1
|
Song X, Xu Y, Li M, Guan X, Liu H, Zhang J, Sun H, Ma C, Zhang L, Zhao X, Zheng X, Zhu D. SRSF4-Associated ca-circFOXP1 Regulates Hypoxia-Induced PASMC Proliferation by the Formation of R Loop With Host Gene. Arterioscler Thromb Vasc Biol 2025; 45:e118-e135. [PMID: 39973750 DOI: 10.1161/atvbaha.124.322026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a rare and fatal disease, the pathological changes of which include pulmonary arterial smooth muscle cell (PASMC) proliferation, which is the pathological basis of pulmonary vascular remodeling. Studies have demonstrated that chromatin-associated circRNA can regulate a variety of biological processes. However, the role of chromatin-associated circRNA in the proliferation of PH remains largely unexplored. In this study, we aimed to identify the function and mechanism of chromatin-associated circRNA in PASMC proliferation in PH. METHODS The role of chromatin-associated circFOXP1 (ca-circFOXP1) was investigated in hypoxic mouse PASMCs and SuHX (Sugen5416+hypoxia) model mice through the use of antisense oligonucleotide knockdown and adeno-associated virus-mediated knockdown. Through bioinformatic sequence alignment, chromatin isolation by RNA purification, Cell Counting Kit 8, 5-ethynyl-2-deoxyuridine, Western blot, and other experiments, the function and mechanism of ca-circFOXP1 were verified. RESULTS The expression of ca-circFOXP1 was found to be significantly increased in SuHX model mice and hypoxic mouse PASMCs. Moreover, ca-circFOXP1 was found to regulate the level of the host protein FOXP1 (forkhead box protein 1) through the R loop, thereby influencing the phosphorylation activity of SMAD2 (SMAD family member 2) and, consequently, the proliferation of mouse PASMCs. It is noteworthy that the m6A modification was found to promote the formation of the R loop between ca-circFOXP1 and the host gene FOXP1, thereby regulating the expression of the host protein. Furthermore, we have identified that the splicing factor SRSF4 (serine/arginine rich splicing factor 4) can upregulate the expression of ca-circFOXP1 by splicing exons 6 and 9 of FOXP1 pre-mRNA. CONCLUSIONS The results demonstrated that the splicing factor SRSF4 upregulated the expression of ca-circFOXP1, and m6A methylation promoted R-loop formation between ca-circFOXP1 and host genes, regulated the level of host protein FOXP1, and then affected the phosphorylation activity of SMAD2, mediating PASMC proliferation, leading to pulmonary vascular remodeling. These results provide a theoretical basis for further study of the pathological mechanisms of hypoxic PH and may provide certain insights.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Disease Models, Animal
- Pulmonary Artery/pathology
- Pulmonary Artery/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Mice
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Serine-Arginine Splicing Factors/genetics
- Serine-Arginine Splicing Factors/metabolism
- Cells, Cultured
- Signal Transduction
- Smad2 Protein/metabolism
- Male
- Vascular Remodeling
- Mice, Inbred C57BL
- Hypoxia/metabolism
- Hypoxia/genetics
- Phosphorylation
- Cell Hypoxia
- Repressor Proteins
Collapse
Affiliation(s)
- Xinyue Song
- College of Pharmacy (X.S., Y.X., M.L., X.G., H.L., H.S., C.M., L.Z., X. Zhao, D.Z.), Harbin Medical University, P.R. China
- Central Laboratory of Harbin Medical University (Daqing), P.R. China (X.S., Y.X., M.L., X.G., H.L., J.Z., H.S., D.Z.)
| | - Ya Xu
- College of Pharmacy (X.S., Y.X., M.L., X.G., H.L., H.S., C.M., L.Z., X. Zhao, D.Z.), Harbin Medical University, P.R. China
- Central Laboratory of Harbin Medical University (Daqing), P.R. China (X.S., Y.X., M.L., X.G., H.L., J.Z., H.S., D.Z.)
| | - Mengnan Li
- College of Pharmacy (X.S., Y.X., M.L., X.G., H.L., H.S., C.M., L.Z., X. Zhao, D.Z.), Harbin Medical University, P.R. China
- Central Laboratory of Harbin Medical University (Daqing), P.R. China (X.S., Y.X., M.L., X.G., H.L., J.Z., H.S., D.Z.)
| | - Xiaoyu Guan
- College of Pharmacy (X.S., Y.X., M.L., X.G., H.L., H.S., C.M., L.Z., X. Zhao, D.Z.), Harbin Medical University, P.R. China
- Central Laboratory of Harbin Medical University (Daqing), P.R. China (X.S., Y.X., M.L., X.G., H.L., J.Z., H.S., D.Z.)
| | - Huiyu Liu
- College of Pharmacy (X.S., Y.X., M.L., X.G., H.L., H.S., C.M., L.Z., X. Zhao, D.Z.), Harbin Medical University, P.R. China
- Central Laboratory of Harbin Medical University (Daqing), P.R. China (X.S., Y.X., M.L., X.G., H.L., J.Z., H.S., D.Z.)
| | - Jingya Zhang
- Central Laboratory of Harbin Medical University (Daqing), P.R. China (X.S., Y.X., M.L., X.G., H.L., J.Z., H.S., D.Z.)
| | - Hanliang Sun
- College of Pharmacy (X.S., Y.X., M.L., X.G., H.L., H.S., C.M., L.Z., X. Zhao, D.Z.), Harbin Medical University, P.R. China
- Central Laboratory of Harbin Medical University (Daqing), P.R. China (X.S., Y.X., M.L., X.G., H.L., J.Z., H.S., D.Z.)
| | - Cui Ma
- College of Pharmacy (X.S., Y.X., M.L., X.G., H.L., H.S., C.M., L.Z., X. Zhao, D.Z.), Harbin Medical University, P.R. China
- College of Medical Laboratory Science and Technology (C.M., L.Z., X. Zhao), Harbin Medical University (Daqing), P.R. China
| | - Lixin Zhang
- College of Pharmacy (X.S., Y.X., M.L., X.G., H.L., H.S., C.M., L.Z., X. Zhao, D.Z.), Harbin Medical University, P.R. China
- College of Medical Laboratory Science and Technology (C.M., L.Z., X. Zhao), Harbin Medical University (Daqing), P.R. China
| | - Xijuan Zhao
- College of Pharmacy (X.S., Y.X., M.L., X.G., H.L., H.S., C.M., L.Z., X. Zhao, D.Z.), Harbin Medical University, P.R. China
- College of Medical Laboratory Science and Technology (C.M., L.Z., X. Zhao), Harbin Medical University (Daqing), P.R. China
| | - Xiaodong Zheng
- Department of Genetic and Cell Biology (X. Zheng), Harbin Medical University (Daqing), P.R. China
| | - Daling Zhu
- College of Pharmacy (X.S., Y.X., M.L., X.G., H.L., H.S., C.M., L.Z., X. Zhao, D.Z.), Harbin Medical University, P.R. China
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education (D.Z.), Harbin Medical University, P.R. China
- Central Laboratory of Harbin Medical University (Daqing), P.R. China (X.S., Y.X., M.L., X.G., H.L., J.Z., H.S., D.Z.)
| |
Collapse
|
2
|
Cai W, Hu J, Zhang Y, Guo Z, Zhou Z, Hou S. Cis-eQTLs in seven duck tissues identify novel candidate genes for growth and carcass traits. BMC Genomics 2024; 25:429. [PMID: 38689208 PMCID: PMC11061949 DOI: 10.1186/s12864-024-10338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Expression quantitative trait loci (eQTL) studies aim to understand the influence of genetic variants on gene expression. The colocalization of eQTL mapping and GWAS strategy could help identify essential candidate genes and causal DNA variants vital to complex traits in human and many farm animals. However, eQTL mapping has not been conducted in ducks. It is desirable to know whether eQTLs within GWAS signals contributed to duck economic traits. RESULTS In this study, we conducted an eQTL analysis using publicly available RNA sequencing data from 820 samples, focusing on liver, muscle, blood, adipose, ovary, spleen, and lung tissues. We identified 113,374 cis-eQTLs for 12,266 genes, a substantial fraction 39.1% of which were discovered in at least two tissues. The cis-eQTLs of blood were less conserved across tissues, while cis-eQTLs from any tissue exhibit a strong sharing pattern to liver tissue. Colocalization between cis-eQTLs and genome-wide association studies (GWAS) of 50 traits uncovered new associations between gene expression and potential loci influencing growth and carcass traits. SRSF4, GSS, and IGF2BP1 in liver, NDUFC2 in muscle, ELF3 in adipose, and RUNDC1 in blood could serve as the candidate genes for duck growth and carcass traits. CONCLUSIONS Our findings highlight substantial differences in genetic regulation of gene expression across duck primary tissues, shedding light on potential mechanisms through which candidate genes may impact growth and carcass traits. Furthermore, this availability of eQTL data offers a valuable resource for deciphering further genetic association signals that may arise from ongoing extensive endeavors aimed at enhancing duck production traits.
Collapse
Affiliation(s)
- Wentao Cai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Hu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunsheng Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhanbao Guo
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhengkui Zhou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuisheng Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
3
|
Chen M, Yang X, Liu H, Wan J. Identification and functional characterization of a bipartite nuclear localization signal in ANKRD11. Biochem Biophys Res Commun 2023; 670:117-123. [PMID: 37290286 DOI: 10.1016/j.bbrc.2023.05.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/27/2023] [Accepted: 05/14/2023] [Indexed: 06/10/2023]
Abstract
ANKRD11 gene encodes for the large nuclear protein essential for multiple system development including the nervous system. However, the molecular basis for the proper nuclear localization of ANKRD11 has not yet been elucidated. In this study, we have identified a functional bipartite nuclear localization signal (bNLS) between residues 53 and 87 of ANKRD11. Using biochemical approaches, we discovered two major binding sites in this bipartite NLS for Importin α1. Through site-directed mutagenesis and functional analysis, we further found that this bipartite NLS is sufficient for nuclear import of overexpressing GFP in HeLa cells and necessary for nuclear localization of ANKRD11. Importantly, our study provides a possible pathogenic mechanism for certain clinical variants located within the bipartite nuclear localization signal of ANKRD11.
Collapse
Affiliation(s)
- Min Chen
- Biomedical Research Institute, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xue Yang
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Haiyang Liu
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| | - Jun Wan
- Biomedical Research Institute, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China; Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, 518107, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Grabarczyk P, Delin M, Rogińska D, Schulig L, Forkel H, Depke M, Link A, Machaliński B, Schmidt CA. Nuclear import of BCL11B is mediated by a classical nuclear localization signal and not the Krüppel-like zinc fingers. J Cell Sci 2021; 134:272659. [PMID: 34714335 DOI: 10.1242/jcs.258655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/24/2021] [Indexed: 11/20/2022] Open
Abstract
The Krüppel-like transcription factor BCL11B is characterized by wide tissue distribution and crucial functions in key developmental and cellular processes and various pathologies including cancer or HIV infection. Although basics of BCL11B activity and relevant interactions with other proteins were uncovered, how this exclusively nuclear protein localizes to its compartment remained unclear. Here, we demonstrate that unlike other KLFs, BCL11B does not require the C-terminal DNA-binding domain to pass through the nuclear envelope but encodes an independent, previously unidentified nuclear localization signal (NLS) which is located distantly from the zinc finger domains and fulfills the essential criteria of an autonomous NLS. First, it can redirect a heterologous cytoplasmic protein to the nucleus. Second, its mutations cause aberrant localization of the protein of origin. Finally, we provide experimental and in silico evidences of the direct interaction with importin alpha. The relative conservation of this motif allows formulating a consensus sequence (K/R)K-X13-14-KR+K++ which can be found in all BCL11B orthologues among vertebrates and in the closely related protein BCL11A.
Collapse
Affiliation(s)
- Piotr Grabarczyk
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Martin Delin
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Hannes Forkel
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Maren Depke
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Link
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | | |
Collapse
|