1
|
Contreras‐Serrano M, Lindsby N, Rinnan R, Duegaard ECN, Rosenqvist E, Chen S, Fu YH, Tang J. Increased Growth Temperatures Alter Arctic Plant Responses to Heat Wave and Drought. GLOBAL CHANGE BIOLOGY 2025; 31:e70187. [PMID: 40231811 PMCID: PMC11998637 DOI: 10.1111/gcb.70187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/16/2025]
Abstract
Persistent warming and higher frequency of heat waves in the Arctic are causing alterations in Arctic vegetation and plant functionality, potentially redefining the role of the Arctic ecosystem. Vegetation influences atmospheric composition through exchanges of CO2 and volatile organic compounds (VOCs), both processes exhibiting a strong response to temperature variations. However, our quantitative understanding of how increased temperatures interact with extreme weather events, namely heat waves and drought, to affect Arctic plant processes remains limited. Here, we measure phenology, photosynthesis, leaf fluorescence and VOC emissions from three widely distributed Arctic shrubs, Betula nana, Empetrum hermaphroditum and Salix spp., in response to future climate. We use state-of-the-art climate chambers to test the effects of warmer growth temperatures on Arctic shrub responses to heat waves and drought. Our results show that increased growth temperatures advance leaf unfolding by 24 days in B. nana and 17 days in E. hermaphroditum, and increase VOC emissions across species. For B. nana, photosynthesis decreased by 42% during the heat wave and by 72% during drought. In contrast, Salix spp. and E. hermaphroditum experienced decreased photosynthesis only during drought, by 62% and 71%, respectively. The VOC emissions during the heat wave shifted toward a less diverse compound profile: acetaldehyde emissions increased for both control and warmed plants in all species, and isoprene emissions increased in Salix spp. Additionally, plants grown at higher temperatures exhibited a twofold increase in emissions compared to control plants during the heat wave, suggesting a higher temperature sensitivity of emissions. Our study indicates that warming and increasingly frequent extreme weather events will significantly impact Arctic plant phenology, photosynthesis and the diversity and rates of VOCs emitted into the atmosphere, contributing to modifying the regional climate.
Collapse
Affiliation(s)
- Marta Contreras‐Serrano
- Department of Biology, Center for Volatile Interactions (VOLT)University of CopenhagenCopenhagenDenmark
| | - Neel Lindsby
- Department of Biology, Center for Volatile Interactions (VOLT)University of CopenhagenCopenhagenDenmark
| | - Riikka Rinnan
- Department of Biology, Center for Volatile Interactions (VOLT)University of CopenhagenCopenhagenDenmark
| | - Emma C. N. Duegaard
- Department of Biology, Center for Volatile Interactions (VOLT)University of CopenhagenCopenhagenDenmark
| | - Eva Rosenqvist
- Department of Plant and Environmental SciencesUniversity of CopenhagenTaastrupDenmark
| | - Shouzhi Chen
- College of Water SciencesBeijing Normal UniversityBeijingChina
| | - Yongshuo H. Fu
- College of Water SciencesBeijing Normal UniversityBeijingChina
| | - Jing Tang
- Department of Biology, Center for Volatile Interactions (VOLT)University of CopenhagenCopenhagenDenmark
| |
Collapse
|
2
|
Chen X, Gong D, Lin Y, Xu Q, Wang Y, Liu S, Li Q, Ma F, Li J, Deng S, Wang H, Wang B. Emission characteristics of biogenic volatile organic compounds in a subtropical pristine forest of southern China. J Environ Sci (China) 2025; 148:665-682. [PMID: 39095198 DOI: 10.1016/j.jes.2023.09.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 08/04/2024]
Abstract
Emission characteristics of biogenic volatile organic compounds (BVOCs) from dominant tree species in the subtropical pristine forests of China are extremely limited. Here we conducted in situ field measurements of BVOCs emissions from representative mature evergreen trees by using dynamic branch enclosures at four altitude gradients (600-1690 m a.s.l.) in the Nanling Mountains of southern China. Composition characteristics as well as seasonal and altitudinal variations were analyzed. Standardized emission rates and canopy-scale emission factors were then calculated. Results showed that BVOCs emission intensities in the wet season were generally higher than those in the dry season. Monoterpenes were the dominant BVOCs emitted from most broad-leaved trees, accounting for over 70% of the total. Schima superba, Yushania basihirsuta and Altingia chinensis had relatively high emission intensities and secondary pollutant formation potentials. The localized emission factors of isoprene were comparable to the defaults in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), while emission factors of monoterpenes and sesquiterpenes were 2 to 58 times of those in the model. Our results can be used to update the current BVOCs emission inventory in MEGAN, thereby reducing the uncertainties of BVOCs emission estimations in forested regions of southern China.
Collapse
Affiliation(s)
- Xi Chen
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Daocheng Gong
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China
| | - Youjing Lin
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Hainan Provincial Ecological and Environmental Monitoring Center, Haikou 571126, China
| | - Qiao Xu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Yujin Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Shiwei Liu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Qinqin Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Fangyuan Ma
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Jiangyong Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Shuo Deng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China.
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China.
| |
Collapse
|
3
|
Seco R, Nagalingam S, Joo E, Gu D, Guenther A. The UCI Fluxtron: A versatile dynamic chamber and software system for biosphere-atmosphere exchange research. CHEMOSPHERE 2024; 364:143061. [PMID: 39127187 DOI: 10.1016/j.chemosphere.2024.143061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Here we present the UCI Fluxtron, a cost-effective multi-enclosure dynamic gas exchange system that provides an adequate level of control of the experimental conditions for investigating biosphere-atmosphere exchange of trace gases. We focus on the hardware and software used to monitor, control, and record the air flows, temperatures, and valve switching, and on the software that processes the collected data to calculate the exchange flux of trace gases. We provide the detailed list of commercial materials used and also the software code developed for the Fluxtron, so that similar dynamic enclosure systems can be quickly adopted by interested researchers. Furthermore, the two software components -Fluxtron Control and Fluxtron Process- work independently of each other, thus being highly adaptable for other experimental designs. Beyond plants, the same experimental setup can be applied to the study of trace gas exchange by animals, microbes, soil, or any materials that can be enclosed in a suitable container.
Collapse
Affiliation(s)
- Roger Seco
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034, Barcelona, Catalonia, Spain.
| | - Sanjeevi Nagalingam
- Department of Earth System Science, University of California Irvine, Irvine, CA, 92697, USA
| | - Eva Joo
- Department of Earth System Science, University of California Irvine, Irvine, CA, 92697, USA
| | - Dasa Gu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Alex Guenther
- Department of Earth System Science, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
4
|
Männistö E, Ylänne H, Losoi M, Keinänen M, Yli-Pirilä P, Korrensalo A, Bäck J, Hellén H, Virtanen A, Tuittila ES. Emissions of biogenic volatile organic compounds from adjacent boreal fen and bog as impacted by vegetation composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159809. [PMID: 36336039 DOI: 10.1016/j.scitotenv.2022.159809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Peatland ecosystems emit biogenic volatile organic compounds (BVOC), which have a net cooling impact on the climate. However, the quality and quantity of BVOC emissions, and how they are regulated by vegetation and peatland type remain poorly understood. Here we measured BVOC emissions with dynamic enclosures from two major boreal peatland types, a minerotrophic fen and an ombrotrophic bog situated in Siikaneva, southern Finland and experimentally assessed the role of vegetation by removing vascular vegetation with or without the moss layer. Our measurements from four campaigns during growing seasons in 2017 and 2018 identified emissions of 59 compounds from nine different chemical groups. Isoprene accounted for 81 % of BVOC emissions. Measurements also revealed uptake of dichloromethane. Total BVOC emissions and the emissions of isoprene, monoterpenoids, sesquiterpenes, homoterpenes, and green leaf volatiles were tightly connected to vascular plants. Isoprene and sesquiterpene emissions were associated with sedges, whereas monoterpenoids and homoterpenes were associated with shrubs. Additionally, isoprene and alkane emissions were higher in the fen than in the bog and they significantly contributed to the higher BVOC emissions from intact vegetation in the fen. During an extreme drought event in 2018, emissions of organic halides were absent. Our results indicate that climate change with an increase in shrub cover and increased frequency of extreme weather events may have a negative impact on total BVOC emissions that otherwise are predicted to increase in warmer temperatures. However, these changes also accompanied a change in BVOC emission quality. As different compounds differ in their capacity to form secondary organic aerosols, the ultimate climate impact of peatland BVOC emissions may be altered.
Collapse
Affiliation(s)
- Elisa Männistö
- Peatland and Soil Ecology Research Group, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland.
| | - Henni Ylänne
- Peatland and Soil Ecology Research Group, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland; Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, 22362 Lund, Sweden
| | - Mari Losoi
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
| | - Pasi Yli-Pirilä
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Aino Korrensalo
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland; Natural Resources Institute Finland (Luke), Yliopistokatu 6B, 80100 Joensuu, Finland
| | - Jaana Bäck
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| | - Heidi Hellén
- Finnish Meteorological Institute, PL 503, 00101 Helsinki, Finland
| | - Annele Virtanen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Eeva-Stiina Tuittila
- Peatland and Soil Ecology Research Group, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
| |
Collapse
|
5
|
Rieksta J, Li T, Davie‐Martin CL, Aeppli LCB, Høye TT, Rinnan R. Volatile responses of dwarf birch to mimicked insect herbivory and experimental warming at two elevations in Greenlandic tundra. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:23-35. [PMID: 37284597 PMCID: PMC10168049 DOI: 10.1002/pei3.10100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/08/2023]
Abstract
Plants release a complex blend of volatile organic compounds (VOCs) in response to stressors. VOC emissions vary between contrasting environments and increase with insect herbivory and rising temperatures. However, the joint effects of herbivory and warming on plant VOC emissions are understudied, particularly in high latitudes, which are warming fast and facing increasing herbivore pressure. We assessed the individual and combined effects of chemically mimicked insect herbivory, warming, and elevation on dwarf birch (Betula glandulosa) VOC emissions in high-latitude tundra ecosystems in Narsarsuaq, South Greenland. We hypothesized that VOC emissions and compositions would respond synergistically to warming and herbivory, with the magnitude differing between elevations. Warming increased emissions of green leaf volatiles (GLVs) and isoprene. Herbivory increased the homoterpene, (E)-4,8-dimethyl-1,3,7-nonatriene, emissions, and the response was stronger at high elevation. Warming and herbivory had synergistic effects on GLV emissions. Dwarf birch emitted VOCs at similar rates at both elevations, but the VOC blends differed between elevations. Several herbivory-associated VOC groups did not respond to herbivory. Harsher abiotic conditions at high elevations might not limit VOC emissions from dwarf birch, and high-elevation plants might be better at herbivory defense than assumed. The complexity of VOC responses to experimental warming, elevation, and herbivory are challenging our understanding and predictions of future VOC emissions from dwarf birch-dominated ecosystems.
Collapse
Affiliation(s)
- Jolanta Rieksta
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Tao Li
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research StationKey Laboratory for Bio‐resource and Eco‐environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Cleo L. Davie‐Martin
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Laurids Christian Brogaard Aeppli
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Toke Thomas Høye
- Department of Bioscience and Arctic Research CentreAarhus UniversityAarhus CDenmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| |
Collapse
|
6
|
Janík R, Kubov M, Schieber B. The ground-level ozone concentration in forest and urban environments in central Slovakia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:24. [PMID: 36279021 PMCID: PMC9589882 DOI: 10.1007/s10661-022-10605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
This paper analyses data by summarising the concentration values of ground-level ozone (GLO). The study area is situated in central Slovakia and is part of the Western Carpathians. These measurements were carried out between 2015 and 2020, implementing Werner's method working with passive samplers. The highest average and the highest absolute GLO deposition values were 30.93 ppb and 61.06 ppb, respectively, recorded in August 2015 in the forest in the Kremnické vrchy Mts. The lowest average GLO value in the whole measuring period was 17.72 ppb, measured in the town of Zvolen; the absolute minimum was 4.43 ppb, recorded in April 2016 on an open plot in the Kremnické vrchy Mts. The GLO formation over the study area has not yet reached a steady rate. Since 2007, the developmental trend has been increasing. Statistically significant differences in GLO concentrations were confirmed between the localities with different airborne pollutions. However, the analysis of the existing ozone concentration values showed considerable differences, especially related to the time pattern. The spatial variability was equalised. The extreme values, while remarkable, were dangerous, especially in the forest stands in the Kremnické vrchy Mts., where they were 14 times above the critical level of 32.5 ppb O3. The dominant factor influencing the GLO concentration was global radiation. The effects of average temperature and rainfall total were less important.
Collapse
Affiliation(s)
- Rastislav Janík
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovak Republic.
| | - Martin Kubov
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovak Republic
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Masaryka 24, 960 01, Zvolen, Slovakia
| | - Branislav Schieber
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001, Zvolen, Slovak Republic
| |
Collapse
|
7
|
Simin T, Davie-Martin CL, Petersen J, Høye TT, Rinnan R. Impacts of elevation on plant traits and volatile organic compound emissions in deciduous tundra shrubs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155783. [PMID: 35537508 DOI: 10.1016/j.scitotenv.2022.155783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
The northernmost regions of our planet experience twice the rate of climate warming compared to the global average. Despite the currently low air temperatures, tundra shrubs are known to exhibit high leaf temperatures and are increasing in height due to warming, but it is unclear how the increase in height will affect the leaf temperature. To study how temperature, soil moisture, and changes in light availability influence the physiology and emissions of climate-relevant volatile organic compounds (VOCs), we conducted a study on two common deciduous tundra shrubs, Salix glauca (separating males and females for potential effects of plant sex) and Betula glandulosa, at two elevations in South Greenland. Low-elevation Salix shrubs were 45% taller, but had 37% lower rates of net CO2 assimilation and 63% lower rates of isoprene emission compared to high-elevation shrubs. Betula shrubs showed 40% higher stomatal conductance and 24% higher glandular trichome density, in the low-elevation valley, compared to those from the high-elevation mountain slope. Betula green leaf volatile emissions were 235% higher at high elevation compared to low elevation. Male Salix showed a distinct VOC blend and emitted 55% more oxygenated VOCs, compared to females, possibly due to plant defense mechanisms. In our light response curves, isoprene emissions increased linearly with light intensity, potentially indicating adaptation to strong light. Leaf temperature decreased with increasing Salix height, at 4 °C m-1, which can have implications for plant physiology. However, no similar relationship was observed for B. glandulosa. Our results highlight that tundra shrub traits and VOC emissions are sensitive to temperature and light, but that local variations in soil moisture strongly interact with temperature and light responses. Our results suggest that effects of climate warming, alone, poorly predict the actual plant responses in tundra vegetation.
Collapse
Affiliation(s)
- Tihomir Simin
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark; Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
| | - Cleo L Davie-Martin
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark; Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
| | - Julie Petersen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark
| | - Toke T Høye
- Arctic Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark; Department of Ecoscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark; Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark.
| |
Collapse
|
8
|
Baggesen NS, Davie‐Martin CL, Seco R, Holst T, Rinnan R. Bidirectional Exchange of Biogenic Volatile Organic Compounds in Subarctic Heath Mesocosms During Autumn Climate Scenarios. JOURNAL OF GEOPHYSICAL RESEARCH. BIOGEOSCIENCES 2022; 127:e2021JG006688. [PMID: 35865237 PMCID: PMC9285884 DOI: 10.1029/2021jg006688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/31/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Biogenic volatile organic compound (BVOC) flux dynamics during the subarctic autumn are largely unexplored and have been considered insignificant due to the relatively low biological activity expected during autumn. Here, we exposed subarctic heath ecosystems to predicted future autumn climate scenarios (ambient, warming, and colder, dark conditions), changes in light availability, and flooding, to mimic the more extreme rainfall or snowmelt events expected in the future. We used climate chambers to measure the net ecosystem fluxes and bidirectional exchange of BVOCs from intact heath mesocosms using a dynamic enclosure technique coupled to a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS). We focused on six BVOCs (methanol, acetic acid, acetaldehyde, acetone, isoprene, and monoterpenes) that were among the most dominant and that were previously identified in arctic tundra ecosystems. Warming increased ecosystem respiration and resulted in either net BVOC release or increased uptake compared to the ambient scenario. None of the targeted BVOCs showed net release in the cold and dark scenario. Acetic acid exhibited significantly lower net uptake in the cold and dark scenario than in the ambient scenario, which suggests reduced microbial activity. Flooding was characterized by net uptake of the targeted BVOCs and overruled any temperature effects conferred by the climate scenarios. Monoterpenes were mainly taken up by the mesocosms and their fluxes were not affected by the climate scenarios or flooding. This study shows that although autumn BVOC fluxes on a subarctic heath are generally low, changes in future climate may strongly modify them.
Collapse
Affiliation(s)
- Nanna S. Baggesen
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Permafrost (CENPERM)University of CopenhagenCopenhagen KDenmark
| | - Cleo L. Davie‐Martin
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Permafrost (CENPERM)University of CopenhagenCopenhagen KDenmark
| | - Roger Seco
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Permafrost (CENPERM)University of CopenhagenCopenhagen KDenmark
- Institute of Environmental Assessment and Water Research (IDAEA‐CSIC)BarcelonaSpain
| | - Thomas Holst
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Permafrost (CENPERM)University of CopenhagenCopenhagen KDenmark
| |
Collapse
|