1
|
Ide AD, Grainger S. WNT9A and WNT9B in Development and Disease. Differentiation 2025; 142:100820. [PMID: 39616032 PMCID: PMC11911101 DOI: 10.1016/j.diff.2024.100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024]
Abstract
WNT9 paralogues, WNT9A and WNT9B, are secreted ligands driving both the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. These pathways play roles in cell fate determination, embryonic patterning, bone development, and organogenesis, among other biological processes. Studies of Wnt9a and Wnt9b mutant animals demonstrate that they have specific and overlapping roles in these processes. Wnt9a is critical in directing stem and progenitor cell fate during hematopoietic stem cell development, proper bone formation, and chondrogenesis, while Wnt9b is important for kidney and heart development. Both proteins are essential in craniofacial development and convergent extension movements. Dysregulated expression of human WNT9A and WNT9B have been implicated in different cancers and disease, suggesting these proteins or their downstream pathways may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Amber D Ide
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
2
|
Kamizaki K, Katsukawa M, Yamamoto A, Fukada SI, Uezumi A, Endo M, Minami Y. Ror2 signaling regulated by differential Wnt proteins determines pathological fate of muscle mesenchymal progenitors. Cell Death Dis 2024; 15:784. [PMID: 39468010 PMCID: PMC11519583 DOI: 10.1038/s41419-024-07173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Skeletal muscle mesenchymal progenitors (MPs) play a critical role in supporting muscle regeneration. However, under pathological conditions, they contribute to intramuscular adipose tissue accumulation, involved in muscle diseases, including muscular dystrophy and sarcopenia, age-related muscular atrophy. How MP fate is determined in these different contexts remains unelucidated. Here, we report that Ror2, a non-canonical Wnt signaling receptor, is selectively expressed in MPs and regulates their pathological features in a differential ligand-dependent manner. We identified Wnt11 and Wnt5b as ligands of Ror2. In vitro, Wnt11 inhibited MP senescence, which is required for normal muscle regeneration, and Wnt5b promoted MP proliferation. We further found that both Wnts are abundant in degenerating muscle and synergistically stimulate Ror2, leading to unwanted MP proliferation and eventually intramuscular adipose tissue accumulation. These findings provide evidence that Ror2-mediated signaling elicited by differential Wnts plays a critical role in determining the pathological fate of MPs.
Collapse
Affiliation(s)
- Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mitsuko Katsukawa
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Ayano Yamamoto
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - So-Ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akiyoshi Uezumi
- Division of Cell Heterogeneity, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.
| |
Collapse
|
3
|
Yamauchi N, Otsuka M, Ishikawa T, Kakeji Y, Kikuchi A, Masuda A, Kodama Y, Minami Y, Kamizaki K. Role of Wnt5b-Ror1 signaling in the proliferation of pancreatic ductal adenocarcinoma cells. Genes Cells 2024; 29:503-511. [PMID: 38531660 DOI: 10.1111/gtc.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most refractory cancers with the worst prognosis. Although several molecules are known to be associated with the progression of PDAC, the molecular mechanisms underlying the progression of PDAC remain largely elusive. The Ror-family receptors, Ror1 and Ror2, which act as a receptor(s) for Wnt-family ligands, particularly Wnt5a, are involved in the progression of various types of cancers. Here, we show that higher expression of Ror1 and Wnt5b, but not Ror2, are associated with poorer prognosis of PDAC patients, and that Ror1 and Wnt5b are expressed highly in a type of PDAC cell lines, PANC-1 cells. Knockdown of either Ror1 or Wnt5b in PANC-1 cells inhibited their proliferation significantly in vitro, and knockout of Ror1 in PANC-1 cells resulted in a significant inhibition of tumor growth in vivo. Furthermore, we show that Wnt5b-Ror1 signaling in PANC-1 cells promotes their proliferation in a cell-autonomous manner by modulating our experimental setting in vitro. Collectively, these findings indicate that Wnt5b-Ror1 signaling might play an important role in the progression of some if not all of PDAC by promoting proliferation.
Collapse
Affiliation(s)
- Natsuko Yamauchi
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mako Otsuka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tomohiro Ishikawa
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Akira Kikuchi
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Atsuhiro Masuda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
4
|
Kamizaki K, Minami Y, Nishita M. Role of the Ror family receptors in Wnt5a signaling. In Vitro Cell Dev Biol Anim 2024; 60:489-501. [PMID: 38587578 DOI: 10.1007/s11626-024-00885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 04/09/2024]
Abstract
Ror-family receptors, Ror1 and Ror2, are type I transmembrane proteins that possess an extracellular cysteine-rich domain, which is conserved throughout the Frizzled-family receptors and is a binding site for Wnt ligands. Both Ror1 and Ror2 function primarily as receptors or co-receptors for Wnt5a to activate the β-catenin-independent, non-canonical Wnt signaling, thereby regulating cell polarity, migration, proliferation, and differentiation depending on the context. Ror1 and Ror2 are expressed highly in many tissues during embryogenesis but minimally or scarcely in adult tissues, with some exceptions. In contrast, Ror1 and Ror2 are expressed in many types of cancers, and their high expression often contributes to the progression of the disease. Therefore, Ror1 and Ror2 have been proposed as potential targets for the treatment of the malignancies. In this review, we provide an overview of the regulatory mechanisms of Ror1/Ror2 expression and discuss how Wnt5a-Ror1/Ror2 signaling is mediated and regulated by their interacting proteins.
Collapse
Affiliation(s)
- Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-Oka, Fukushima, 960-1295, Japan.
| |
Collapse
|
5
|
Maleki F, Razmi H, Rashidi MR, Yousefi M, Ramazani S, Ghorbani M, Hojjat-Farsangi M, Shahpasand K. Detection of receptor tyrosine kinase-orphan receptor-2 using an electrochemical immunosensor modified with electrospun nanofibers comprising polyvinylpyrrolidone, soy, and gold nanoparticles. Mikrochim Acta 2023; 190:418. [PMID: 37770707 DOI: 10.1007/s00604-023-06002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/16/2023] [Indexed: 09/30/2023]
Abstract
An electrochemical immunosensing platform was developed for the detection of receptor tyrosine kinase-orphan receptor-2 (ROR2) at a glassy carbon electrode (GCE) modified with the electrospun nanofiber containing polyvinylpyrrolidone (PVP), soy, and Au nanoparticles (AuNPs). The PVP/soy/AuNP nanofiber exhibited good electrochemical behavior due to synergistic effects between PVP, soy, and AuNPs. The PVP/soy in the modified film provided good mechanical strength, high porosity, flexible structures, and high specific surface area. On the other hand, the presence of AuNPs effectively improved conductivity, as well as the immobilization of anti-ROR2 on the modified GCE, leading to enhanced sensitivity. Various characterization approaches such as FE-SEM, FTIR, and EDS were used for investigating the morphological and structural features, and the elemental composition. The designed immunosensor performance was investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV). Under optimum conditions with a working potential range from -0.2 to 0.6 V (vs. SCE), sensitivity, linear range (LR), limit of detection (LOD), and correlation coefficient (R2) were acquired at 122.26 μA/cm2 dec, 0.01-1000 pg/mL, 3.39 fg/mL, and 0.9974, respectively. Furthermore, the determination of ROR2 in human plasma samples using the designed immunosensing platform was examined and exhibited satisfactory results including good selectivity against other proteins, reproducibility, and cyclic stability.
Collapse
Affiliation(s)
- Fatemeh Maleki
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran
| | - Habib Razmi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran.
| | | | - Mehdi Yousefi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Ramazani
- Faculty of Textile Engineering, Urmia University of Technology, Urmia, 5716693188, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institute, 17164, Stockholm, Sweden
| | - Kourosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| |
Collapse
|
6
|
Dranow DB, Le Pabic P, Schilling TF. The non-canonical Wnt receptor Ror2 is required for cartilage cell polarity and morphogenesis of the craniofacial skeleton in zebrafish. Development 2023; 150:dev201273. [PMID: 37039156 PMCID: PMC10163346 DOI: 10.1242/dev.201273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
Non-canonical/β-catenin-independent Wnt signaling plays crucial roles in tissue/cell polarity in epithelia, but its functions have been less well studied in mesenchymal tissues, such as the skeleton. Mutations in non-canonical Wnt signaling pathway genes cause human skeletal diseases such as Robinow syndrome and Brachydactyly Type B1, which disrupt bone growth throughout the endochondral skeleton. Ror2 is one of several non-canonical Wnt receptor/co-receptors. Here, we show that ror2-/- mutant zebrafish have craniofacial skeletal defects, including disruptions of chondrocyte polarity. ror1-/- mutants appear to be phenotypically wild type, but loss of both ror1 and ror2 leads to more severe cartilage defects, indicating partial redundancy. Skeletal defects in ror1/2 double mutants resemble those of wnt5b-/- mutants, suggesting that Wnt5b is the primary Ror ligand in zebrafish. Surprisingly, the proline-rich domain of Ror2, but not its kinase domain, is required to rescue its function in mosaic transgenic experiments in ror2-/- mutants. These results suggest that endochondral bone defects in ROR-related human syndromes reflect defects in cartilage polarity and morphogenesis.
Collapse
Affiliation(s)
- Daniel B. Dranow
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Pierre Le Pabic
- Department of Biology & Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
8
|
Obstetrical Challenges in Robinow Syndrome. Case Rep Obstet Gynecol 2022; 2022:6481517. [PMID: 35909981 PMCID: PMC9337944 DOI: 10.1155/2022/6481517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Robinow syndrome is a genetically heterogenous syndrome that exhibits great pleiotropy, involving skeletal genital, cardiac, and craniofacial developmental anomalies. Fertility is not always compromised, and many individuals may be able to have a healthy pregnancy. Similar to other more common skeletal dysplasias and growth disorders such as achondroplasia, there are several challenges to be addressed in managing physiologic differences that occur in the context of pregnancy, and published literature centers on pregnant people with achondroplasia. We present a patient with Robinow syndrome (ROR2 variant), follow her clinical course through three of her pregnancies (one 20-week loss followed by two preterm cesarean deliveries at 36-week gestation), and highlight the major obstetrical considerations in her individualized care.
Collapse
|
9
|
Endo M, Kamizaki K, Minami Y. The Ror-Family Receptors in Development, Tissue Regeneration and Age-Related Disease. Front Cell Dev Biol 2022; 10:891763. [PMID: 35493090 PMCID: PMC9043558 DOI: 10.3389/fcell.2022.891763] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
The Ror-family proteins, Ror1 and Ror2, act as receptors or co-receptors for Wnt5a and its related Wnt proteins to activate non-canonical Wnt signaling. Ror1 and/or Ror2-mediated signaling plays essential roles in regulating cell polarity, migration, proliferation and differentiation during developmental morphogenesis, tissue-/organo-genesis and regeneration of adult tissues following injury. Ror1 and Ror2 are expressed abundantly in developing tissues in an overlapping, yet distinct manner, and their expression in adult tissues is restricted to specific cell types such as tissue stem/progenitor cells. Expression levels of Ror1 and/or Ror2 in the adult tissues are increased following injury, thereby promoting regeneration or repair of these injured tissues. On the other hand, disruption of Wnt5a-Ror2 signaling is implicated in senescence of tissue stem/progenitor cells that is related to the impaired regeneration capacity of aged tissues. In fact, Ror1 and Ror2 are implicated in age-related diseases, including tissue fibrosis, atherosclerosis (or arteriosclerosis), neurodegenerative diseases, and cancers. In these diseases, enhanced and/or sustained (chronic) expression of Ror1 and/or Ror2 is observed, and they might contribute to the progression of these diseases through Wnt5a-dependent and -independent manners. In this article, we overview recent advances in our understanding of the roles of Ror1 and Ror2-mediated signaling in the development, tissue regeneration and age-related diseases, and discuss their potential to be therapeutic targets for chronic inflammatory diseases and cancers.
Collapse
|
10
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
11
|
Gui B, Yu C, Li X, Zhao S, Zhao H, Yan Z, Cheng X, Lin J, Zheng H, Shao J, Zhao Z, Zhao L, Niu Y, Zhao Z, Wang H, Xie B, Wei X, Gui C, Li C, Chen S, Wang Y, Song Y, Gong C, Zhang TJ, Fan X, Wu Z, Chen Y, Wu N. Heterozygous Recurrent Mutations Inducing Dysfunction of ROR2 Gene in Patients With Short Stature. Front Cell Dev Biol 2021; 9:661747. [PMID: 33937263 PMCID: PMC8080376 DOI: 10.3389/fcell.2021.661747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE ROR2, a member of the ROR family, is essential for skeletal development as a receptor of Wnt5a. The present study aims to investigate the mutational spectrum of ROR2 in children with short stature and to identify the underlying molecular mechanisms. METHODS We retrospectively analyzed clinical phenotype and whole-exome sequencing (WES) data of 426 patients with short stature through mutation screening of ROR2. We subsequently examined the changes in protein expression and subcellular location in ROR2 caused by the mutations. The mRNA expression of downstream signaling molecules of the Wnt5a-ROR2 pathway was also examined. RESULTS We identified 12 mutations in ROR2 in 21 patients, including 10 missense, one nonsense, and one frameshift. Among all missense variants, four recurrent missense variants [c.1675G > A(p.Gly559Ser), c.2212C > T(p.Arg738Cys), c.1930G > A(p.Asp644Asn), c.2117G > A(p.Arg706Gln)] were analyzed by experiments in vitro. The c.1675G > A mutation significantly altered the expression and the cellular localization of the ROR2 protein. The c.1675G > A mutation also caused a significantly decreased expression of c-Jun. In contrast, other missense variants did not confer any disruptive effect on the biological functions of ROR2. CONCLUSION We expanded the mutational spectrum of ROR2 in patients with short stature. Functional experiments potentially revealed a novel molecular mechanism that the c.1675G > A mutation in ROR2 might affect the expression of downstream Wnt5a-ROR2 pathway gene by disturbing the subcellular localization and expression of the protein.
Collapse
Affiliation(s)
- Baoheng Gui
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Chenxi Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xiaoxin Li
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Hengqiang Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xi Cheng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jiachen Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Haiyang Zheng
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Jiashen Shao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zhengye Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Lina Zhao
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuchen Niu
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi Zhao
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Huizi Wang
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bobo Xie
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Xianda Wei
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunrong Gui
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chuan Li
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaoke Chen
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi Wang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Yanning Song
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Chunxiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Fan
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujun Chen
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Abstract
Wnt signaling is an important morphogenetic signaling pathway best known for its essential role in determining embryonic cell fates; it is often activated to re-specify fetal cells or to maintain the lineage flexibility of somatic stem cells. In this review, we consider the role of this pathway in the remarkable process of differentiation, growth and morphogenesis of the mammary gland during embryogenesis, ductal outgrowth and pregnancy. Specifically, mammary stem cells are compared with stem cells from other tissues, to identify commonalities and differences. Wnt signaling is known to be required to maintain the bipotent basal stem cell present in adult mammary ductal trees, however, the absence of this stem cell has little effect on growth or morphogenesis, and Wnt signaling is not induced during the ductal/alveolar expansion during pregnancy. The evidence for pre-determined hierarchies of mammary epithelial cells is reviewed, together with the role of signaling between mixtures of specified mammary epithelial cells in the maintenance of Wnt-dependent clonagenic stem cells. The dazzling variety of Wnt signaling components expressed by mammary epithelial cells is presented, along with some potential stromal sources of Wnt proteins that may be important starting points for the induction of plasticity in the epithelium.
Collapse
Affiliation(s)
- Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States.
| |
Collapse
|
13
|
Sonavane PR, Willert K. Controlling Wnt Signaling Specificity and Implications for Targeting WNTs Pharmacologically. Handb Exp Pharmacol 2021; 269:3-28. [PMID: 34463853 DOI: 10.1007/164_2021_529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wnt signaling is critical for proper development of the embryo and for tissue homeostasis in the adult. Activation of this signaling cascade is initiated by binding of the secreted Wnts to their receptors. With the mammalian genome encoding multiple Wnts and Wnt receptors, a longstanding question in the field has been how Wnt-receptor specificities are achieved. Emerging from these studies is a picture of exquisite control over Wnt protein production, secretion, distribution, and receptor interactions, culminating in activation of downstream signaling cascades that control a myriad of biological processes. Here we discuss mechanisms by which Wnt protein activities are tuned and illustrate how the multiple layers of regulation can be leveraged for therapeutic interventions in disease.
Collapse
Affiliation(s)
- Pooja R Sonavane
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Karl Willert
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Kamizaki K, Endo M, Minami Y, Kobayashi Y. Role of noncanonical Wnt ligands and Ror-family receptor tyrosine kinases in the development, regeneration, and diseases of the musculoskeletal system. Dev Dyn 2020; 250:27-38. [PMID: 31925877 DOI: 10.1002/dvdy.151] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
The Ror-family receptor tyrosine kinases (RTKs), consisting of Ror1 and Ror2, play crucial roles in morphogenesis and formation of various tissues/organs, including the bones and skeletal muscles, the so-called musculoskeletal system, during embryonic development, by acting as receptors or coreceptors for a noncanonical Wnt protein Wnt5a. Furthermore, several lines of evidence have indicated that Ror1 and/or Ror2 play critical roles in the regeneration and maintenance of the musculoskeletal system in adults. Considering the anatomical and functional relationship between the skeleton and skeletal muscles, their structural and functional association might be tightly regulated during their embryonic development, development after birth, and their regeneration after injury in adults. Importantly, in addition to their congenital anomalies, much attention has been paid onto the age-related disorders of the musculoskeletal system, including osteopenia and sarcopenia, which affect severely the quality of life. In this article, we overview recent advances in our understanding of the roles of Ror1- and/or Ror2-mediated signaling in the embryonic development, regeneration in adults, and congenital and age-related disorders of the musculoskeletal system and discuss possible therapeutic approaches to locomotive syndromes by modulating Ror1- and/or Ror2-mediated signaling.
Collapse
Affiliation(s)
- Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | |
Collapse
|
15
|
Yang K, Zhu J, Tan Y, Sun X, Zhao H, Tang G, Zhang D, Qi H. Whole-exome sequencing identified compound heterozygous variants in ROR2 gene in a fetus with Robinow syndrome. J Clin Lab Anal 2019; 34:e23074. [PMID: 31617258 PMCID: PMC7031599 DOI: 10.1002/jcla.23074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/12/2019] [Accepted: 09/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background Autosomal recessive Robinow syndrome (ARRS) is a rare genetic disorder, which affects the development of multiple systems, particularly the bones. Objectives The aim of this study was to investigate the genetic cause of a ARRS fetus and to evaluate the reliability of whole‐exome sequencing (WES) in prenatal diagnosis on cases with indistinguishable multiple malformation. Methods Clinical and ultrasonic evaluations were conducted on the fetus, and multiplatform genetic techniques were used to identify the variation responsible for RS. The pathogenicity of the novel variation was evaluated by in silico methods. Western blotting (WB) and immunohistochemistry (IHC) were performed on fetal tissues after the fetus' stillbirth and postabortal autopsy. Results A compound heterozygous variation consisting c.613C > T and c.904C > T in ROR2 gene was identified. In silico prediction suggested that c.904C > T was a deleterious variant. IHC result demonstrated that ror2 expression level of the proband in osteochondral tissue significantly increased comparing with that of the control sample. Conclusions For the first time in Chinese population, we characterized a novel variation in ROR2 gene causing ARRS. This study extended the mutation spectrum of ARRS and provided a promising strategy for prenatal diagnosis of cases with ambiguous multiple deformities.
Collapse
Affiliation(s)
- Kai Yang
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Jianjiang Zhu
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| | - Ya Tan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Xiaofei Sun
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| | - Huawei Zhao
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| | - Guodong Tang
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| | - Dongliang Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Hong Qi
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
16
|
Karvonen H, Barker H, Kaleva L, Niininen W, Ungureanu D. Molecular Mechanisms Associated with ROR1-Mediated Drug Resistance: Crosstalk with Hippo-YAP/TAZ and BMI-1 Pathways. Cells 2019; 8:cells8080812. [PMID: 31382410 PMCID: PMC6721603 DOI: 10.3390/cells8080812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Signaling via the Wnt-related receptor tyrosine kinase-like orphan receptor 1 (ROR1) triggers tumorigenic features associated with cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT), while aberrant expression of ROR1 is strongly linked to advanced disease progression and chemoresistance. Several recent studies have shown that Wnt5a binding to ROR1 promotes oncogenic signaling by activating multiple pathways such as RhoA/Rac1 GTPases and PI3K/AKT, which in turn could induce transcriptional coactivator YAP/TAZ or polycomb complex protein BMI-1 signaling, respectively, to sustain stemness, metastasis and ultimately drug-resistance. These data point towards a new feedback loop during cancer development, linking Wnt5a-ROR1 signaling activation to YAP/TAZ or BMI-1 upregulation that could play an important role in disease progression and treatment resistance. This review focuses on the crosstalk between Wnt5a-ROR1 and YAP/TAZ or the BMI-1 signaling network, together with the current advancements in targeted strategies for ROR1-positive cancers.
Collapse
Affiliation(s)
- Hanna Karvonen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
| | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Laura Kaleva
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
| | - Wilhelmiina Niininen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
| | - Daniela Ungureanu
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland.
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland.
| |
Collapse
|