1
|
Zeng J, Han G, Wu Q, Qu R, Ma Q, Chen J, Mao S, Ge X, Wang ZJ, Ma Z. Significant influence of urban human activities and marine input on rainwater chemistry in a coastal large city, China. WATER RESEARCH 2024; 257:121657. [PMID: 38663214 DOI: 10.1016/j.watres.2024.121657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 05/29/2024]
Abstract
The coastal urban region is generally considered an atmospheric receptor for terrestrial and marine input materials, and rainfall chemistry can trace the wet scavenging process of these materials. Fast urbanization in China's east coastal areas has greatly altered the rainwater chemistry. However, the chemical variations, determinants, and sources of rainfall are unclear. Therefore, the typical coastal city of Fuzhou was selected for 1-year rainwater sampling and inorganic ions were detected to explore above problems. The findings depicted that rainwater ions in Fuzhou were slightly different from those in other coastal cities. Although NO3-, SO42-, Ca2+ and NH4+ dominated the rainwater ions, the marine input Cl- (22 %) and Na+ (11 %) also contributed a considerable percentage to the rainwater ions. Large differences in ion concentrations (2∼28 times) were found in monthly scale due to the rainfall amount. Both natural and anthropogenic determinants influenced the rainwater ions in coastal cities, such as SO2 emission, air SO2 and PM10 content on rainwater SO42-, NO3-, and Ca2+, and soot & dust emission on rainwater SO42-, NO3-, indicating the vital contribution of human activities. Stoichiometry and positive matrix factorization-based sources identification indicated that atmospheric dust/particles were the primary contributor of Ca2+ (83.3 %) and F- (83.7 %), and considerable contributor of SO42- (39.5 %), NO3- (38.3 %) and K+ (41.5 %). Anthropogenic origins, such as urban waste volatilization and fuel combustion emission, contributed 95 % of NH4+, 54.5 % of NO3- and 41.9 % of SO42-, and the traffic sources contribution was relatively higher than fixed emission sources. The marine input represented the vital source of Cl- (77.7 %), Na+ (84.9 %), and Mg2+ (55.3 %). This work highlights the significant influence of urban human activities and marine input on rainwater chemicals and provides new insight into the material cycle between the atmosphere and earth-surface in coastal city.
Collapse
Affiliation(s)
- Jie Zeng
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; North Alabama International College of Engineering and Technology, Guizhou University, Guiyang, 550025, China
| | - Guilin Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Qixin Wu
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; North Alabama International College of Engineering and Technology, Guizhou University, Guiyang, 550025, China
| | - Rui Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Qing Ma
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Jingwen Chen
- Fujian Key Laboratory of Mineral Resources, Fuzhou University, Fuzhou, 350108, China
| | - Shijun Mao
- North Alabama International College of Engineering and Technology, Guizhou University, Guiyang, 550025, China
| | - Xin Ge
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Zhong-Jun Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Zhiheng Ma
- School of Geoscience and Technology, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
2
|
Mao J, Pan J, Song L, Zhang R, Wang J, Tian D, Wang Q, Liao J, Peng J, Niu S. Aridity threshold for alpine soil nitrogen isotope signature and ecosystem nitrogen cycling. GLOBAL CHANGE BIOLOGY 2024; 30:e17357. [PMID: 38822559 DOI: 10.1111/gcb.17357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Determination of tipping points in nitrogen (N) isotope (δ15N) natural abundance, especially soil δ15N, with increasing aridity, is critical for estimating N-cycling dynamics and N limitation in terrestrial ecosystems. However, whether there are linear or nonlinear responses of soil δ15N to increases in aridity and if these responses correspond well with soil N cycling remains largely unknown. In this study, we investigated soil δ15N and soil N-cycling characteristics in both topsoil and subsoil layers along a drought gradient across a 3000-km transect of drylands on the Qinghai-Tibetan Plateau. We found that the effect of increasing aridity on soil δ15N values shifted from negative to positive with thresholds at aridity index (AI) = 0.27 and 0.29 for the topsoil and subsoil, respectively, although soil N pools and N transformation rates linearly decreased with increasing aridity in both soil layers. Furthermore, we identified markedly different correlations between soil δ15N and soil N-cycling traits above and below the AI thresholds (0.27 and 0.29 for topsoil and subsoil, respectively). Specifically, in wetter regions, soil δ15N positively correlated with most soil N-cycling traits, suggesting that high soil δ15N may result from the "openness" of soil N cycling. Conversely, in drier regions, soil δ15N showed insignificant relationships with soil N-cycling traits and correlated well with factors, such as soil-available phosphorus and foliage δ15N, demonstrating that pathways other than typical soil N cycling may dominate soil δ15N under drier conditions. Overall, these results highlight that different ecosystem N-cycling processes may drive soil δ15N along the aridity gradient, broadening our understanding of N cycling as indicated by soil δ15N under changing drought regimes. The aridity threshold of soil δ15N should be considered in terrestrial N-cycling models when incorporating 15N isotope signals to predict N cycling and availability under climatic dryness.
Collapse
Affiliation(s)
- Jinhua Mao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
| | - Junxiao Pan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
| | - Lei Song
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
| | - Quancheng Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jiaqiang Liao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
3
|
Zhang D, Wang H, Liu X, Ao K, He W, Wang T, Zhang M, Tong S. Latitudinal patterns and their climate drivers of the δ 13C, δ 15N, δ 34S isotope signatures of Spartina alterniflora across plant life-death status: a global analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1384914. [PMID: 38882576 PMCID: PMC11176468 DOI: 10.3389/fpls.2024.1384914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Isotopic signatures offer new methods, approaches, and perspectives for exploring the ecological adaptability and functions of plants. We examined pattern differences in the isotopic signatures (δ 13C, δ 15N, δ 34S) of Spartina alterniflora across varying plant life-death status along geographic clines. We extracted 539 sets of isotopic data from 57 publications covering 267 sites across a latitude range of over 23.8° along coastal wetlands. Responses of isotopic signatures to climate drivers (MAT and MAP) and the internal relationships between isotopic signatures were also detected. Results showed that the δ 13C, δ 15N, and δ 34S of S. alterniflora were -13.52 ± 0.83‰, 6.16 ± 0.14‰, and 4.01 ± 6.96‰, with a range of -17.44‰ to -11.00‰, -2.40‰ to 15.30‰, and -9.60‰ to 15.80‰, respectively. The latitudinal patterns of δ 13C, δ 15N, and δ 34S in S. alterniflora were shaped as a convex curve, a concave curve, and an increasing straight line, respectively. A decreasing straight line for δ 13C within the ranges of MAT was identified under plant life status. Plant life-death status shaped two nearly parallel decreasing straight lines for δ 34S in response to MAT, resulting in a concave curve of δ 34S for live S. alterniflora in response to MAP. The δ 15N of S. alterniflora significantly decreased with increasing δ 13C of S. alterniflora, except for plant death status. The δ 13C, δ 15N, and δ 34S of S. alterniflora are consistent with plant height, stem diameter, leaf traits, etc, showing general latitudinal patterns closely related to MAT. Plant life-death status altered the δ 15N (live: 6.55 ± 2.23‰; dead: -2.76 ± 2.72‰), latitudinal patterns of S. alterniflora and their responses to MAT, demonstrating strong ecological plasticity and adaptability across the geographic clines. The findings help in understanding the responses of latitudinal patterns of the δ 13C, δ 15N, and δ 34S isotope signatures of S. alterniflora in response plant life-death status, and provide evidence of robust ecological plasticity and adaptability across geographic clines.
Collapse
Affiliation(s)
- Dongjie Zhang
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China
| | - Hui Wang
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China
| | - Xuepeng Liu
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China
| | - Kang Ao
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China
| | - Wenjun He
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China
| | - Tongxin Wang
- School of Geographical Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Mingye Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Shouzheng Tong
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| |
Collapse
|
4
|
Xia N, Du E, Wu X, Tang Y, Guo H, Wang Y. Distinct latitudinal patterns and drivers of topsoil nitrogen and phosphorus across urban forests in eastern China. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2951. [PMID: 38357775 DOI: 10.1002/eap.2951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024]
Abstract
Nitrogen (N) and phosphorus (P) are the two most important macronutrients supporting forest growth. Unprecedented urbanization has created growing areas of urban forests that provide key ecosystem services for city dwellers. However, the large-scale patterns of soil N and P content remain poorly understood in urban forests. Based on a systematic soil survey in urban forests from nine large cities across eastern China, we examined the spatial patterns and key drivers of topsoil (0-20 cm) total N content, total P content, and N:P ratio. Topsoil total N content was found to change significantly with latitude in the form of an inverted parabolic curve, while total P content showed an opposite latitudinal pattern. Variance partition analysis indicated that regional-scale patterns of topsoil total N and P contents were dominated by climatic drivers and partially regulated by time and pedogenic drivers. Conditional regression analyses showed a significant increase in topsoil total N content with lower mean annual temperature (MAT) and higher mean annual precipitation (MAP), while topsoil total P content decreased significantly with higher MAP. Topsoil total N content also increased significantly with the age of urban park and varied with pre-urban soil type, while no such effects were found for topsoil total P content. Moreover, topsoil N:P ratio showed a latitudinal pattern similar to that of topsoil total N content and also increased significantly with lower MAT and higher MAP. Our findings demonstrate distinct latitudinal trends of topsoil N and P contents and highlight a dominant role of climatic drivers in shaping the large-scale patterns of topsoil nutrients in urban forests.
Collapse
Affiliation(s)
- Nan Xia
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Enzai Du
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Xinhui Wu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yang Tang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Hongbo Guo
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yang Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|