1
|
Wang ZH, Li P, Wang C, Yang X. Impact of urban trees on carbon dioxide exchange: Mechanistic pathways, environmental controls, and feedback. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124028. [PMID: 39778357 DOI: 10.1016/j.jenvman.2025.124028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 12/03/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
The increase of carbon dioxide (CO2) concentration in the atmosphere is held responsible for global climate changes. To meet the objective of achieving carbon neutrality and keeping global warming in check, many cities, as hotspots of CO2 emissions, have been promoting the use of urban greenery, urban trees in particular, to mitigate carbon emissions from the built environment. However, there remain large uncertainty and divergence of the potential of urban trees for carbon mitigation, with the underlying mechanisms poorly understood. In this study, we conducted a comprehensive survey of the biophysical functions, their environmental controls, and possible heat-carbon-water feedback that mechanistically govern the CO2 exchange processes of trees in the built environment. This review helps to clarify some disparities and enables us to gain clearer insights into the participatory role of urban trees in the dynamics of CO2 exchange. In addition, we proposed a few guidelines for urban planning and management strategies of using trees to promote the sustainability of urban ecosystems.
Collapse
Affiliation(s)
- Zhi-Hua Wang
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA.
| | - Peiyuan Li
- Discovery Partners Institute, University of Illinois System, Chicago, IL, USA
| | - Chenghao Wang
- School of Meteorology, University of Oklahoma, Norman, OK, USA; Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, OK, USA
| | - Xueli Yang
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Fang X, Lin T, Zhang B, Lai Y, Chen X, Xiao Y, Xie Y, Zhu J, Yang Y, Wang J. Regulating carbon and water balance as a strategy to cope with warming and drought climate in Cunninghamia lanceolata in southern China. FRONTIERS IN PLANT SCIENCE 2022; 13:1048930. [PMID: 36466246 PMCID: PMC9714357 DOI: 10.3389/fpls.2022.1048930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Human activities have increased the possibility of simultaneous warming and drought, which will lead to different carbon (C) allocation and water use strategies in plants. However, there is no conclusive information from previous studies. To explore C and water balance strategies of plants in response to warming and drought, we designed a 4-year experiment that included control (CT), warming (W, with a 5°C increase in temperature), drought (D, with a 50% decrease in precipitation), and warming and drought conditions (WD) to investigate the non-structural carbohydrate (NSC), C and nitrogen (N) stoichiometry, and intrinsic water use efficiency (iWUE) of leaves, roots, and litter of Cunninghamia lanceolata, a major tree species in southern China. We found that W significantly increased NSC and starch in the leaves, and increased NSC and soluble sugar is one of the components of NSC in the roots. D significantly increased leaves' NSC and starch, and increased litter soluble sugar. The NSC of the WD did not change significantly, but the soluble sugar was significantly reduced. The iWUE of leaves increased under D, and surprisingly, W and D significantly increased the iWUE of litter. The iWUE was positively correlated with NSC and soluble sugar. In addition, D significantly increased N at the roots and litter, resulting in a significant decrease in the C/N ratio. The principal component analysis showed that NSC, iWUE, N, and C/N ratio can be used as identifying indicators for C. lanceolata in both warming and drought periods. This study stated that under warming or drought, C. lanceolata would decline in growth to maintain high NSC levels and reduce water loss. Leaves would store starch to improve the resiliency of the aboveground parts, and the roots would increase soluble sugar and N accumulation to conserve water and to help C sequestration in the underground part. At the same time, defoliation was potentially beneficial for maintaining C and water balance. However, when combined with warming and drought, C. lanceolata growth will be limited by C, resulting in decreased NSC. This study provides a new insight into the coping strategies of plants in adapting to warming and drought environments.
Collapse
Affiliation(s)
- Xuan Fang
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, China
- School of Life Sciences, Fujian Normal University, Fuzhou, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China
| | - Tian Lin
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, China
| | - Biyao Zhang
- School of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yongru Lai
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, China
- School of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xupeng Chen
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, China
- School of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yixin Xiao
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, China
- School of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yiqing Xie
- Institute of Economic Forestry, Fujian Academy of Forestry, Fuzhou, China
| | - Jinmao Zhu
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, China
- School of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yusheng Yang
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou, China
- School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jian Wang
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China
- School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
3
|
The Historical Complexity of Tree Height Growth Dynamic Associated with Climate Change in Western North America. FORESTS 2022. [DOI: 10.3390/f13050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of climate on tree growth has received increased interest in the context of climate change. However, most studies have been limited geographically and with respect to species. Here, sixteen tree species of western North America were used to investigate the response of trees to climate change. Forest inventory data from 36,944 stands established between 1600 and 1968 throughout western North America were summarized. The height growth (top height at a breast-height age of 50 years) of healthy dominant and co-dominant trees was related to annual and summer temperatures, the annual and summer Palmer Drought Severity Indexes (PDSIs), and the tree establishment date (ED). Climate-induced height growth patterns were then tested to determine links to the spatial environment (geographic locations and soil properties), the species’ range (coastal, interior, or both), and traits (shade tolerance and leaf form). Analysis was performed using a linear mixed model (total species) and a general linear model (species scale). Climate change was globally beneficial, except for Alaska yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach), and growth patterns were magnified for coastal-ranged, high-shade-tolerant, and broadleaf species, and mostly at the northernmost extents of these species’ ranges. Nevertheless, growth patterns were more complex with respect to soil properties. A growth decline for some species was observed at higher latitudes and elevations and was possibly related to increased cloudiness, precipitation, or drought (in interior areas). These results highlight the spatio-temporal complexity of the growth response to recent global climate change.
Collapse
|
4
|
Anderson‐Teixeira KJ, Herrmann V, Rollinson CR, Gonzalez B, Gonzalez‐Akre EB, Pederson N, Alexander MR, Allen CD, Alfaro‐Sánchez R, Awada T, Baltzer JL, Baker PJ, Birch JD, Bunyavejchewin S, Cherubini P, Davies SJ, Dow C, Helcoski R, Kašpar J, Lutz JA, Margolis EQ, Maxwell JT, McMahon SM, Piponiot C, Russo SE, Šamonil P, Sniderhan AE, Tepley AJ, Vašíčková I, Vlam M, Zuidema PA. Joint effects of climate, tree size, and year on annual tree growth derived from tree-ring records of ten globally distributed forests. GLOBAL CHANGE BIOLOGY 2022; 28:245-266. [PMID: 34653296 PMCID: PMC9298236 DOI: 10.1111/gcb.15934] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 05/28/2023]
Abstract
Tree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3-month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3-month seasonal windows), with concave-down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.
Collapse
Affiliation(s)
- Kristina J. Anderson‐Teixeira
- Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalVirginiaUSA
- Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanamaRepublic of Panama
| | - Valentine Herrmann
- Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalVirginiaUSA
| | | | - Bianca Gonzalez
- Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Erika B. Gonzalez‐Akre
- Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalVirginiaUSA
| | | | - M. Ross Alexander
- Midwest Dendro LLCNapervilleIllinoisUSA
- Present address:
Decision and Infrastructure SciencesArgonne National LaboratoryLamontIllinoisUSA
| | - Craig D. Allen
- Department of Geography & Environmental StudiesUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | | | - Tala Awada
- School of Natural ResourcesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | | | - Patrick J. Baker
- School of Ecosystem and Forest SciencesUniversity of MelbourneRichmondVIC.Australia
| | | | | | - Paolo Cherubini
- Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
- Faculty of ForestryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Stuart J. Davies
- Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanamaRepublic of Panama
| | - Cameron Dow
- Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalVirginiaUSA
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteIndianaUSA
| | - Ryan Helcoski
- Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Jakub Kašpar
- Department of Forest EcologyThe Silva Tarouca Research Institute for Landscape and Ornamental GardeningBrnoCzech Republic
| | - James A. Lutz
- S. J. & Jessie E. Quinney College of Natural Resources and the Ecology CenterUtah State UniversityLoganUtahUSA
| | - Ellis Q. Margolis
- Fort Collins Science CenterU.S. Geological SurveyNew Mexico Landscapes Field StationLos AlamosNew MexicoUSA
| | | | - Sean M. McMahon
- Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanamaRepublic of Panama
- Smithsonian Environmental Research CenterEdgewaterMarylandUSA
| | - Camille Piponiot
- Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalVirginiaUSA
- Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanamaRepublic of Panama
- CIRADMontpellierFrance
| | - Sabrina E. Russo
- School of Biological SciencesUniversity of NebraskaLincolnUSA
- Center for Plant Science InnovationUniversity of NebraskaLincolnUSA
| | - Pavel Šamonil
- Department of Forest EcologyThe Silva Tarouca Research Institute for Landscape and Ornamental GardeningBrnoCzech Republic
| | | | - Alan J. Tepley
- Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalVirginiaUSA
- Canadian Forest ServiceNorthern Forestry CentreEdmontonAlbertaCanada
| | - Ivana Vašíčková
- Department of Forest EcologyThe Silva Tarouca Research Institute for Landscape and Ornamental GardeningBrnoCzech Republic
| | - Mart Vlam
- Forest Ecology and Forest Management GroupWageningenThe Netherlands
| | | |
Collapse
|
5
|
Evans MEK, DeRose RJ, Klesse S, Girardin MP, Heilman KA, Alexander MR, Arsenault A, Babst F, Bouchard M, Cahoon SMP, Campbell EM, Dietze M, Duchesne L, Frank DC, Giebink CL, Gómez-Guerrero A, García GG, Hogg EH, Metsaranta J, Ols C, Rayback SA, Reid A, Ricker M, Schaberg PG, Shaw JD, Sullivan PF, GaytÁn SAV. Adding Tree Rings to North America's National Forest Inventories: An Essential Tool to Guide Drawdown of Atmospheric CO2. Bioscience 2021; 72:233-246. [PMID: 35241971 PMCID: PMC8888126 DOI: 10.1093/biosci/biab119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and—ultimately—the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality). We describe jump-starting a tree-ring collection across the continent of North America, given the commitments of Canada, the United States, and Mexico to visit forest inventory plots, along with existing legacy collections. Failing to do so would be a missed opportunity to help chart an evidence-based path toward meeting national commitments to reduce net greenhouse gas emissions, urgently needed for climate stabilization and repair.
Collapse
Affiliation(s)
- Margaret E K Evans
- Assistant professor, University of Arizona, Tucson, Arizona, United States
| | - R Justin DeRose
- Quinney College of Natural Resources, Utah State University, Logan, Utah, United States
| | - Stefan Klesse
- Swiss Federal Institute for Forest, Snow, and Landscape Research, Zürich, Switzerland
| | - Martin P Girardin
- Canadian Forest Service, Laurentian Forestry Centre, Québec, Québec, Canada
| | - Kelly A Heilman
- Postdoctoral researcher, University of Arizona, Tucson, Arizona, United States
| | | | - André Arsenault
- Canadian Forest Service, Atlantic Forestry Centre, Natural Resources Canada, Corner Brook, Labrador, Canada
| | - Flurin Babst
- School of Natural Resources, Environment at University of Arizona, Tucson, Arizona, United States
| | - Mathieu Bouchard
- Department of Wood Science and Forestry, Laval University, Québec, Québec, Canada
| | - Sean M P Cahoon
- USDA Forest Service, Pacific Northwest Research Station, Anchorage, Alaska, United States
| | - Elizabeth M Campbell
- Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia, Canada
| | - Michael Dietze
- Department of Earth and Environment, Boston University, Boston, Massachusetts, United States
| | - Louis Duchesne
- Direction de la Recherche Forestière, Ministère des Forêts, de la Faune, et des Parcs du Québec, Quebec, Québec, Canada
| | - David C Frank
- Professor and the director, University of Arizona, Tucson, Arizona, United States
| | - Courtney L Giebink
- Graduate student, Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona, United States
| | | | - Genaro Gutiérrez García
- Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Edward H Hogg
- Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada
| | - Juha Metsaranta
- Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada
| | - Clémentine Ols
- Institut National de l'Information Géographique et Forestière, Nancy, France
| | - Shelly A Rayback
- Department of Geography, University of Vermont, Burlington, Vermont, United States
| | - Anya Reid
- British Columbia Ministry of Forests, Victoria, British Columbia, Canada
| | - Martin Ricker
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Paul G Schaberg
- USDA Forest Service, Northern Research Station, Burlington, Vermont, United States
| | - John D Shaw
- USDA Forest Service, Rocky Mountain Research Station, Ogden, Utah, United States
| | | | | |
Collapse
|
6
|
Turner MG, Braziunas KH, Hansen WD, Hoecker TJ, Rammer W, Ratajczak Z, Westerling AL, Seidl R. The magnitude, direction, and tempo of forest change in Greater Yellowstone in a warmer world with more fire. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Monica G. Turner
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin 53706 USA
| | - Kristin H. Braziunas
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin 53706 USA
| | - Winslow D. Hansen
- Earth Institute Columbia University New York City New York 10025 USA
| | - Tyler J. Hoecker
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin 53706 USA
| | - Werner Rammer
- School of Life Sciences Technical University of Munich 85354 Freising Germany
| | - Zak Ratajczak
- Department of Biology Kansas State University Manhattan Kansas 66506‐4901 USA
| | - A. Leroy Westerling
- Sierra Nevada Research Institute and School of Engineering University of California‐Merced Merced California 95343 USA
| | - Rupert Seidl
- School of Life Sciences Technical University of Munich 85354 Freising Germany
- Berchtesgaden National Park 83471 Berchtesgaden Germany
| |
Collapse
|
7
|
Pellitier PT, Ibáñez I, Zak DR, Argiroff WA, Acharya K. Ectomycorrhizal access to organic nitrogen mediates CO 2 fertilization response in a dominant temperate tree. Nat Commun 2021; 12:5403. [PMID: 34518539 PMCID: PMC8438073 DOI: 10.1038/s41467-021-25652-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023] Open
Abstract
Plant–mycorrhizal interactions mediate plant nitrogen (N) limitation and can inform model projections of the duration and strength of the effect of increasing CO2 on plant growth. We present dendrochronological evidence of a positive, but context-dependent fertilization response of Quercus rubra L. to increasing ambient CO2 (iCO2) along a natural soil nutrient gradient in a mature temperate forest. We investigated this heterogeneous response by linking metagenomic measurements of ectomycorrhizal (ECM) fungal N-foraging traits and dendrochronological models of plant uptake of inorganic N and N bound in soil organic matter (N-SOM). N-SOM putatively enhanced tree growth under conditions of low inorganic N availability, soil conditions where ECM fungal communities possessed greater genomic potential to decay SOM and obtain N-SOM. These trees were fertilized by 38 years of iCO2. In contrast, trees occupying inorganic N rich soils hosted ECM fungal communities with reduced SOM decay capacity and exhibited neutral growth responses to iCO2. This study elucidates how the distribution of N-foraging traits among ECM fungal communities govern tree access to N-SOM and subsequent growth responses to iCO2. Root-mycorrhizal interactions could help explain the heterogeneity of plant responses to CO2 fertilisation and nutrient availability. Here the authors combine tree-ring and metagenomic data to reveal that tree growth responses to increasing CO2 along a soil nutrient gradient depend on the nitrogen foraging traits of ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Peter T Pellitier
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA. .,Department of Biology, Stanford University, Stanford, CA, USA.
| | - Inés Ibáñez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Donald R Zak
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA.
| | - William A Argiroff
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Kirk Acharya
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Campbell EM, Magnussen S, Antos JA, Parish R. Size‐, species‐, and site‐specific tree growth responses to climate variability in old‐growth subalpine forests. Ecosphere 2021. [DOI: 10.1002/ecs2.3529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Elizabeth M. Campbell
- Natural Resources Canada Canadian Forest Service Pacific Forestry Centre 506 West Burnside Road Victoria British ColumbiaV8Z 1M5Canada
| | - Steen Magnussen
- Natural Resources Canada Canadian Forest Service Pacific Forestry Centre 506 West Burnside Road Victoria British ColumbiaV8Z 1M5Canada
| | - Joseph A. Antos
- Department of Biology University of Victoria P.O. Box 3020, STN CSC Victoria British ColumbiaV8W 3N5Canada
| | - Roberta Parish
- Azura Formetrics Ltd. 1540 Ash Road Victoria British ColumbiaV8N 2S8Canada
| |
Collapse
|
9
|
Increased water use efficiency leads to decreased precipitation sensitivity of tree growth, but is offset by high temperatures. Oecologia 2021; 197:1095-1110. [PMID: 33743068 PMCID: PMC8591026 DOI: 10.1007/s00442-021-04892-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 03/02/2021] [Indexed: 11/30/2022]
Abstract
Both increases in temperature and changes in precipitation may limit future tree growth, but rising atmospheric CO2 could offset some of these stressors through increased plant Water Use Efficiency (WUE). The net balance between the negative impacts of climate change and positive effects of CO2 on tree growth is crucial for ecotones, where increased climate stress could drive mortality and shifts in range. Here, we quantify the effects of climate, stand structure, and rising CO2 on both annual tree-ring growth increment and intrinsic WUE (iWUE) at a savanna-forest boundary in the Upper Midwest United States. Taking a Bayesian hierarchical modelling approach, we find that plant iWUE increased by ~ 16–23% over the course of the twentieth century, but on average, tree-ring growth increments do not significantly increase. Consistent with higher iWUE under increased CO2 and recent wetting, we observe a decrease in sensitivity of tree growth to annual precipitation, leading to ~ 35–41% higher growth under dry conditions compared to trees of similar size in the past. However, an emerging interaction between summer maximum temperatures and annual precipitation diminishes the water-savings benefit under hot and dry conditions. This decrease in precipitation sensitivity, and the interaction between temperature and precipitation are strongest in open canopy microclimates, suggesting that stand structure may modulate response to future changes. Overall, while higher iWUE may provide some water savings benefits to growth under normal drought conditions, near-term future temperature increases combined with drought events could drive growth declines of about 50%.
Collapse
|
10
|
Tagesson T, Tian F, Schurgers G, Horion S, Scholes R, Ahlström A, Ardö J, Moreno A, Madani N, Olin S, Fensholt R. A physiology-based Earth observation model indicates stagnation in the global gross primary production during recent decades. GLOBAL CHANGE BIOLOGY 2021; 27:836-854. [PMID: 33124068 PMCID: PMC7898396 DOI: 10.1111/gcb.15424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Earth observation-based estimates of global gross primary production (GPP) are essential for understanding the response of the terrestrial biosphere to climatic change and other anthropogenic forcing. In this study, we attempt an ecosystem-level physiological approach of estimating GPP using an asymptotic light response function (LRF) between GPP and incoming photosynthetically active radiation (PAR) that better represents the response observed at high spatiotemporal resolutions than the conventional light use efficiency approach. Modelled GPP is thereafter constrained with meteorological and hydrological variables. The variability in field-observed GPP, net primary productivity and solar-induced fluorescence was better or equally well captured by our LRF-based GPP when compared with six state-of-the-art Earth observation-based GPP products. Over the period 1982-2015, the LRF-based average annual global terrestrial GPP budget was 121.8 ± 3.5 Pg C, with a detrended inter-annual variability of 0.74 ± 0.13 Pg C. The strongest inter-annual variability was observed in semi-arid regions, but croplands in China and India also showed strong inter-annual variations. The trend in global terrestrial GPP during 1982-2015 was 0.27 ± 0.02 Pg C year-1 , and was generally larger in the northern than the southern hemisphere. Most positive GPP trends were seen in areas with croplands whereas negative trends were observed for large non-cropped parts of the tropics. Trends were strong during the eighties and nineties but levelled off around year 2000. Other GPP products either showed no trends or continuous increase throughout the study period. This study benchmarks a first global Earth observation-based model using an asymptotic light response function, improving simulations of GPP, and reveals a stagnation in the global GPP after the year 2000.
Collapse
Affiliation(s)
- Torbern Tagesson
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
- Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Feng Tian
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
- School of Remote Sensing and Information EngineeringWuhan UniversityWuhanChina
| | - Guy Schurgers
- Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Stephanie Horion
- Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Robert Scholes
- Global Change InstituteUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Anders Ahlström
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
- Center for Middle Eastern StudiesLund UniversityLundSweden
| | - Jonas Ardö
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
| | - Alvaro Moreno
- Image Processing Laboratory (IPL)Universitat de ValènciaPaterna, ValènciaSpain
- Numerical Terradynamic Simulation Group, W.A. Franke College of Forestry & ConservationUniversity of MontanaMissoulaMTUSA
| | | | - Stefan Olin
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
| | - Rasmus Fensholt
- Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
11
|
Modeling suggests fossil fuel emissions have been driving increased land carbon uptake since the turn of the 20th Century. Sci Rep 2020; 10:9059. [PMID: 32493996 PMCID: PMC7271159 DOI: 10.1038/s41598-020-66103-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/11/2020] [Indexed: 11/27/2022] Open
Abstract
Terrestrial vegetation removes CO2 from the atmosphere; an important climate regulation service that slows global warming. This 119 Pg C per annum transfer of CO2 into plants—gross primary productivity (GPP)—is the largest land carbon flux globally. While understanding past and anticipated future GPP changes is necessary to support carbon management, the factors driving long-term changes in GPP are largely unknown. Here we show that 1901 to 2010 changes in GPP have been dominated by anthropogenic activity. Our dual constraint attribution approach provides three insights into the spatiotemporal patterns of GPP change. First, anthropogenic controls on GPP change have increased from 57% (1901 decade) to 94% (2001 decade) of the vegetated land surface. Second, CO2 fertilization and nitro gen deposition are the most important drivers of change, 19.8 and 11.1 Pg C per annum (2001 decade) respectively, especially in the tropics and industrialized areas since the 1970’s. Third, changes in climate have functioned as fertilization to enhance GPP (1.4 Pg C per annum in the 2001 decade). These findings suggest that, from a land carbon balance perspective, the Anthropocene began over 100 years ago and that global change drivers have allowed GPP uptake to keep pace with anthropogenic emissions.
Collapse
|
12
|
Wu Y, Wang D, Qiao X, Jiang M, Li Q, Gu Z, Liu F. Forest dynamics and carbon storage under climate change in a subtropical mountainous region in central China. Ecosphere 2020. [DOI: 10.1002/ecs2.3072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yu Wu
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden Chinese Academy of Sciences Wuhan 430074 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Dongya Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden Chinese Academy of Sciences Wuhan 430074 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Xiujuan Qiao
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden Chinese Academy of Sciences Wuhan 430074 China
| | - Mingxi Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden Chinese Academy of Sciences Wuhan 430074 China
| | - Qianxi Li
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden Chinese Academy of Sciences Wuhan 430074 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Zhirong Gu
- Badagongshan National Nature Reserve Sangzhi Hunan 416900 China
| | - Feng Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden Chinese Academy of Sciences Wuhan 430074 China
| |
Collapse
|
13
|
Tagesson T, Schurgers G, Horion S, Ciais P, Tian F, Brandt M, Ahlström A, Wigneron JP, Ardö J, Olin S, Fan L, Wu Z, Fensholt R. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat Ecol Evol 2020; 4:202-209. [DOI: 10.1038/s41559-019-1090-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022]
|
14
|
Dobor L, Hlásny T, Rammer W, Zimová S, Barka I, Seidl R. Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks? J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13518] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Dobor
- Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Prague Czech Republic
| | - Tomáš Hlásny
- Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Prague Czech Republic
| | - Werner Rammer
- University of Natural Resources and Life Sciences (BOKU) Vienna Vienna Austria
| | - Soňa Zimová
- Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Prague Czech Republic
| | - Ivan Barka
- National Forest Centre—Forest Research Institute Zvolen Zvolen Slovak Republic
| | - Rupert Seidl
- University of Natural Resources and Life Sciences (BOKU) Vienna Vienna Austria
| |
Collapse
|