1
|
Cannon CH. The long tail of tree maximum lifespan enriches the forest. Nat Ecol Evol 2025:10.1038/s41559-025-02695-7. [PMID: 40355502 DOI: 10.1038/s41559-025-02695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Affiliation(s)
- Charles H Cannon
- Singapore Botanic Gardens, National Parks Board, Singapore, Singapore.
| |
Collapse
|
2
|
Liu S, Brienen RJW, Fan C, Hao M, Zhao X, Zhang C. Tree Lifespans in a Warming World: Unravelling the Universal Trade-Off Between Growth and Lifespan in Temperate Forests. GLOBAL CHANGE BIOLOGY 2025; 31:e70023. [PMID: 39760162 DOI: 10.1111/gcb.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025]
Abstract
Tree growth and lifespan are key determinants of forest dynamics, and ultimately control carbon stocks. Warming and increasing CO2 have been observed to increase growth but such increases may not result in large net biomass gains due to trade-offs between growth and lifespan. A deeper understanding of the nature of the trade-off and its potential spatial variation is crucial to improve predictions of the future carbon sink. This study aims to identify key drivers of growth and lifespan, assess the universality of tree growth-lifespan trade-offs, explore the possible latitudinal patterns of trade-off strengths and their determinants, and project growth and lifespan under future climate scenarios. We analyzed 21,193 trees of 69 species (48 included in further analysis) at 445 sites (417 included in further analysis) in temperate forests in northeastern China to estimate early growth rate and tree lifespan. We find that temperature and human pressure enhance tree growth and reduce lifespan, while altitude increases lifespan. We further find evidence for growth-lifespan trade-offs at all studied levels, that is, among trees, among species and communities, and within species and communities. Trade-offs are stronger at colder, higher latitudes compared to warmer sites, because of larger variation in tree growth and climate, larger range sizes for individual species, and lower species' diversity for communities at high latitudes. We predict future increases in growth and reductions in tree lifespan in response to climate change for the 2050s. Taking growth lifespan trade-offs into account resulted in even larger predictions of decreases in tree lifespan of up to 8%. In conclusion, growth-lifespan trade-offs are universal, but the strengths may vary by environment and between different forests. Its effects are important to include in predictions of forest responses to global change and need to be considered more widely.
Collapse
Affiliation(s)
- Shuhui Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | | | - Chunyu Fan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Minhui Hao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiuhai Zhao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Chunyu Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
3
|
Egusa T, Nakahata R, Neumann M, Kumagai T. Carbon stock projection for four major forest plantation species in Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172241. [PMID: 38582119 DOI: 10.1016/j.scitotenv.2024.172241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Carbon sequestration via afforestation and forest growth is effective for mitigating global warming. Accurate and robust information on forest growth characteristics by tree species, region, and large-scale land-use change is vital and future prediction of forest carbon stocks based on this information is of great significance. These predictions allow exploring forestry practices that maximize carbon sequestration by forests, including wood production. Forest inventories based on field measurements are considered the most accurate method for estimating forest carbon stocks. Japan's national forest inventories (NFIs) provide stand volumes for all Japanese forests, and estimates from direct field observations (m-NFIs) are the most reliable. Therefore, using the m-NFI from 2009 to 2013, we selected four major forest plantation species in Japan: Cryptomeria japonica, Chamaecyparis obtusa, Pinus spp., and Larix kaempferi and presented their forest age-carbon density function. We then estimated changes in forest carbon stocks from the past to the present using the functions. Next, we investigated the differences in the carbon sequestration potential of forests, including wood production, between five forestry practice scenarios with varying harvesting and afforestation rates, until 2061. Our results indicate that, for all four forest types, the estimates of growth rates and past forest carbon stocks in this study were higher than those considered until now. The predicted carbon sequestration from 2011 to 2061, assuming that 100 % of harvested carbon is retained for a long time, twice the rate of harvesting compared to the current rate, and a 100 % afforestation rate in harvested area, was three to four times higher than that in a scenario with no harvesting or replanting. Our results suggest that planted Japanese forests can exhibit a high carbon sequestration potential under the premise of active management, harvesting, afforestation, and prolonging the residence time of stored carbon in wood products with technology development.
Collapse
Affiliation(s)
- Tomohiro Egusa
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.
| | - Ryo Nakahata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mathias Neumann
- Institute of Silviculture, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Tomo'omi Kumagai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan; Water Resources Research Center, University of Hawai'i at Mānoa, Honolulu, USA
| |
Collapse
|
4
|
Pavlin J, Nagel TA, Svitok M, Di Filippo A, Mikac S, Keren S, Dikku A, Toromani E, Panayotov M, Zlatanov T, Haruta O, Dorog S, Chaskovskyy O, Bače R, Begović K, Buechling A, Dušátko M, Frankovič M, Janda P, Kameniar O, Kozák D, Marchand W, Mikoláš M, Rodrigo R, Svoboda M. Pathways and drivers of canopy accession across primary temperate forests of Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167593. [PMID: 37802334 DOI: 10.1016/j.scitotenv.2023.167593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Canopy accession strategies reveal much about tree life histories and forest stand dynamics. However, the protracted nature of ascending to the canopy makes direct observation challenging. We use a reconstructive approach based on an extensive tree ring database to study the variability of canopy accession patterns of dominant tree species (Abies alba, Acer pseudoplatanus, Fagus sylvatica, Picea abies) in temperate mountain forests of Europe and elucidate how disturbance histories, climate, and topography affect canopy accession. All four species exhibited high variability of radial growth histories leading to canopy accession and indicated varying levels of shade tolerance. Individuals of all four species survived at least 100 years of initial suppression. Fir and particularly beech, however, survived longer periods of initial suppression, exhibited more release events, and reached the canopy later on average, with a larger share of trees accessing the canopy after initially suppressed growth. These results indicate the superior shade tolerance of beech and fir compared to spruce and maple. The two less shade-tolerant species conversely relied on faster growth rates, revealing their competitive advantage in non-suppressed conditions. Additionally, spruce from higher-elevation spruce-dominated forests survived shorter periods of initial shading and exhibited fewer releases, with a larger share of trees reaching the canopy after open canopy recruitment (i.e. in absence of suppression) and no subsequent releases compared to spruce growing in lower-elevation mixed forests. Finally, disturbance factors were identified as the primary driver of canopy accession, whereby disturbances accelerate canopy accession and consequently regulate competitive interactions. Intensifying disturbance regimes could thus promote shifts in species composition, particularly in favour of faster-growing, more light-demanding species.
Collapse
Affiliation(s)
- Jakob Pavlin
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 21 Prague, Czech Republic.
| | - Thomas A Nagel
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 21 Prague, Czech Republic; Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Večna pot 83, 1000 Ljubljana, Slovenia
| | - Marek Svitok
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 21 Prague, Czech Republic; Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Masaryka 24, 96053 Zvolen, Slovakia
| | - Alfredo Di Filippo
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via SC de Lellis, 01100 Viterbo, Italy
| | - Stjepan Mikac
- Department of Forest Ecology and Silviculture, Faculty of Forestry, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Srdjan Keren
- Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Kraków, Poland
| | | | - Elvin Toromani
- Faculty of Forestry Sciences, Agricultural University of Tirana, 1029 Koder-Kamez, Albania
| | - Momchil Panayotov
- Department of Dendrology, University of Forestry Sofia, Kliment Ohridski 10 Blvd., 1797 Sofia, Bulgaria
| | - Tzvetan Zlatanov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Gagarin Street 2, 1113 Sofia, Bulgaria
| | - Ovidiu Haruta
- Forestry and Forest Engineering Department, University of Oradea, Oradea, Romania
| | - Sorin Dorog
- Forestry and Forest Engineering Department, University of Oradea, Oradea, Romania
| | - Oleh Chaskovskyy
- Institute of Forest Management, Ukrainian National Forestry University, Vul. Henerala Chuprynky 103, 79031 Lviv, Ukraine
| | - Radek Bače
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 21 Prague, Czech Republic
| | - Krešimir Begović
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 21 Prague, Czech Republic
| | - Arne Buechling
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 21 Prague, Czech Republic
| | - Martin Dušátko
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 21 Prague, Czech Republic
| | - Michal Frankovič
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 21 Prague, Czech Republic
| | - Pavel Janda
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 21 Prague, Czech Republic
| | - Ondrej Kameniar
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 21 Prague, Czech Republic
| | - Daniel Kozák
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 21 Prague, Czech Republic
| | - William Marchand
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 21 Prague, Czech Republic
| | - Martin Mikoláš
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 21 Prague, Czech Republic
| | - Ruffy Rodrigo
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 21 Prague, Czech Republic
| | - Miroslav Svoboda
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 21 Prague, Czech Republic
| |
Collapse
|
5
|
Mu Y, Lindenmayer D, Zheng S, Yang Y, Wang D, Liu J. Size-focused conservation may fail to protect the world's oldest trees. Curr Biol 2023; 33:4641-4649.e3. [PMID: 37820721 DOI: 10.1016/j.cub.2023.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/02/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Old trees are irreplaceable natural resources that provide multifaceted benefits to humans. Current conservation strategies focus primarily on large-sized trees that were often considered old. However, some studies have demonstrated that small trees can be more than thousands of years old, suggesting that conventional size-focused perceptions may hamper the efficiency of current conservation strategies for old trees. Here, we compiled paired age and diameter data using tree-ring records sampled from 121,918 trees from 269 species around the world to detect whether tree size is a strong predictor of age for old trees and whether the spatial distribution of small old trees differs from that of large old trees. We found that tree size was a weak predictor of age for old trees, and diameter explained only 10% of the total age variance of old trees. Unlike large-sized trees that are mainly in warm, wet environments and protected, small old trees are predominantly in cold, dry environments and mostly unprotected, indicating that size-focused conservation failed to protect some of the oldest trees. To conserve old trees, comprehensive old-tree recognition systems are needed that consider not only tree size but also age and external characteristics. Protected areas designed for small old trees are urgently needed.
Collapse
Affiliation(s)
- Yumei Mu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - David Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601, Australia
| | - Shilu Zheng
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yongchuan Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Deyi Wang
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, the Netherlands
| | - Jiajia Liu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming, Shanghai 202183, China.
| |
Collapse
|
6
|
Begović K, Schurman JS, Svitok M, Pavlin J, Langbehn T, Svobodová K, Mikoláš M, Janda P, Synek M, Marchand W, Vitková L, Kozák D, Vostarek O, Čada V, Bače R, Svoboda M. Large old trees increase growth under shifting climatic constraints: Aligning tree longevity and individual growth dynamics in primary mountain spruce forests. GLOBAL CHANGE BIOLOGY 2023; 29:143-164. [PMID: 36178428 DOI: 10.1111/gcb.16461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
In a world of accelerating changes in environmental conditions driving tree growth, tradeoffs between tree growth rate and longevity could curtail the abundance of large old trees (LOTs), with potentially dire consequences for biodiversity and carbon storage. However, the influence of tree-level tradeoffs on forest structure at landscape scales will also depend on disturbances, which shape tree size and age distribution, and on whether LOTs can benefit from improved growing conditions due to climate warming. We analyzed temporal and spatial variation in radial growth patterns from ~5000 Norway spruce (Picea abies [L.] H. Karst) live and dead trees from the Western Carpathian primary spruce forest stands. We applied mixed-linear modeling to quantify the importance of LOT growth histories and stand dynamics (i.e., competition and disturbance factors) on lifespan. Finally, we assessed regional synchronization in radial growth variability over the 20th century, and modeled the effects of stand dynamics and climate on LOTs recent growth trends. Tree age varied considerably among forest stands, implying an important role of disturbance as an age constraint. Slow juvenile growth and longer period of suppressed growth prolonged tree lifespan, while increasing disturbance severity and shorter time since last disturbance decreased it. The highest age was not achieved only by trees with continuous slow growth, but those with slow juvenile growth followed by subsequent growth releases. Growth trend analysis demonstrated an increase in absolute growth rates in response to climate warming, with late summer temperatures driving the recent growth trend. Contrary to our expectation that LOTs would eventually exhibit declining growth rates, the oldest LOTs (>400 years) continuously increase growth throughout their lives, indicating a high phenotypic plasticity of LOTs for increasing biomass, and a strong carbon sink role of primary spruce forests under rising temperatures, intensifying droughts, and increasing bark beetle outbreaks.
Collapse
Affiliation(s)
- Krešimir Begović
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jonathan S Schurman
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Marek Svitok
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
- Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, Slovakia
| | - Jakob Pavlin
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Thomas Langbehn
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Kristyna Svobodová
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Martin Mikoláš
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Pavel Janda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Michal Synek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - William Marchand
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Lucie Vitková
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Daniel Kozák
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ondrej Vostarek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Vojtech Čada
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Radek Bače
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|