental Science, University of Maryland, Cambridge, MD, 21613, USA
| | - E L Koontz
- Horn Point Laboratory, Center for Environmental Science, University of Maryland, Cambridge, MD, 21613, USA
| | - M Lepori-Bui
- Horn Point Laboratory, Center for Environmental Science, University of Maryland, Cambridge, MD, 21613, USA
| | - K L Kvalnes
- Horn Point Laboratory, Center for Environmental Science, University of Maryland, Cambridge, MD, 21613, USA
| | - D E Bunnell-Young
- Horn Point Laboratory, Center for Environmental Science, University of Maryland, Cambridge, MD, 21613, USA
| | - J R Gardner
- Horn Point Laboratory, Center for Environmental Science, University of Maryland, Cambridge, MD, 21613, USA
| | - J Lewis
- University of Maryland Extension, Denton, MD, 21629, USA
| | - J R Winsten
- Winrock International, Arlington, VA, 22202, USA
| | - K A Fisher
- Winrock International, Arlington, VA, 22202, USA
| | - K Silaphone
- Horn Point Laboratory, Center for Environmental Science, University of Maryland, Cambridge, MD, 21613, USA; Department of Geography and Geosciences, Salisbury University, Salisbury, MD, 21801, USA
| |
Collapse
|
38
|
Creighton C, Waterhouse J, Day JC, Brodie J. Criteria for effective regional scale catchment to reef management: A case study of Australia's Great Barrier Reef. MARINE POLLUTION BULLETIN 2021; 173:112882. [PMID: 34534939 DOI: 10.1016/j.marpolbul.2021.112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Many coastal and marine ecosystems around the world are under increasing threat from a range of anthropogenic influences. The management of these threats continues to present ongoing challenges, with many ecosystems increasingly requiring active restoration to support or re-establish the ecosystem's biological, cultural, social and economic values. The current condition of Australia's Great Barrier Reef (GBR) and its threats, including water quality, climate change and the loss of wetlands, causing the continuing decline in the GBR's ecological condition and function, has received global attention. Activities aimed at halting these declines and system restoration have been underway for over forty years. These activities are challenging to implement, and much has been learnt from their various outcomes. This paper considers the GBR and the associated management activities as a case study for regional scale catchment to reef management. It summarises the management approaches to date, describing the key role that science, policy and community have played in underpinning various investments. Four criteria for success are proposed: the lead role of the community, the need for a systems approach, the need for targeted, cost-effective and sustainable long-term investment, and importantly, building knowledge and maintaining consensus and political commitment.
Collapse
Affiliation(s)
- Colin Creighton
- Tropical Water & Aquatic Ecosystem Research, James Cook University, Townsville, Australia
| | - Jane Waterhouse
- Tropical Water & Aquatic Ecosystem Research, James Cook University, Townsville, Australia; C(2)O Consulting coasts climate oceans, Townsville, Australia.
| | - Jon C Day
- ARC Centre for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Jon Brodie
- C(2)O Consulting coasts climate oceans, Townsville, Australia; ARC Centre for Coral Reef Studies, James Cook University, Townsville, Australia
| |
Collapse
|
39
|
Eberhard R, Coggan A, Jarvis D, Hamman E, Taylor B, Baresi U, Vella K, Dean AJ, Deane F, Helmstedt K, Mayfield H. Understanding the effectiveness of policy instruments to encourage adoption of farming practices to improve water quality for the Great Barrier Reef. MARINE POLLUTION BULLETIN 2021; 172:112793. [PMID: 34385021 DOI: 10.1016/j.marpolbul.2021.112793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Governments in Australia and internationally are experimenting with policy instruments to facilitate the adoption of farming practices with reduced environmental impacts. The Great Barrier Reef (Australia) is one such case, where sustained efforts over 20 years have yielded insufficient progress towards targets to reduce the impacts of agriculture on water quality in downstream marine ecosystems. We present a critical review of policy instruments as implemented in Great Barrier Reef catchments. We catalogue the evolving mix of policy instruments employed in reef programs, and examine evidence of the effectiveness of agricultural extension, financial incentives, and direct regulation of farming practices. There is little robust evidence to assess instrument effectiveness, in part due to the evolving mix of the instruments employed, weak program evaluation and heterogeneity of agricultural enterprises. We identify the need to improve the understanding of instrument fit to landholders and enterprises. We recommend a modelling approach to clarify pathways to impact and guide improved policy evaluation.
Collapse
Affiliation(s)
- Rachel Eberhard
- School of Architecture and Built Environment, Queensland University of Technology, Australia.
| | - Anthea Coggan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, Brisbane, Australia
| | - Diane Jarvis
- College of Business, Law and Governance, James Cook University, Australia
| | - Evan Hamman
- School of Law, Queensland University of Technology, Australia
| | - Bruce Taylor
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, Brisbane, Australia
| | - Umberto Baresi
- School of Architecture and Built Environment, Queensland University of Technology, Australia
| | - Karen Vella
- School of Architecture and Built Environment, Queensland University of Technology, Australia
| | - Angela J Dean
- Centre for the Environment, School of Biology and Environmental Science, Queensland University of Technology, Australia
| | - Felicity Deane
- School of Law, Queensland University of Technology, Australia
| | - Kate Helmstedt
- School of Mathematical Sciences, Queensland University of Technology, Australia
| | - Helen Mayfield
- School of Mathematical Sciences, Queensland University of Technology, Australia
| |
Collapse
|
40
|
Liu S, Ryu D, Webb JA, Lintern A, Guo D, Waters D, Western AW. A multi-model approach to assessing the impacts of catchment characteristics on spatial water quality in the Great Barrier Reef catchments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117337. [PMID: 34000444 DOI: 10.1016/j.envpol.2021.117337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/03/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Water quality monitoring programs often collect large amounts of data with limited attention given to the assessment of the dominant drivers of spatial and temporal water quality variations at the catchment scale. This study uses a multi-model approach: a) to identify the influential catchment characteristics affecting spatial variability in water quality; and b) to predict spatial variability in water quality more reliably and robustly. Tropical catchments in the Great Barrier Reef (GBR) area, Australia, were used as a case study. We developed statistical models using 58 catchment characteristics to predict the spatial variability in water quality in 32 GBR catchments. An exhaustive search method coupled with multi-model inference approaches were used to identify important catchment characteristics and predict the spatial variation in water quality across catchments. Bootstrapping and cross-validation approaches were used to assess the uncertainty in identified important factors and robustness of multi-model structure, respectively. The results indicate that water quality variables were generally most influenced by the natural characteristics of catchments (e.g., soil type and annual rainfall), while anthropogenic characteristics (i.e., land use) also showed significant influence on dissolved nutrient species (e.g., NOX, NH4 and FRP). The multi-model structures developed in this work were able to predict average event-mean concentration well, with Nash-Sutcliffe coefficient ranging from 0.68 to 0.96. This work provides data-driven evidence for catchment managers, which can help them develop effective water quality management strategies.
Collapse
Affiliation(s)
- Shuci Liu
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Dongryeol Ryu
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - J Angus Webb
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anna Lintern
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia; Department of Civil Engineering, Monash University, VIC, 3800, Australia
| | - Danlu Guo
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - David Waters
- Queensland Department of Resources, Toowoomba, QLD, 4350, Australia
| | - Andrew W Western
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
41
|
McCloskey GL, Baheerathan R, Dougall C, Ellis R, Bennett FR, Waters D, Darr S, Fentie B, Hateley LR, Askildsen M. Modelled estimates of dissolved inorganic nitrogen exported to the Great Barrier Reef lagoon. MARINE POLLUTION BULLETIN 2021; 171:112655. [PMID: 34265552 DOI: 10.1016/j.marpolbul.2021.112655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Measuring stream pollutant loads across the Great Barrier Reef (GBR) catchment area (GBRCA) is challenging due to the spatial extent, climate variability, changing land use and evolving land management practices, and cost. Thus, models are used to estimate baseline pollutant loads. The eWater Source modelling framework is coupled with agricultural paddock scale models and the GBR Dynamic SedNet plugin to simulate dissolved inorganic nitrogen (DIN) generation and transport processes across the GBRCA. Catchment scale monitoring of flow and loads are used to calibrate the models, and performance is assessed qualitatively and quantitatively. Modelling indicates almost half (47%) of the total modelled DIN load exported to the GBR lagoon is from the Wet Tropics, and almost half of the total modelled DIN load is from sugarcane areas. We demonstrate that using locally developed, customised models coupled with a complementary monitoring program can produce reliable estimates of pollutant loads.
Collapse
Affiliation(s)
- G L McCloskey
- Department of Resources, Queensland Government, Australia.
| | - R Baheerathan
- Department of Resources, Queensland Government, Australia
| | - C Dougall
- Department of Resources, Queensland Government, Australia
| | - R Ellis
- Department of Environment and Science, Queensland Government, Australia
| | - F R Bennett
- Department of Environment and Science, Queensland Government, Australia
| | - D Waters
- Department of Resources, Queensland Government, Australia
| | - S Darr
- Department of Resources, Queensland Government, Australia
| | - B Fentie
- Department of Environment and Science, Queensland Government, Australia
| | - L R Hateley
- Department of Resources, Queensland Government, Australia
| | - M Askildsen
- Department of Resources, Queensland Government, Australia
| |
Collapse
|
42
|
Star M, Rolfe J, Farr M, Poggio M. Transferring and extrapolating estimates of cost-effectiveness for water quality outcomes: Challenges and lessons from the Great Barrier Reef. MARINE POLLUTION BULLETIN 2021; 171:112870. [PMID: 34507203 DOI: 10.1016/j.marpolbul.2021.112870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
In recent decades the declining health of the Great Barrier Reef has led to a number of government policies being implemented to reduce pollutant loads from the adjacent agricultural-based catchments. There is increasing use of cost-effectiveness measures to help prioritise between different programs and actions to reduce pollutants, given limited resources and the scale of the issues. However there are a small number of primary studies available, and the consistency of cost-effectiveness measures and their application is limited, particularly given the various uncertainties that underlie the measures. Unlike Europe and the United States of America water policy or benefit transfer approaches, there are no procedural guidance studies that must be followed in the context of the Great Barrier Reef catchments. In this study we review the use of cost effectiveness estimates for pollutant reduction into the Great Barrier Reef in the context of a benefit transfer framework, where estimates of costs from a particular case study are transferred to various scenarios within different catchments. The conclusions suggest a framework be developed for the Great Barrier Reef, which is consistent, transparent, and rigorous.
Collapse
Affiliation(s)
- Megan Star
- Central Queensland University, Australia; Star Economics Pty Ltd, Australia.
| | - John Rolfe
- Central Queensland University, Australia
| | - Marina Farr
- Qld Department of Agriculture and Fisheries, Australia
| | - Mark Poggio
- Qld Department of Agriculture and Fisheries, Australia
| |
Collapse
|
43
|
Study Progress of Important Agricultural Heritage Systems (IAHS): A Literature Analysis. SUSTAINABILITY 2021. [DOI: 10.3390/su131910859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Important Agricultural Heritage Systems (IAHS), as a new type of heritage, has received extensive attention from the international scientific communities. With the increase of IAHS research, reviews on it have been conducted by many scholars. However, visualized research to show future research trends of IAHS are lacking. Therefore, using metrology analysis methods, this study aims at presenting the progress of research and the general development trends of Globally Important Agricultural Heritage Systems (GIAHS) in the world from 2006 to 2020 to provide ideas for the development of countries or regions in the future. This study mapped 292 literatures from Web of Science core collections from 2006 to 2020 by CiteSpace software. The results show that research on IAHS from 2006 to 2020 experienced two stages: the fluctuating increase stage, and the steady growth stage. Author groups from China, Italy, the USA, Japan, etc., contributed many papers on IAHS. Institutions including the Chinese Academy of Sciences, the University of Florence and the University of Padua in Italy, etc., have a relatively high influence on international IAHS research. Agriculture Ecosystems & Environment is the most cited journal. Agricultural Heritage Systems, regeneration, agriculture, agroforestry, dry-stone wall, social capital, instability, and agricultural biodiversity have been hotspots in the past 15 years. The research themes mainly focus on GIAHS, tourism, livelihood assets, and direct georeferencing. Authors in different regions concern different research themes. In the future, the fields of applications and microscopic views, social sciences, applications of standardized quantitative research methods, and broadened international cooperation should be paid more attention.
Collapse
|
44
|
Tsatsaros JH, Bohnet IC, Brodie JE, Valentine P. A transdisciplinary approach supports community-led water quality monitoring in river basins adjacent to the Great Barrier Reef, Australia. MARINE POLLUTION BULLETIN 2021; 170:112629. [PMID: 34157538 DOI: 10.1016/j.marpolbul.2021.112629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Water quality monitoring programs (WQMPs) are crucial for assessment of water quality in river basins where agricultural intensification and development raise concerns in freshwater and marine environments. WQMPs if supported by scientists and local communities, and if based on the knowledge needs of all stakeholders, can provide vital information supporting resource management actions. Our paper focuses on the transdisciplinary development and implementation of a community-led pilot WQMP for the Tully River basin, adjacent to the Great Barrier Reef (GBR). The community-led pilot WQMP was established to fill some knowledge gaps identified during development of the Tully Water Quality Improvement Plan (WQIP) and to provide opportunities for active stakeholder participation in the monitoring. Results indicated some water quality parameters (i.e. nitrates and total phosphorus) had higher than expected values and exceeded state water quality guidelines. Hence, the results provided an evidence base for freshwater quality objective development to conserve, protect and improve water quality conditions in this basin and GBR. Leadership of Indigenous people in the pilot WQMP recognizes their deep desire to improve water resources outcomes and to care for country and people.
Collapse
Affiliation(s)
- Julie H Tsatsaros
- Forestry Department, New Mexico Highlands University, P.O. Box 9000, Las Vegas, NM 87701, USA; School of Earth and Environmental Sciences, College of Science and Engineering, James Cook University, Cairns, QLD 4870, Australia.
| | - Iris C Bohnet
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic.
| | - Jon E Brodie
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| | - Peter Valentine
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
45
|
Biggs JS, Everingham Y, Skocaj DM, Schroeder BL, Sexton J, Thorburn PJ. The potential for refining nitrogen fertiliser management through accounting for climate impacts: An exploratory study for the Tully region. MARINE POLLUTION BULLETIN 2021; 170:112664. [PMID: 34217051 DOI: 10.1016/j.marpolbul.2021.112664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/30/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Increasing the precision of nitrogen (N) fertiliser management in cropping systems is integral to increasing the environmental and economic sustainability of cropping. In a simulation study, we found that natural variability in year-to-year climate had a major effect on optimum N fertiliser rates for sugarcane in the Tully region of north-eastern Australia, where N discharges pose high risks to Great Barrier Reef ecosystems. There were interactions between climate and other factors affecting crop growth that made optimum N rates field-specific. The regional average optimum N fertiliser rate was substantially lower than current industry guidelines. Likewise, simulated N losses to the environment at optimum N fertiliser rates were substantially lower than the simulated losses at current industry fertiliser guidelines. Dissolved N discharged from rivers is related to fertiliser applications. If the reductions in N applications identified in the study occurred in the Tully region, the reduction in dissolved N discharges from rivers in the region would almost meet current water quality improvement targets. Whilst there were many assumptions made in this exploratory study, and there are many steps between the study and a practically implemented dynamic N fertiliser recommendation system, the potential environmental benefits justify field validation and further development of the concepts identified in the study.
Collapse
Affiliation(s)
- J S Biggs
- CSIRO Agriculture and Food, 306 Carmody Rd, St. Lucia, Queensland 4067, Australia.
| | - Y Everingham
- Centre for Tropical Environmental & Sustainability Science, James Cook University, Townsville, Australia
| | - D M Skocaj
- Sugar Research Australia Limited, PO Box 566, Tully 4854, Australia
| | - B L Schroeder
- University of Southern Queensland, Toowoomba, Qld 4350, Australia
| | - J Sexton
- Centre for Tropical Environmental & Sustainability Science, James Cook University, Townsville, Australia
| | - P J Thorburn
- CSIRO Agriculture and Food, 306 Carmody Rd, St. Lucia, Queensland 4067, Australia
| |
Collapse
|
46
|
Davis AM, Webster AJ, Fitch P, Fielke S, Taylor BM, Morris S, Thorburn PJ. The changing face of science communication, technology, extension and improved decision-making at the farm-water quality interface. MARINE POLLUTION BULLETIN 2021; 169:112534. [PMID: 34225212 DOI: 10.1016/j.marpolbul.2021.112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 06/13/2023]
Abstract
In recent decades, significant advances have been made in understanding the generation, fates and consequences of water quality pollutants in the Great Barrier Reef ecosystem. However, skepticism and lack of trust in water quality science by farming stakeholders has emerged as a significant challenge. The ongoing failures of both compulsory and particularly voluntary practices to improve land management and reduce diffuse agricultural pollution from the Great Barrier Reef catchment underlines the need for more effective communication of water quality issues at appropriate decision-making scales to landholders. Using recent Great Barrier Reef catchment experiences as examples, we highlight several emerging themes and opportunities in using technology to better communicate land use-water quality impacts and delivery of actionable knowledge to farmers, specifically supporting decision-making, behavior change, and the spatial identification of nutrient generation 'hotspots' in intensive agriculture catchments. We also make recommendations for co-designed monitoring-extension platforms involving farmers, governments, researchers, and related agencies, to cut across stakeholder skepticism, and achieve desired water quality and ecosystem outcomes.
Collapse
Affiliation(s)
- Aaron M Davis
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville 4811, Australia.
| | | | | | | | | | | | | |
Collapse
|
47
|
Donovan M, Monaghan R. Impacts of grazing on ground cover, soil physical properties and soil loss via surface erosion: A novel geospatial modelling approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112206. [PMID: 33721762 DOI: 10.1016/j.jenvman.2021.112206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Agricultural expansion and overgrazing are globally recognized as key contributors to accelerated soil degradation and surface erosion, with direct consequences for land productivity, and environmental health. Measured impacts of livestock grazing on soil physical properties and ground cover are absent in soil loss models (e.g., Revised Universal Soil Loss Equation, RUSLE) despite significant impacts to surface erosion. We developed a novel model that captures changes to ground cover and soil properties (permeability and structure) as a function of grazing intensity (density, duration, history, and stock type), as well as soil clay and water contents. The model outputs were integrated within RUSLE to calculate a treaded soil erodibility (Ktr) and grazed cover factors (Cgr) at seasonal timescales (3-month windows) to account for variability in soil moisture content, grazing practices, vegetation growth and senescence, and rainfall. Grazed pastures and winter-forage paddocks exhibit distinct changes in soil erodibility and soil losses, which are most pronounced for wet soils when plant cover is reduced/minimal. On average, typical pasture grazing pressures increase soil erodibility by 6% (range = 1-90%), compared to 60% (18-310%) for intensive winter forage paddocks. Further, negligible ground cover following forage crop grazing increases surface erosion by a factor of 10 (±13) relative to grazed pastures, which exhibit soil losses (μ = 83 t km-2 yr-1; range = 11.6 to 246) comparable to natural uncropped catchments (100-200 t km-2 yr-1). Exacerbated soil losses from winter forage-crop paddocks (μ = 1,100 t km-2 yr-1) arose from significant degradation of soil physical properties and exposing soils directly to rainfall and runoff. We conclude that proactive decisions to reduce treading damage and avoid high-density grazing will far exceed reactive practices seeking to trap sediments lost from grazed lands.
Collapse
Affiliation(s)
- Mitchell Donovan
- AgResearch Limited Invermay Agricultural Centre Puddle Alley, Private Bag 50014, Mosgiel, 9053, New Zealand.
| | - Ross Monaghan
- AgResearch Limited Invermay Agricultural Centre Puddle Alley, Private Bag 50014, Mosgiel, 9053, New Zealand.
| |
Collapse
|
48
|
Waltham NJ, Wegscheidl C, Volders A, Smart JCR, Hasan S, Lédée E, Waterhouse J. Land use conversion to improve water quality in high DIN risk, low-lying sugarcane areas of the Great Barrier Reef catchments. MARINE POLLUTION BULLETIN 2021; 167:112373. [PMID: 33895596 DOI: 10.1016/j.marpolbul.2021.112373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Eutrophication of coastal and nearshore receiving environments downstream of intensive agricultural production areas is a global issue. The Reef 2050 Water Quality Improvement Plan (2017-2022) sets ambitious targets for reducing pollutant loads entering the Great Barrier Reef from contributing agricultural catchments. At a regional scale, the Wet Tropics end-of-catchment target load reduction for dissolved inorganic nitrogen (DIN) is 60% from the 2012-2013 anthropogenic load level. However, not even with the combined efforts of the Reef Regulations (December 2019) mandate and adoption of best practice nutrient management on farm, is it likely that these DIN targets will be reached. Thus, there is a need for innovative and cost-effective approaches to deliver further water quality improvement. Transitioning low-lying, marginal sugarcane land to alternative land uses that require lower or no nitrogen inputs, but still provide farmers with income streams, is a potentially attractive solution. In this study, a multi-criteria analysis was conducted to identify sites suitable for such alternative land uses. The cost-effectiveness of DIN reductions from these land use changes were calculated, accounting for reductions in annuity gross margins and land conversion cost. In certain locations (where conversion costs are low and DIN reductions are high) treatment wetlands and no-input cattle grazing offer cost-effective DIN reduction in the range of 20-26$/kg DIN. This compares favourably with existing agricultural extension-based approaches (c. $50/kg DIN reduction). Ecosystem service wetlands (i.e., wetland restoration for fish production) - again when appropriately situated - offer the prospect of even more cost-effective performance (11-14 $/kg DIN reduction). These results, in conjunction with best management practices, support the premise that alternative land uses are cost-effective options for improving water quality in certain areas of low-lying, low productivity sugarcane land. On-going investments by government in addition to private market funding mechanisms could be appropriate for supporting such land use transitions. These approaches need to be tested and refined via targeted pilot projects, as part of a whole-of-landscape approach to achieve broader reef water quality targets.
Collapse
Affiliation(s)
- Nathan J Waltham
- Centre for Tropical Water and Aquatic Ecosystem Research, College of Science and Engineering, James Cook University, Queensland 4811, Australia.
| | - Carla Wegscheidl
- Centre for Tropical Water and Aquatic Ecosystem Research, College of Science and Engineering, James Cook University, Queensland 4811, Australia; Department of Agriculture and Fisheries, PO Box 1085, Townsville, Queensland 4810, Australia
| | - Adrian Volders
- Australian Rivers Institute, Griffith University, Queensland 4111, Australia
| | - James C R Smart
- Australian Rivers Institute, Griffith University, Queensland 4111, Australia; School of Environment and Science, Griffith University, Queensland 4111, Australia
| | - Syezlin Hasan
- Australian Rivers Institute, Griffith University, Queensland 4111, Australia
| | - Elodie Lédée
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Jane Waterhouse
- Centre for Tropical Water and Aquatic Ecosystem Research, College of Science and Engineering, James Cook University, Queensland 4811, Australia
| |
Collapse
|
49
|
Okumah M, Chapman PJ, Martin-Ortega J, Novo P, Ferré M, Jones S, Pearson P, Froggatt T. Do awareness-focussed approaches to mitigating diffuse pollution work? A case study using behavioural and water quality evidence. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112242. [PMID: 33711664 DOI: 10.1016/j.jenvman.2021.112242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Efforts to tackle diffuse water pollution from agriculture are increasingly focusing on improving farmers' awareness under the expectation that this would contribute to adoption of best management practices (BMPs) and, in turn, result in water quality improvements. To date, however, no study has explored the full awareness-behaviour-water quality pathway; with previous studies having mostly addressed the awareness-behaviour link relying on disciplinary approaches. Using an interdisciplinary approach, we investigate whether awareness-focussed approaches to mitigating diffuse water pollution from agriculture indeed result in water quality improvement, addressing the pathway in full. We worked with Dŵr Cymru Welsh Water (a water and waste utility company in the UK) on a pesticide pollution intervention programme, referred to as "weed wiper trial". The main goal of the trial was to raise farmers' awareness regarding pesticide management practices and to promote uptake of BMPs to tackle the rising concentrations of the pesticide MCPA (2-methyl-4-chlorophenoxyacetic acid) in raw water in three catchments in Wales. Using factorial analysis of variance, we analysed MCPA concentrations from 2006 to 2019 in the three targeted catchments and in three control catchments. This was followed by semi-structured in-depth interviews with institutional stakeholders and farmers with varying degrees of exposure to the weed wiper trial. Results show that MCPA concentration for both targeted and control catchments had reduced after the implementation of the weed wiper trial. However, the decline was significantly larger (F(1) = 6.551, p < 0.05, n = 3077, Partial eta-squared (ηp2) = 0.002) for the targeted catchments (mean = 45.2%) compared to the control catchments (mean = 10.9%). Results from the stakeholder interviews indicate that improved awareness contributed to changes in farmers' behaviour and that these can be related to the water quality improvements reflected by the decline in MCPA concentration. Alongside awareness, other psychosocial, economic, agronomic factors, catchment and weather conditions also influenced farmer's ability to implement BMPs and thus overall water quality improvements.
Collapse
Affiliation(s)
- Murat Okumah
- Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, England, UK.
| | - Pippa J Chapman
- School of Geography, University of Leeds, Leeds, LS2 9JT, England, UK
| | - Julia Martin-Ortega
- Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, England, UK
| | - Paula Novo
- Rural Economy, Environment and Society Department, Scotland's Rural College (SRUC), Edinburgh, EH9 3JG, Scotland, UK
| | - Marie Ferré
- Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, England, UK
| | - Sarah Jones
- Water Services Science, Dŵr Cymru Welsh Water, Pentwyn Road, Nelson, Treharris, CF46 6LY, UK
| | - Phillippa Pearson
- Water Services Science, Dŵr Cymru Welsh Water, Pentwyn Road, Nelson, Treharris, CF46 6LY, UK
| | - Tara Froggatt
- Water Services Science, Dŵr Cymru Welsh Water, Pentwyn Road, Nelson, Treharris, CF46 6LY, UK
| |
Collapse
|
50
|
Lewis SE, Bartley R, Wilkinson SN, Bainbridge ZT, Henderson AE, James CS, Irvine SA, Brodie JE. Land use change in the river basins of the Great Barrier Reef, 1860 to 2019: A foundation for understanding environmental history across the catchment to reef continuum. MARINE POLLUTION BULLETIN 2021; 166:112193. [PMID: 33706212 DOI: 10.1016/j.marpolbul.2021.112193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/22/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Land use in the catchments draining to the Great Barrier Reef lagoon has changed considerably since the introduction of livestock grazing, various crops, mining and urban development. Together these changes have resulted in increased pollutant loads and impaired coastal water quality. This study compiled records to produce annual time-series since 1860 of human population, livestock numbers and agricultural areas at the scale of surface drainage river basins, natural resource management regions and the whole Great Barrier Reef catchment area. Cattle and several crops have experienced progressive expansion interspersed by declines associated with droughts and diseases. Land uses which have experienced all time maxima since the year 2000 include cattle numbers and the areas of sugar cane, bananas and cotton. A Burdekin Basin case study shows that sediment loads initially increased with the introduction of livestock and mining, remained elevated with agricultural development, and declined slightly with the Burdekin Falls Dam construction.
Collapse
Affiliation(s)
- Stephen E Lewis
- Catchment to Reef Research Group, TropWATER, James Cook University, Townsville, Queensland 4811, Australia.
| | - Rebecca Bartley
- CSIRO Land and Water, PO Box 2583, Brisbane, Queensland 4068, Australia
| | - Scott N Wilkinson
- CSIRO Land and Water, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - Zoe T Bainbridge
- Catchment to Reef Research Group, TropWATER, James Cook University, Townsville, Queensland 4811, Australia
| | | | - Cassandra S James
- Catchment to Reef Research Group, TropWATER, James Cook University, Townsville, Queensland 4811, Australia
| | - Scott A Irvine
- Grazing Land Systems, Land Surface Sciences, Science and Technology Division, Queensland Department of Environment and Science, Ecosciences Precinct, GPO Box 2454, Brisbane, Australia
| | - Jon E Brodie
- Deceased, Formally James Cook University, Townsville, Queensland, Australia
| |
Collapse
|