1
|
Özdaş S, Canatar İ, Derici GE, Koç M. Bolanthus turcicus: a promising antidiabetic with in-vitro antioxidant, enzyme inhibitory and antiadipogenic activities. J Mol Histol 2024; 56:59. [PMID: 39729235 DOI: 10.1007/s10735-024-10283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/01/2024] [Indexed: 12/28/2024]
Abstract
It is crucial to investigate new anti-diabetic agents and therapeutic approaches targeting molecules in potential signaling pathways for the treatment of Type 2 diabetes mellitus (T2DM). The objective of the study was to investigate the total phenolic content, antioxidant capacity, α-glucosidase, and α-amylase inhibitory activities of Bolanthus turcicus (B. turcicus), as well as their cytotoxic, anti-adipogenic, anti-diabetic, apoptotic, and anti-migration potential on adipocytes. B. turcicus samples were extracted with methanol (MeOH), ethyl acetate (EA) and aqueous (Aq) solvents. The MeOH extract had the highest phenolic content (81.14 mg GAE/g), followed by EA (74.93 mg GAE/g) and Aq (51.09 mg GAE/g). All extracts exhibited dose-dependent increases in α-glycosidase and α-amylase inhibitory activity. B. turcicus extracts showed cytotoxic effect on adipocytes with IC50 values of MeOH (141.0 µg/mL) < Aq (155.3 µg/mL) < EA (199.5 µg/mL). Furthermore, B. turcicus extracts reduced lipid droplet formation and adipocyte diameter size. All extracts altered cell morphology to resemble fibroblasts. B. turcicus extracts exhibited anti-migratory effect delaying wound healing for up to 96 h. The B. turcicus extracts showed a pro-apoptotic effects on adipocytes by increasing Caspase-3 enzyme activity and the population of DAPI-positive cell with apoptotic nuclear-morphology. B. turcicus extracts upregulated the expression of the Glut-4 gene at the mRNA, protein and intracellular level in adipocytes. In conclusion, our findings indicate that B. turcicus not only exhibits strong antioxidant properties and enzyme inhibitory activities but also exerts significant anti-adipogenic and pro-apoptotic effects in adipocytes, thereby providing a comprehensive mechanism through which it may contribute to the management of T2DM. These effects highlight the potential of B. turcicus as a therapeutic agent for improving glucose homeostasis and insulin sensitivity.
Collapse
Affiliation(s)
- Sibel Özdaş
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye, Turkey.
| | - İpek Canatar
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye, Turkey
| | - Gizem Ece Derici
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye, Turkey
| | - Murat Koç
- Complementary and Integrative Medicine, Department of Traditional, Ankara Yıldırım Beyazıt University, Ankara, Türkiye, Turkey
| |
Collapse
|
2
|
Regulation of De Novo Lipid Synthesis by the Small GTPase Rac1 in the Adipogenic Differentiation of Progenitor Cells from Mouse White Adipose Tissue. Int J Mol Sci 2023; 24:ijms24054608. [PMID: 36902044 PMCID: PMC10003776 DOI: 10.3390/ijms24054608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
White adipocytes act as lipid storage, and play an important role in energy homeostasis. The small GTPase Rac1 has been implicated in the regulation of insulin-stimulated glucose uptake in white adipocytes. Adipocyte-specific rac1-knockout (adipo-rac1-KO) mice exhibit atrophy of subcutaneous and epididymal white adipose tissue (WAT); white adipocytes in these mice are significantly smaller than controls. Here, we aimed to investigate the mechanisms underlying the aberrations in the development of Rac1-deficient white adipocytes by employing in vitro differentiation systems. Cell fractions containing adipose progenitor cells were obtained from WAT and subjected to treatments that induced differentiation into adipocytes. In concordance with observations in vivo, the generation of lipid droplets was significantly attenuated in Rac1-deficient adipocytes. Notably, the induction of various enzymes responsible for de novo synthesis of fatty acids and triacylglycerol in the late stage of adipogenic differentiation was almost completely suppressed in Rac1-deficient adipocytes. Furthermore, the expression and activation of transcription factors, such as the CCAAT/enhancer-binding protein (C/EBP) β, which is required for the induction of lipogenic enzymes, were largely inhibited in Rac1-deficient cells in both early and late stages of differentiation. Altogether, Rac1 is responsible for adipogenic differentiation, including lipogenesis, through the regulation of differentiation-related transcription.
Collapse
|
3
|
A single cell-based computational platform to identify chemical compounds targeting desired sets of transcription factors for cellular conversion. Stem Cell Reports 2023; 18:131-144. [PMID: 36400030 PMCID: PMC9859931 DOI: 10.1016/j.stemcr.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
Cellular conversion can be induced by perturbing a handful of key transcription factors (TFs). Replacement of direct manipulation of key TFs with chemical compounds offers a less laborious and safer strategy to drive cellular conversion for regenerative medicine. Nevertheless, identifying optimal chemical compounds currently requires large-scale screening of chemical libraries, which is resource intensive. Existing computational methods aim at predicting cell conversion TFs, but there are no methods for identifying chemical compounds targeting these TFs. Here, we develop a single cell-based platform (SiPer) to systematically prioritize chemical compounds targeting desired TFs to guide cellular conversions. SiPer integrates a large compendium of chemical perturbations on non-cancer cells with a network model and predicted known and novel chemical compounds in diverse cell conversion examples. Importantly, we applied SiPer to develop a highly efficient protocol for human hepatic maturation. Overall, SiPer provides a valuable resource to efficiently identify chemical compounds for cell conversion.
Collapse
|
4
|
Stemness potency and structural characteristics of thyroid cancer cell lines. Pathol Res Pract 2023; 241:154262. [PMID: 36527836 DOI: 10.1016/j.prp.2022.154262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Thyroid cancer is the most frequent type of endocrine malignancy. Thyroid carcinomas are derived from the follicular epithelium and classified as papillary (PTC) (85%), follicular (FTC) (12%), and anaplastic (ATC) (<3%). Thyroid cancer could arise from thyroid cancer stem-like cells (CSCs). CSCs are cancer cells that feature stem-like properties. Kruppel-like factor (KLF4) and Stage-spesific embryonic antigen 1 (SSEA-1) are types of stem cell markers. Filamentous actin (F-actin) is an essential part of the cellular cytoskeleton. The purpose of this study was to evaluate the stem cell potency and the spatial distribution of the cytoskeletal element F-actin in PTC, FTC, and ATC cell lines. MATERIALS AND METHODS Normal thyroid cell line (NTC) Nthy-ori-3-1, PTC cell line BCPAP, FTC cell line FTC-133 and ATC cell line 8505c were stained with SSEA-1 and KLF4 for stem cell potency and F-actin for cytoskeleton. The morphological properties of cells were assessed by a scanning electron microscope (SEM) and elemental ratios were compared with EDS. RESULTS PTCs had greater percentages of SSEA-1 and KLF4 protein intensity (0.32% and 0.49%, respectively) than NTCs. ATCs had a greater proportion of KLF4 expression (0.8%) than NTCs. NTCs and FTCs had increased F-actin intensity across the cell, but PTCs had the lowest among these four cell lines. NTCs and PTCs, as well as NTCs and FTCs, have statistically identical aspect ratios and round values. These values, however, were statistically different in ATCs. CONCLUSION The study of stem cell markers and the cytoskeletal element F-actin in cancer and normal thyroid cell lines may assist in the identification of new therapeutic targets and contribute in the understanding of treatment resistance mechanisms.
Collapse
|
5
|
Chang R, Zhang Y, Sun J, Xu K, Li C, Zhang J, Mei W, Zhang H, Zhang J. Maternal pre-pregnancy body mass index and offspring with overweight/obesity at preschool age: The possible role of epigenome-wide DNA methylation changes in cord blood. Pediatr Obes 2023; 18:e12969. [PMID: 36102013 DOI: 10.1111/ijpo.12969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Epigenome-wide association studies have identified some DNA methylation sites associated with body mass index (BMI) or obesity. Studies in the Asian population are lacking. OBJECTIVE To examine the association of cord blood genome-wide DNA methylation (GWDm) changes with maternal pre-pregnancy BMI and children's BMI-z score at preschool age. Additionally, we also explored the genome-wide differentially methylated regions and differentially methylated probes between preschoolers with overweight/obesity and normal-weight counterparts. METHODS This two-stage study design included (1) a GWDm analysis of 30 mother-child pairs from 633 participants of the Zhuhai birth cohort with data on newborn cord blood, maternal pre-pregnancy BMI, and children's BMI at 3 years of age; and (2) a targeted validation analysis of the cord blood of ten children with overweight/obesity and ten matched controls to validate the CpG sites. RESULTS In the first stage, no significant CpG sites were found to be associated with children's BMI-z score at preschool age after FDR correction with the p-values of the CpG sites in FOXN3 (cg23501836) and ZNF264 (cg27437574) being close to 1 × 10-6 . In the second stage, a significant difference of CpG sites in AHRR (chr5:355067-355068) and FOXN3 (chr14: 89630264-89630272 and chr14: 89630387-89630388) was found between the ten children with overweight/obesity and ten controls (p < 0.05). The CpG sites in FOXN3 (chr14:89630264-89630272 and chr14:89630295-89630296) and ZNF264 (chr19: 57703104-57703107 and chr19: 57703301-57703307) were associated with children's BMI-z score; and the CpG sites in FOXN3 (chr14: 89630264-89630272 and chr14: 89630387-89630388) were associated with maternal pre-pregnancy BMI. CONCLUSIONS DNA methylation in FOXN3 and AHRR is associated with overweight/obesity in preschool-aged children, and the methylation in FOXN3 and ZNF264 might be associated with children's BMI-z score. FOXN3 methylation may be associated with maternal pre-pregnancy BMI, suggesting its potential role in the children's BMI-z score or overweight/obesity. Our results provide novel insights into the mechanisms of children's obesity.
Collapse
Affiliation(s)
- Ruixia Chang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Sun
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Xu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunan Li
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingli Zhang
- Traditional Chinese Medicine Hospital, Zhuhai, Guangdong, China
| | - Wenhua Mei
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong, China
| | - Hongzhong Zhang
- Zhuhai Women and Children's Hospital, Zhuhai, Guangdong, China
| | - Jianduan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Uetaki M, Onishi N, Oki Y, Shimizu T, Sugihara E, Sampetrean O, Watanabe T, Yanagi H, Suda K, Fujii H, Kano K, Saya H, Nobusue H. Regulatory roles of fibronectin and integrin α5 in reorganization of the actin cytoskeleton and completion of adipogenesis. Mol Biol Cell 2022; 33:ar78. [PMID: 35704469 PMCID: PMC9582638 DOI: 10.1091/mbc.e21-12-0609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cellular differentiation is characterized by changes in cell morphology that are largely determined by actin dynamics. We previously showed that depolymerization of the actin cytoskeleton triggers the differentiation of preadipocytes into mature adipocytes as a result of inhibition of the transcriptional coactivator activity of megakaryoblastic leukemia 1 (MKL1). The extracellular matrix (ECM) influences cell morphology via interaction with integrins, and reorganization of the ECM is associated with cell differentiation. Here we show that interaction between actin dynamics and ECM rearrangement plays a key role in adipocyte differentiation. We found that depolymerization of the actin cytoskeleton precedes disruption and degradation of fibrillar fibronectin (FN) structures at the cell surface after the induction of adipogenesis in cultured preadipocytes. A FN matrix suppressed both reorganization of the actin cytoskeleton into the pattern characteristic of adipocytes and terminal adipocyte differentiation, and these inhibitory effects were overcome by knockdown of integrin α5 (ITGα5). Peroxisome proliferator–activated receptor γ was required for down-regulation of FN during adipocyte differentiation, and MKL1 was necessary for the expression of ITGα5. Our findings suggest that cell-autonomous down-regulation of FN-ITGα5 interaction contributes to reorganization of the actin cytoskeleton and completion of adipocyte differentiation.
Collapse
Affiliation(s)
- Megumi Uetaki
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Onishi
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Takatsune Shimizu
- Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Eiji Sugihara
- Open Facility Center, Fujita Health University, Toyoake, Japan.,Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Watanabe
- Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Hisano Yanagi
- Department of Medical Oncology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kiyoshi Suda
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Hiroya Fujii
- Medical & Biological Laboratories Co., Ltd., Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Hiroyuki Nobusue
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| |
Collapse
|
7
|
Abuhattum S, Kotzbeck P, Schlüßler R, Harger A, Ariza de Schellenberger A, Kim K, Escolano JC, Müller T, Braun J, Wabitsch M, Tschöp M, Sack I, Brankatschk M, Guck J, Stemmer K, Taubenberger AV. Adipose cells and tissues soften with lipid accumulation while in diabetes adipose tissue stiffens. Sci Rep 2022; 12:10325. [PMID: 35725987 PMCID: PMC9209483 DOI: 10.1038/s41598-022-13324-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Adipose tissue expansion involves both differentiation of new precursors and size increase of mature adipocytes. While the two processes are well balanced in healthy tissues, obesity and diabetes type II are associated with abnormally enlarged adipocytes and excess lipid accumulation. Previous studies suggested a link between cell stiffness, volume and stem cell differentiation, although in the context of preadipocytes, there have been contradictory results regarding stiffness changes with differentiation. Thus, we set out to quantitatively monitor adipocyte shape and size changes with differentiation and lipid accumulation. We quantified by optical diffraction tomography that differentiating preadipocytes increased their volumes drastically. Atomic force microscopy (AFM)-indentation and -microrheology revealed that during the early phase of differentiation, human preadipocytes became more compliant and more fluid-like, concomitant with ROCK-mediated F-actin remodelling. Adipocytes that had accumulated large lipid droplets were more compliant, and further promoting lipid accumulation led to an even more compliant phenotype. In line with that, high fat diet-induced obesity was associated with more compliant adipose tissue compared to lean animals, both for drosophila fat bodies and murine gonadal adipose tissue. In contrast, adipose tissue of diabetic mice became significantly stiffer as shown not only by AFM but also magnetic resonance elastography. Altogether, we dissect relative contributions of the cytoskeleton and lipid droplets to cell and tissue mechanical changes across different functional states, such as differentiation, nutritional state and disease. Our work therefore sets the basis for future explorations on how tissue mechanical changes influence the behaviour of mechanosensitive tissue-resident cells in metabolic disorders.
Collapse
Affiliation(s)
- Shada Abuhattum
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Petra Kotzbeck
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria
| | - Raimund Schlüßler
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Alexandra Harger
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Angela Ariza de Schellenberger
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Kyoohyun Kim
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Joan-Carles Escolano
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Torsten Müller
- JPK Instruments/Bruker, Colditzstr. 34-36, 12099, Berlin, Germany
| | - Jürgen Braun
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Wabitsch
- Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Matthias Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marko Brankatschk
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Molecular Cell Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Universitätsstrasse 2, 86159, Augsburg, Germany
| | - Anna V Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany.
| |
Collapse
|
8
|
Kislev N, Mor-Yossef Moldovan L, Barak R, Egozi M, Benayahu D. MYH10 Governs Adipocyte Function and Adipogenesis through Its Interaction with GLUT4. Int J Mol Sci 2022; 23:ijms23042367. [PMID: 35216482 PMCID: PMC8875441 DOI: 10.3390/ijms23042367] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Adipogenesis is dependent on cytoskeletal remodeling that determines and maintains cellular shape and function. Cytoskeletal proteins contribute to the filament-based network responsible for controlling the shape of adipocytes and promoting the intracellular trafficking of cellular components. Currently, the understanding of these mechanisms and their effect on differentiation and adipocyte function remains incomplete. In this study, we identified the non-muscle myosin 10 (MYH10) as a novel regulator of adipogenesis and adipocyte function through its interaction with the insulin-dependent glucose transporter 4 (GLUT4). MYH10 depletion in preadipocytes resulted in impaired adipogenesis, with knockdown cells exhibiting an absence of morphological alteration and molecular signals. MYH10 was shown in a complex with GLUT4 in adipocytes, an interaction regulated by insulin induction. The missing adipogenic capacity of MYH10 knockdown cells was restored when the cells took up GLUT4 vesicles from neighbor wildtype cells in a co-culture system. This signaling cascade is regulated by the protein kinase C ζ (PKCζ), which interacts with MYH10 to modify the localization and interaction of both GLUT4 and MYH10 in adipocytes. Overall, our study establishes MYH10 as an essential regulator of GLUT4 translocation, affecting both adipogenesis and adipocyte function, highlighting its importance in future cytoskeleton-based studies in adipocytes.
Collapse
|
9
|
Wei L, Shi J. Insight Into Rho Kinase Isoforms in Obesity and Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:886534. [PMID: 35769086 PMCID: PMC9234286 DOI: 10.3389/fendo.2022.886534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity and associated complications increasingly jeopardize global health and contribute to the rapidly rising prevalence of type 2 diabetes mellitus and obesity-related diseases. Developing novel methods for the prevention and treatment of excess body adipose tissue expansion can make a significant contribution to public health. Rho kinase is a Rho-associated coiled-coil-containing protein kinase (Rho kinase or ROCK). The ROCK family including ROCK1 and ROCK2 has recently emerged as a potential therapeutic target for the treatment of metabolic disorders. Up-regulated ROCK activity has been involved in the pathogenesis of all aspects of metabolic syndrome including obesity, insulin resistance, dyslipidemia and hypertension. The RhoA/ROCK-mediated actin cytoskeleton dynamics have been implicated in both white and beige adipogenesis. Studies using ROCK pan-inhibitors in animal models of obesity, diabetes, and associated complications have demonstrated beneficial outcomes. Studies via genetically modified animal models further established isoform-specific roles of ROCK in the pathogenesis of metabolic disorders including obesity. However, most reported studies have been focused on ROCK1 activity during the past decade. Due to the progress in developing ROCK2-selective inhibitors in recent years, a growing body of evidence indicates more attention should be devoted towards understanding ROCK2 isoform function in metabolism. Hence, studying individual ROCK isoforms to reveal their specific roles and principal mechanisms in white and beige adipogenesis, insulin sensitivity, energy balancing regulation, and obesity development will facilitate significant breakthroughs for systemic treatment with isoform-selective inhibitors. In this review, we give an overview of ROCK functions in the pathogenesis of obesity and insulin resistance with a particular focus on the current understanding of ROCK isoform signaling in white and beige adipogenesis, obesity and thermogenesis in adipose tissue and other major metabolic organs involved in energy homeostasis regulation.
Collapse
Affiliation(s)
- Lei Wei
- *Correspondence: Lei Wei, ; Jianjian Shi,
| | | |
Collapse
|
10
|
Hypoxia induces stress fiber formation in adipocytes in the early stage of obesity. Sci Rep 2021; 11:21473. [PMID: 34728615 PMCID: PMC8563745 DOI: 10.1038/s41598-021-00335-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023] Open
Abstract
In obese adipose tissue (AT), hypertrophic expansion of adipocytes is not matched by new vessel formation, leading to AT hypoxia. As a result, hypoxia inducible factor-1⍺ (HIF-1⍺) accumulates in adipocytes inducing a transcriptional program that upregulates profibrotic genes and biosynthetic enzymes such as lysyl oxidase (LOX) synthesis. This excess synthesis and crosslinking of extracellular matrix (ECM) components cause AT fibrosis. Although fibrosis is a hallmark of obese AT, the role of fibroblasts, cells known to regulate fibrosis in other fibrosis-prone tissues, is not well studied. Here we have developed an in vitro model of AT to study adipocyte-fibroblast crosstalk in a hypoxic environment. Further, this in vitro model was used to investigate the effect of hypoxia on adipocyte mechanical properties via ras homolog gene family member A (RhoA)/Rho-associated coiled-coil kinases (ROCK) signaling pathways. We confirmed that hypoxia creates a diseased phenotype by inhibiting adipocyte maturation and inducing actin stress fiber formation facilitated by myocardin-related transcription factor A (MRTF-A/MKL1) nuclear translocation. This work presents new potential therapeutic targets for obesity by improving adipocyte maturation and limiting mechanical stress in obese AT.
Collapse
|
11
|
Arima Y, Nobusue H, Saya H. Targeting of cancer stem cells by differentiation therapy. Cancer Sci 2020; 111:2689-2695. [PMID: 32462706 PMCID: PMC7419023 DOI: 10.1111/cas.14504] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 12/28/2022] Open
Abstract
Chemoresistance is a hallmark of cancer stem cells (CSCs). To develop novel therapeutic strategies that target CSCs, we established osteosarcoma-initiating (OSi) cells by introducing the c-Myc gene into bone marrow stromal cells derived from Ink4a/Arf KO mice. These OSi cells include bipotent committed cells (similar to osteochondral progenitor cells) with a high tumorigenic activity as well as tripotent cells (similar to mesenchymal stem cells) of low tumorigenicity. We recently showed that the tripotent OSi cells are highly resistant to chemotherapeutic agents, and that depolymerization of the actin cytoskeleton in these cells induces their terminal adipocyte differentiation and suppresses their tumorigenicity. We here provide an overview of modulation of actin cytoskeleton dynamics associated with terminal adipocyte differentiation in osteosarcoma as well as discuss the prospects for new therapeutic strategies that target chemoresistant CSCs by inducing their differentiation.
Collapse
Affiliation(s)
- Yoshimi Arima
- Division of Gene RegulationInstitute for Advanced Medical ResearchKeio University School of MedicineTokyoJapan
| | - Hiroyuki Nobusue
- Division of Gene RegulationInstitute for Advanced Medical ResearchKeio University School of MedicineTokyoJapan
| | - Hideyuki Saya
- Division of Gene RegulationInstitute for Advanced Medical ResearchKeio University School of MedicineTokyoJapan
| |
Collapse
|