1
|
James CC, Allen AE, Lampe RH, Rabines A, Barton AD. Endemic, cosmopolitan, and generalist taxa and their habitat affinities within a coastal marine microbiome. Sci Rep 2024; 14:22408. [PMID: 39333653 PMCID: PMC11437011 DOI: 10.1038/s41598-024-69991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/12/2024] [Indexed: 09/29/2024] Open
Abstract
The relative prevalence of endemic and cosmopolitan biogeographic ranges in marine microbes, and the factors that shape these patterns, are not well known. Using prokaryotic and eukaryotic amplicon sequence data spanning 445 near-surface samples in the Southern California Current region from 2014 to 2020, we quantified the proportion of taxa exhibiting endemic, cosmopolitan, and generalist distributions in this region. Using in-situ data on temperature, salinity, and nitrogen, we categorized oceanic habitats that were internally consistent but whose location varied over time. In this context, we defined cosmopolitan taxa as those that appeared in all regional habitats and endemics as taxa that only appeared in one habitat. Generalists were defined as taxa occupying more than one but not all habitats. We also quantified each taxon's habitat affinity, defined as habitats where taxa were significantly more abundant than expected. Approximately 20% of taxa exhibited endemic ranges, while around 30% exhibited cosmopolitan ranges. Most microbial taxa (50.3%) were generalists. Many of these taxa had no habitat affinity (> 70%) and were relatively rare. Our results for this region show that, like terrestrial systems and for metazoans, cosmopolitan and endemic biogeographies are common, but with the addition of a large number of taxa that are rare and randomly distributed.
Collapse
Affiliation(s)
- Chase C James
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- University of Southern California, 3620 S Vermont Ave, Los Angeles, CA, 90007, USA
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA.
| | - Robert H Lampe
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Ariel Rabines
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Andrew D Barton
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
- Department of Ecology, Behavior and Evolution, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Dutta A, Connors E, Trinh R, Erazo N, Dasarathy S, Ducklow HW, Steinberg DK, Schofield OM, Bowman JS. Depth drives the distribution of microbial ecological functions in the coastal western Antarctic Peninsula. Front Microbiol 2023; 14:1168507. [PMID: 37275172 PMCID: PMC10232865 DOI: 10.3389/fmicb.2023.1168507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
The Antarctic marine environment is a dynamic ecosystem where microorganisms play an important role in key biogeochemical cycles. Despite the role that microbes play in this ecosystem, little is known about the genetic and metabolic diversity of Antarctic marine microbes. In this study we leveraged DNA samples collected by the Palmer Long Term Ecological Research (LTER) project to sequence shotgun metagenomes of 48 key samples collected across the marine ecosystem of the western Antarctic Peninsula (wAP). We developed an in silico metagenomics pipeline (iMAGine) for processing metagenomic data and constructing metagenome-assembled genomes (MAGs), identifying a diverse genomic repertoire related to the carbon, sulfur, and nitrogen cycles. A novel analytical approach based on gene coverage was used to understand the differences in microbial community functions across depth and region. Our results showed that microbial community functions were partitioned based on depth. Bacterial members harbored diverse genes for carbohydrate transformation, indicating the availability of processes to convert complex carbons into simpler bioavailable forms. We generated 137 dereplicated MAGs giving us a new perspective on the role of prokaryotes in the coastal wAP. In particular, the presence of mixotrophic prokaryotes capable of autotrophic and heterotrophic lifestyles indicated a metabolically flexible community, which we hypothesize enables survival under rapidly changing conditions. Overall, the study identified key microbial community functions and created a valuable sequence library collection for future Antarctic genomics research.
Collapse
Affiliation(s)
- Avishek Dutta
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
- Department of Geology, University of Georgia, Athens, GA, United States
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States
| | - Elizabeth Connors
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Rebecca Trinh
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Natalia Erazo
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Srishti Dasarathy
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Hugh W. Ducklow
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Deborah K. Steinberg
- Department of Biological Science, College of William & Mary, Virginia Institute of Marine Science, Gloucester Point, VA, United States
| | - Oscar M. Schofield
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Jeff S. Bowman
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|