1
|
Hikino K, Hesse BD, Gebhardt T, Hafner BD, Buchhart C, Baumgarten M, Häberle KH, Grams TEE. Drought legacy in mature spruce alleviates physiological stress during recurrent drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40375713 DOI: 10.1111/plb.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/07/2025] [Indexed: 05/18/2025]
Abstract
Forest ecosystems are facing severe and prolonged droughts with delayed recovery, known as "drought legacy". This study presents positive legacy effects following a long-term, experimental drought and subsequent recovery in a mature mixed Norway spruce and European beech forest. Approximately 50 mature trees were exposed to five consecutive years of summer drought by completely excluding growing season precipitation from May 2014 to June 2019. Experimental drought recovery started in July 2019, after which the trees received natural precipitation. Taking advantage of the natural summer drought of 2022, following the unique long-term experimental drought, we investigated how drought legacy affects tree physiological responses to recurrent drought. The long-term experimental drought resulted in a 60% reduction in spruce leaf area, which was still reduced by 30% 4 years after the drought release. This slow recovery and associated reduced water use resulted in higher soil water availability under spruce during the 2022 drought, leading to significantly reduced physiological drought stress: about two times higher predawn leaf water potential, leaf gas exchange and sap flow density in legacy spruce compared to previous controls. Furthermore, neighbouring beech, displaying no leaf area reduction during the experimental drought, also had higher predawn leaf water potential and leaf gas exchange during the 2022 drought compared to previous controls, likely benefitting from the reduced water use of spruce. The slow recovery of spruce leaf area as a pronounced drought legacy effect proved advantageous for trees in alleviating physiological stress and overcoming future drought events.
Collapse
Affiliation(s)
- K Hikino
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - B D Hesse
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - T Gebhardt
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
- School of Life Sciences, Forest and Agroforest Systems, Technical University of Munich, Freising, Germany
| | - B D Hafner
- School of Life Sciences, Soil Biophysics & Environmental Systems, Technical University of Munich, Freising, Germany
| | - C Buchhart
- School of Life Sciences, Chair of Restoration Ecology, Technical University of Munich, Freising, Germany
| | - M Baumgarten
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
| | - K-H Häberle
- School of Life Sciences, Chair of Restoration Ecology, Technical University of Munich, Freising, Germany
| | - T E E Grams
- School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Brunn M, Mueller CW, Chari NR, Meier IC, Obersteiner S, Phillips RP, Taylor B, Tumber-Dávila SJ, Ullah S, Klein T. Tree carbon allocation to root exudates: implications for carbon budgets, soil sequestration and drought response. TREE PHYSIOLOGY 2025; 45:tpaf026. [PMID: 40037284 DOI: 10.1093/treephys/tpaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/07/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Root carbon (C) exudation plays a central role in nutrient acquisition, microbially mediated organic matter decomposition and many other critical ecosystem processes. While it is well known that roots respond strongly to belowground resources, we have a limited quantitative understanding about C allocation to exudates and its fate in soil under changing water availability. This review synthesizes the importance of exudate C fluxes, summarizes studies quantifying mass-specific exudation rate (SER), total exudation rate (TER) and root exudate fraction (REF; the proportion of TER in a plant's C allocation), examines drought effects and highlights key research priorities to advance the understanding of C allocation to exudates in forest ecosystems. On average, SER is often <1 mg C gdry root-1 day-1, TER is 3.8 Pg C year-1 and REF varies between 1 and 17% of net primary production. Spatiotemporal variations in exudation, including seasonal and daily patterns and subsoil exudation, remain critical knowledge gaps. We show that many studies report a 1.2- to 11-fold increase in SER and REF in response to drought. However, TER often remains unchanged, suggesting that absolute exudate C inputs to the soil may stay constant under drought conditions. Disentangling the individual impacts of soil and air drought as well as drought legacy impacts on ecosystem C dynamics are overlooked aspects. By estimating the differences in rhizosphere formation and exudation across various forest biomes, we find that exudate-affected soil volumes are highest in tropical forests and lowest in boreal forests. While current research emphasizes significant C allocation from the canopy to soil via exudates, understanding exudation dynamics and biome-specific responses to drought by using standardized protocols is essential. Expanding these insights is critical for comprehending the role of root exudates in soil organic matter formation, ecosystem resilience and adaptation to climate change.
Collapse
Affiliation(s)
- Melanie Brunn
- IES, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, 76829 Landau, Germany
- IfIN, Institute for Integrated Natural Sciences, Universität Koblenz, Universitätsstraße 1, 56070 Koblenz, Germany
| | - Carsten W Mueller
- Institute of Ecology, Chair of Soil Science, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
- Department for Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 København K, Copenhagen, Denmark
| | - Nikhil R Chari
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, USA
| | - Ina C Meier
- Functional Forest Ecology, Universität Hamburg, Ohnhorststraße 18, 22609 Hamburg, Hamburg, Germany
| | - Sophie Obersteiner
- Department of Plant and Environmental Sciences, Nella and Leon Benoziyo Building for Biological Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Richard P Phillips
- Department of Biology, Indiana University, 1001 E. Third St., Bloomington, IN 47405, USA
| | - Benton Taylor
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, USA
| | - Shersingh Joseph Tumber-Dávila
- Department of Environmental Studies, Dartmouth College, 38 College St, Hanover, NH 03755, USA
- Harvard Forest, Harvard University, 324 North Main Street, Petersham, MA 01366-9504, USA
| | - Sami Ullah
- School of Geography, Earth and Environmental Sciences & Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Nella and Leon Benoziyo Building for Biological Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Thompson RA, Landhäusser SM, Adams HD. Dynamical systems for plant carbon storage: describing complex reserve dynamics from simple fluctuations in photosynthesis and carbon allocation. TREE PHYSIOLOGY 2024; 44:28-33. [PMID: 37642361 DOI: 10.1093/treephys/tpad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Affiliation(s)
- R Alex Thompson
- School of the Environment, Washington State University, Pullman, WA 99164, USA
| | - Simon M Landhäusser
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Henry D Adams
- School of the Environment, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
4
|
Huang J, Ladd SN, Ingrisch J, Kübert A, Meredith LK, van Haren J, Bamberger I, Daber LE, Kühnhammer K, Bailey K, Hu J, Fudyma J, Shi L, Dippold MA, Meeran K, Miller L, O’Brien MJ, Yang H, Herrera-Ramírez D, Hartmann H, Trumbore S, Bahn M, Werner C, Lehmann MM. The mobilization and transport of newly fixed carbon are driven by plant water use in an experimental rainforest under drought. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2545-2557. [PMID: 38271585 PMCID: PMC11358253 DOI: 10.1093/jxb/erae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
Non-structural carbohydrates (NSCs) are building blocks for biomass and fuel metabolic processes. However, it remains unclear how tropical forests mobilize, export, and transport NSCs to cope with extreme droughts. We combined drought manipulation and ecosystem 13CO2 pulse-labeling in an enclosed rainforest at Biosphere 2, assessed changes in NSCs, and traced newly assimilated carbohydrates in plant species with diverse hydraulic traits and canopy positions. We show that drought caused a depletion of leaf starch reserves and slowed export and transport of newly assimilated carbohydrates below ground. Drought effects were more pronounced in conservative canopy trees with limited supply of new photosynthates and relatively constant water status than in those with continual photosynthetic supply and deteriorated water status. We provide experimental evidence that local utilization, export, and transport of newly assimilated carbon are closely coupled with plant water use in canopy trees. We highlight that these processes are critical for understanding and predicting tree resistance and ecosystem fluxes in tropical forest under drought.
Collapse
Affiliation(s)
- Jianbei Huang
- Max Planck Institute for Biogeochemistry, D-07745 Jena, Germany
| | - S Nemiah Ladd
- Ecosystem Physiology, Albert-Ludwig-University of Freiburg, Freiburg, Germany
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Johannes Ingrisch
- Ecosystem Physiology, Albert-Ludwig-University of Freiburg, Freiburg, Germany
- Department of Ecology, University of Innsbruck, Sternwartestr 15, 6020 Innsbruck, Austria
| | - Angelika Kübert
- Ecosystem Physiology, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | - Laura K Meredith
- School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ 85721, USA
- Biosphere 2, University of Arizona, 32540 S. Biosphere Rd, Oracle, AZ 85739, USA
| | - Joost van Haren
- Biosphere 2, University of Arizona, 32540 S. Biosphere Rd, Oracle, AZ 85739, USA
- Honors College, University of Arizona, 1101 East Mabel Street, Tucson, AZ 85719, USA
| | - Ines Bamberger
- Ecosystem Physiology, Albert-Ludwig-University of Freiburg, Freiburg, Germany
- Atmospheric Chemistry Group, University of Bayreuth (BayCEER), Germany
| | - L Erik Daber
- Ecosystem Physiology, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | - Kathrin Kühnhammer
- Ecosystem Physiology, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | - Kinzie Bailey
- School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ 85721, USA
| | - Jia Hu
- School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ 85721, USA
| | - Jane Fudyma
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
- Department of Land, Air, and Water Resources, University of California, Davis, CA, USA
| | - Lingling Shi
- Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany
- Geo-Biosphere Interactions, University of Tuebingen, Tuebingen, Germany
| | - Michaela A Dippold
- Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany
- Geo-Biosphere Interactions, University of Tuebingen, Tuebingen, Germany
| | - Kathiravan Meeran
- Department of Ecology, University of Innsbruck, Sternwartestr 15, 6020 Innsbruck, Austria
| | - Luke Miller
- Biosphere 2, University of Arizona, 32540 S. Biosphere Rd, Oracle, AZ 85739, USA
| | - Michael J O’Brien
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Almería, Spain
| | - Hui Yang
- Max Planck Institute for Biogeochemistry, D-07745 Jena, Germany
| | | | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, D-07745 Jena, Germany
- Institute for Forest Protection, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Erwin-Baur-Straße 27, D-06484 Quedlinburg, Germany
| | - Susan Trumbore
- Max Planck Institute for Biogeochemistry, D-07745 Jena, Germany
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Sternwartestr 15, 6020 Innsbruck, Austria
| | - Christiane Werner
- Ecosystem Physiology, Albert-Ludwig-University of Freiburg, Freiburg, Germany
| | - Marco M Lehmann
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| |
Collapse
|
5
|
Rowland L, Ramírez-Valiente JA, Hartley IP, Mencuccini M. How woody plants adjust above- and below-ground traits in response to sustained drought. THE NEW PHYTOLOGIST 2023. [PMID: 37306017 DOI: 10.1111/nph.19000] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/01/2023] [Indexed: 06/13/2023]
Abstract
Future increases in drought severity and frequency are predicted to have substantial impacts on plant function and survival. However, there is considerable uncertainty concerning what drought adjustment is and whether plants can adjust to sustained drought. This review focuses on woody plants and synthesises the evidence for drought adjustment in a selection of key above-ground and below-ground plant traits. We assess whether evaluating the drought adjustment of single traits, or selections of traits that operate on the same plant functional axis (e.g. photosynthetic traits) is sufficient, or whether a multi-trait approach, integrating across multiple axes, is required. We conclude that studies on drought adjustments in woody plants might overestimate the capacity for adjustment to drier environments if spatial studies along gradients are used, without complementary experimental approaches. We provide evidence that drought adjustment is common in above-ground and below-ground traits; however, whether this is adaptive and sufficient to respond to future droughts remains uncertain for most species. To address this uncertainty, we must move towards studying trait integration within and across multiple axes of plant function (e.g. above-ground and below-ground) to gain a holistic view of drought adjustments at the whole-plant scale and how these influence plant survival.
Collapse
Affiliation(s)
- Lucy Rowland
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
| | | | - Iain P Hartley
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
| | - Maurizio Mencuccini
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallés, Barcelona, 08193, Spain
- ICREA, Barcelona, 08010, Spain
| |
Collapse
|
6
|
Kengdo SK, Ahrens B, Tian Y, Heinzle J, Wanek W, Schindlbacher A, Borken W. Increase in carbon input by enhanced fine root turnover in a long-term warmed forest soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158800. [PMID: 36116665 DOI: 10.1016/j.scitotenv.2022.158800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Fine root litter represents an important carbon input to soils, but the effect of global warming on fine root turnover (FRT) is hardly explored in forest ecosystems. Understanding tree fine roots' response to warming is crucial for predicting soil carbon dynamics and the functioning of forests as a sink for atmospheric carbon dioxide (CO2). We studied fine root production (FRP) with ingrowth cores and used radiocarbon signatures of first-order, second- to third-order, and bulk fine roots to estimate fine root turnover times after 8 and 14 years of soil warming (+4 °C) in a temperate forest. Fine root turnover times of the individual root fractions were estimated with a one-pool model. Soil warming strongly increased fine root production by up to 128 % within one year, but after two years, the production was less pronounced (+35 %). The first-year production was likely very high due to the rapid exploitation of the root-free ingrowth cores. The radiocarbon signatures of fine roots were overall variable among treatments and plots. Soil warming tended to decrease fine root turnover times of all the measured root fractions after 8 and 14 years of warming, and there was a tendency for trees to use older carbon reserves for fine root production in warmed plots. Furthermore, soil warming increased fine root turnover from 50 to 106 g C m-2 yr-1 (based on two different approaches). Our findings suggest that future climate warming may increase carbon input into soils by enhancing fine root turnover. If this increase may partly offset carbon losses by increased mineralization of soil organic matter in temperate forest soils is still unclear and should guide future research.
Collapse
Affiliation(s)
- Steve Kwatcho Kengdo
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Dr.-Hans-Frisch-Straße 1-3, 95448 Bayreuth, Germany.
| | - Bernhard Ahrens
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany
| | - Ye Tian
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Jakob Heinzle
- Department of Forest Ecology and Soil, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Seckendorff-Gudent Weg 8, 1131 Vienna, Austria
| | - Wolfgang Wanek
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Andreas Schindlbacher
- Department of Forest Ecology and Soil, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Seckendorff-Gudent Weg 8, 1131 Vienna, Austria
| | - Werner Borken
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Dr.-Hans-Frisch-Straße 1-3, 95448 Bayreuth, Germany
| |
Collapse
|
7
|
Obersteiner S, Klein T. Closing in on the last frontier: C allocation in the rhizosphere. GLOBAL CHANGE BIOLOGY 2022; 28:6835-6837. [PMID: 36107494 PMCID: PMC9826461 DOI: 10.1111/gcb.16432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Increased belowground C allocation of trees, especially enhanced rhizodeposition, might lead to long-term C sequestration in forest soil. Microbes are crucial players in this complex process of forming stable soil organic carbon (SOC). Hence, research must be accelerated to understand the complex rhizosphere processes and their effect on stable SOC formation. This is a commentary on Hikino et al., 2022, https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.16388.
Collapse
Affiliation(s)
- Sophie Obersteiner
- Plant & Environmental Sciences DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Tamir Klein
- Plant & Environmental Sciences DepartmentWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|